B-Board |
|
Klaus Mueller Center
for Visual Computing |
Quick Bio |
I received a PhD in computer science from The Ohio State University in 1998. I am currently a professor in the Computer Science Department at Stony Brook University and I am also a senior scientist at the Computational Science Initiative at Brookhaven National Lab. I currently serve as the acting chair of the Department of Tech and Society. From 2012-2015, I served as the founding chair of the Computer Science Department at SUNY Korea and I was also VP for Academic Affairs and Finance at SUNY Korea for two years. My current main research interests are visual analytics, explainable machine learning and AI, algorithmic fairness and transparency, data science and computational and medical imaging. I won the US National Science Foundation Early Career award in 2001, the SUNY Chancellor Award for Excellence in Scholarship and Creative Activity in 2011, and the Meritorious Service Certificate and the Golden Core Award of the IEEE Computer Society in 2016. In 2018 I was inducted into the US National Academy of Inventors. To date, I have authored more than 300 peer-reviewed journal and conference papers, which have been cited more than 13,000 times. I am a frequent speaker at international conferences, have organized or participated in 18 tutorials on various topics, chaired the IEEE Visualization Conference in 2009, was the elected chair of the IEEE Technical Committee on Visualization and Computer Graphics (VGTC) from 2012-2015, and served as the Editor-in-Chief of IEEE Transactions on Visualization and Computer Graphics from 2019-2022. I am a Fellow of the IEEE. (Please see here for a bio in the third person and here is a real pic of me).
Research Interests |
Visual analytics -- Visualization, visual data science, visual storytelling, explainable AI, infovis, HCI | ||
Computational fairness: Human in the loop bias detection, exploration, and mitigation | ||
Computational imaging -- Computed tomography, low-dose, GAN-synthesis, GPU-acceleration | ||
Volume visualization -- Medical and scientific visualization, multivalued data w/geo-reference | ||
Virtual reality -- Virtual, augmented, mixed reality, display walls, immersive visualization | ||
Cognitive computer graphics -- Color, texture, details, points, perception, cognition, semiotics | ||
Filters and grids -- Sampling, hexagonal amd body-centerered lattices, extensions to N-D | ||
Eyetracking -- Visualization for eye tracking data, acquisition, applications | ||
Natural phenomena -- Simulation, urban security applications,GPU-acceleration | ||
Face recognition (this is no longer an active research topic) | ||
All my publications via Google Scholar |
Recent Developments |
|
|
Stars of CSE 564 Spring 2023: Check out this playlist for videos of the best projects of this year's grad visualization course | |
Recent papers on visual analytics and explainable AI published or accepted: | |
Won Best Paper at the Visual Analytics in Healthcare Workshop at AMIA 2022 for our COVID-19 Risk Explorer | |
Don't trust your causal models? Audit them with ChatGPT, described in our NLVIZ 2023 Workshop paper | |
Presented three TVCG papers at IEEE VIS 2023 in Melbourne, Australia: | |
- Temporal causal reasoning with DOMINO (final chapter of Jun Wang's PhD thesis) | |
- Multivariate volume rendering with RadVolViz (final chapter of Ayush Kumar's PhD thesis) | |
- Interactive subspace analysis with Semantic Subspace Clustering (final chapter of Salman Mahmood's PhD thesis) | |
Debiasing data can be tricky: See our new ACM CIKM paper on Cascaded Debiasing | |
Recent papers on machine learning in medical imaging and computed tomography: | |
Our Nature MI article on the Metaverse for Intelligent Healthcare is published as a Perspectives article | |
Guest Editorial in IEEE Trans. on Medical Imaging: Image Reconstruction Is a New Frontier of Machine Learning with G. Wang, J. Fessler, and J. C. Ye | |
Synthesizing CT images of artificial humans: see how we do it in our new Fully 3D Reconstruction paper with A. Krishna, S. Yenneti, and G. Wang |
Teaching Portfolio
|
|
|||
CSE 332 | Introduction to Visualization (undergraduate level) | CSE 591 | GPU Programming (Special Topics course) |
CSE 377 | Introduction to Medical Imaging (undergraduate level) | CSE 577 | Medical Imaging (graduate level) |
CSE 323 | Human Computer Interaction (co-taught at graduate level) | CSE 523 | Master's Projects (continued as CSE 524) |
CSE 564 | Visualization and Visual Analytics (graduate level) | CSE 648 | Visual Analytics Seminar (every semester) |
CSE 590 | Data Science Fundamentals (graduate level) | More... | Complete set of courses |