Home
Projects
People
Publications
Teaching
Bio
Play
B-Board

Klaus Mueller
Professor

Director, Visual Analytics and Imaging (VAI) Lab
Liaison, SUNY Korea CS Program

Center for Visual Computing
Computer Science Department
Stony Brook University - State University of New York

mueller{remove_this}@cs.stonybrook.edu

Quick Bio

I received a PhD in computer science from The Ohio State University in 1998. I am currently a professor in the Computer Science Department at Stony Brook University and I am also a senior scientist at the Computational Science Initiative at Brookhaven National Lab. From 2012-2015, I served as the founding chair of the Computer Science Department at SUNY Korea and I was also VP for Academic Affairs and Finance at SUNY Korea for two years. My current main research interests are visual analytics, explainable machine learning and AI, algorithmic fairness and transparency, data science and computational and medical imaging. I won the US National Science Foundation Early Career award in 2001, the SUNY Chancellor Award for Excellence in Scholarship and Creative Activity in 2011, and the Meritorious Service Certificate and the Golden Core Award of the IEEE Computer Society in 2016. In 2018 I was inducted into the US National Academy of Inventors. To date, I have authored more than 300 peer-reviewed journal and conference papers, which have been cited more than 11,500 times. I am a frequent speaker at international conferences, have organized or participated in 18 tutorials on various topics, chaired the IEEE Visualization Conference in 2009, and was the elected chair of the IEEE Technical Committee on Visualization and Computer Graphics (VGTC) from 2012-2015. I currently serve as the Editor-in-Chief of IEEE Transactions on Visualization and Computer Graphics. I am a senior member of the IEEE. (Please see here for a bio in the third person and here is a real pic of me).

Research Interests
     
research word art Visual analytics -- Visualization, visual data science, visual storytelling, explainable AI, infovis, HCI
Computational fairness: Human in the loop bias detection, exploration, and mitigation
Computational imaging -- Computed tomography, low-dose, GAN-synthesis, GPU-acceleration
Volume visualization -- Medical and scientific visualization, multivalued data w/geo-reference
Virtual reality -- Virtual, augmented, mixed reality, display walls, immersive visualization
Cognitive computer graphics -- Color, texture, details, points, perception, cognition, semiotics
Filters and grids -- Sampling, hexagonal amd body-centerered lattices, extensions to N-D
Eyetracking -- Visualization for eye tracking data, acquisition, applications
Natural phenomena -- Simulation, urban security applications,GPU-acceleration
Face recognition (this is no longer an active research topic)
All my publications via Google Scholar

Recent Developments

 

 
Stars of CSE 564 Spring 2022: Check out this playlist for videos of the best projects of this year's grad visualization course
Recent papers on visual analytics and explainable AI published or accepted:
  Three papers accepted at IEEE VIS 2022 (Special TVCG Issue): D-Bias, PC-Expo, and NAS-Navigator
  Two more recent IEEE TVCG papers to be presented at IEEE VIS 2022: Outcome Explorer and Exemplar Finder
  Check out our new EuroVis 2022 paper: the Infographics Wizard with A. Tyagi, J. Zhao, P. Patel, and S. Khurana
  New paper in Social Networks: Networks never rest: an investigation of network evolution in three species of animals
  Looks matter: read about it in our new Informatics paper on Cluster Appearance Glyphs
  Know who to ask for money and donations: Patterns of Philanthropy: Predictive Analysis in Fund Raising
  Debiasing data can be tricky: See our new ACM CIKM paper on Cascaded Debiasing
Recent papers on machine learning in medical imaging and computed tomography:
  Guest Editorial in IEEE Trans. on Medical Imaging: Image Reconstruction Is a New Frontier of Machine Learning with G. Wang, J. Fessler, and J. C. Ye
  Synthesizing CT images of artificial humans: see how we do it in our new IEEE Medical Imaging Conference paper

Teaching Portfolio

 

     
CSE 332 Introduction to Visualization (undergraduate level) CSE 591 GPU Programming (Special Topics course)
CSE 377 Introduction to Medical Imaging (undergraduate level) CSE 577 Medical Imaging (graduate level)
CSE 323 Human Computer Interaction (co-taught at graduate level) CSE 523 Master's Projects (continued as CSE 524)
CSE 564 Visualization and Visual Analytics (graduate level) CSE 648 Visual Analytics Seminar (every semester)
CSE 590 Data Science Fundamentals (graduate level) More... Complete set of courses

Also known as Klaus Müller (German spelling)
http://www3.cs.stonybrook.edu/~mueller