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Figure 1: Prior tokens are listed on the left with font size scaled by their attention influence on the selected output token (“city”).
Each colored trajectory represents a semantic pathway, showing how its hidden state evolves across layers. Faded red attention
arcs highlight influential tokens at layer L6, with the arc thickness indicating attention weight. Hovering over a node reveals its top
incoming contributors. The radial output view displays the predicted token (“city”) alongside top alternatives.

ABSTRACT

Transformer-based language models have demonstrated remark-
able capabilities across various tasks, yet their internal mecha-
nisms—such as layered representations, distributed attention, and
evolving token semantics—remain challenging to interpret. We
present Semantic Pathway, an interactive visual analytics tool de-
signed to reveal how token representations evolve across layers in
autoregressive Transformer models such as GPT-2. The system in-
tegrates layerwise semantic trajectories, attention overlays, and out-
put probability views into a unified interface, enabling users to trace
how meaning accumulates and decisions emerge during generation.
To reduce visual and interaction complexity, Semantic Pathway
incorporates attention-based influence filtering, optional nearest-
token projections, and a Compare Mode for analyzing divergence
across alternate outputs. The design prioritizes interpretability and
usability, supporting both fine-grained inspection and high-level ex-
ploration of sequence modeling behavior. This work contributes to
ongoing efforts to make language models more interpretable, edu-
cationally accessible, and open to diagnostic insight.
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1 INTRODUCTION

With the rapid growth and widespread adoption of large language
models (LLMs) in critical domains, gaining a deeper and more
structured understanding of their internal mechanisms has become
increasingly important [3, 5]. Improving transparency into how
these models build and transform semantic meaning during gener-
ation can foster greater trust, support explainability efforts, and en-
able a more responsible deployment. However, despite growing ef-
forts in model interpretability, including initiatives like Transformer
Circuits [5], the internal dynamics through which autoregressive
models such as the GPT family, LLaMA, Mistral, and others de-
velop and transform semantic representations, which are crucial for
trustworthy and explainable behavior, remain challenging to trace
and understand, especially from a human-in-the-loop perspective
where intermediate reasoning steps are often opaque to users.

Understanding these internal dynamics is challenging due to the
architectural complexity of transformer models. The representa-
tion of each token is shaped through a sequence of non-linear
transformations in multiple layers [13, 15], each containing high-
dimensional hidden states and multiple attention heads [17]. This
makes it difficult to form a cohesive view of how semantic mean-
ing emerges and evolves during generation. Prior interpretability
tools have addressed parts of this challenge: the Illustrated Trans-
former [2] provides intuitive attention explanations; ExBERT [8]
and LIT [16] enable interactive exploration of token embeddings;
VisBERT [1] visualizes hidden state activations at individual lay-
ers for encoder-based models; and LogitLens4LLMs [19] projects
hidden states through the output layer to reveal intermediate token
predictions in decoder models.

While these approaches reveal valuable patterns, they typically
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isolate a single model component, such as attention weights, static
embeddings, or output logits, and rarely provide a unified view of
how semantic meaning is progressively constructed during genera-
tion [6, 10]. Recent work has emphasized the need for more holis-
tic and usable interpretability strategies that go beyond surface-
level attention maps, particularly for language models used in high-
stakes or iterative contexts [20]. In parallel, visualization sys-
tems developed within the visualization research community have
highlighted the importance of interactive and multiscale represen-
tations [7], demonstrating how layered internal behavior can be
made tractable through summarization and exploration. Seq2Seq-
Vis [14], for instance, visualizes encoder-decoder alignments and
attention dynamics in sequence-to-sequence models, but is not de-
signed for tracing semantic drift or evolving representations within
autoregressive decoders. AttentionViz [21] presents a global view
of attention patterns by embedding queries and keys jointly across
sequences, and CommonsenseVIS [18] provides insight into the
reasoning behavior in LLMs. However, these systems generally fo-
cus on encoder-based models or offer static summaries and are not
designed to trace semantic transformations across layers during au-
toregressive generation. This gap motivates the need for interactive
systems that unify attention, hidden states, and token predictions
into a coherent, evolving semantic narrative.

Building on these insights, we introduce Semantic Pathway, a
visualization framework designed to trace the development of se-
mantic meaning through the intermediate representations of autore-
gressive Transformer models. Rather than examining attention or
hidden states in isolation, Semantic Pathway provides an integrated
view of how semantic structure evolves across all layers during to-
ken generation. To support detailed exploration and manageable
analysis, we focus on GPT-2 for initial development due to its mod-
erate size (12 layers and 12 attention heads) [12].

Semantic Pathway unifies multiple facets of model behavior into
a single interactive exploration. It visualizes hidden states to show
how token representations transform across layers, attention-based
association arcs to reveal internal focus patterns, and influence pro-
jections to approximate how prior tokens contribute to prediction.
Although attention is not a causal explanation [9], it serves as a
valuable signal of contextual influence and routing. By combin-
ing attention influence with semantic trajectories, the system en-
ables users to explore how context influences token generation and
how different semantic pathways emerge in response to surround-
ing text.

Through fine-grained semantic analysis and multiscale visual-
izations, Semantic Pathway offers an educational and exploratory
lens into model behavior. While acknowledging the complexity
and opacity of large models, our goal is to provide a more acces-
sible and interpretable view of how semantic reasoning unfolds in-
ternally, thereby contributing to broader efforts in developing trans-
parent and trustworthy AI systems.

2 SYSTEM OVERVIEW

Semantic Pathway is an interactive visualization system for explor-
ing how semantic representations evolve layer by layer within au-
toregressive Transformer models. It integrates model outputs such
as hidden states, attention weights, and logits into a coordinated vi-
sual environment that supports tracing token-level dynamics during
generation. The system emphasizes both structure and interactivity,
allowing users to follow how context shapes the semantic trajectory
of each token, observe internal focus patterns, and examine how se-
mantic pathways emerge from earlier tokens. While initial develop-
ment targets GPT2 for its manageable size, the framework supports
other autoregressive models and adapts visualizations to highlight
the most informative transformations. Model outputs are extracted
during forward passes and structured into formats that drive the vi-
sual components and interactions.

2.1 Data Processing Pipeline
For each generated token, the system collects hidden states, atten-
tion weights, and output logits across all layers for all prior tokens
in the sequence. These internal representations form the foundation
of the visual encodings in Semantic Pathway.

Each hidden state is a high-dimensional vector (d = 768 for
GPT-2). To visualize how token meaning evolves across layers,
we project these hidden states into a two-dimensional space using
t-SNE. The resulting 2D coordinates define the semantic trajectory
of a token through the model. To provide interpretability, we also
compute the top-K nearest tokens in the embedding space for each
hidden state, anchoring it to semantically similar vocabulary terms.

Attention weights are extracted as square matrices of shape
[seq len,seq len] at each layer. Since Transformer architectures use
multi-head attention (12 heads in GPT-2), we average across heads
to produce a single aggregated matrix per layer. These scores are
used to draw directed arcs that visualize attention-based influence
from all prior tokens to the token selected for pathway rendering, at
any selected layer.

For each generated token tg, we compute an attention-based in-
fluence score for every prior token ti by averaging the attention re-
ceived across heads at each layer and summing across layers:

Influence(ti) =
L

∑
ℓ=1

1
H

H

∑
h=1

Attn(ℓ,h)(tg, ti)

These scores determine which prior tokens appear in the left
panel and scale their font size, emphasizing the most relevant con-
tributors for pathway exploration.

Finally, output logits are recorded for each generated token after
the final layer. Applying softmax to these logits yields a probability
distribution over the vocabulary. We extract the top-N most likely
tokens, allowing users to inspect alternative predictions and assess
model uncertainty.

Figure 3: (a) Prior tokens with font size scaled by attention influence.
(b) Pathway slice with attention arcs and pie charts showing incoming
attention—self-attention in dark (pathway color), others in red. (c)
Output view with top predicted token and softmax alternatives.

2.2 Semantic Pathway Views
The system interface begins with a prompt input and model selec-
tion (e.g., GPT-2). Upon initiating generation, the model produces
tokens one by one, conditioned on both the prompt and previously
generated tokens. The resulting sequence includes both input to-
kens (used as context) and newly generated tokens, all displayed in
a horizontal strip. Clicking a generated token triggers the visualiza-
tion of its internal computation.

The left panel displays a filtered set of prior tokens selected
based on their attention-based influence on the selected output to-
ken (see Fig. 3, part (a)). Font size is scaled proportionally to in-



Figure 2: Compare Mode showing diverging semantic pathways for “of” across two outputs (“water” and “for”). Although positionally identical,
the token’s hidden states diverge due to recomputation at each generation step. Solid and dotted lines represent the two continuations.

fluence, helping users quickly identify the most relevant context.
Clicking on any of these tokens reveals its semantic pathway.

Each semantic pathway consists of a series of nodes arranged
in layers, illustrating how the internal representation of a token
evolves through these layers. The first node appears at the embed-
ding layer, adjacent to the token text, establishing its relative origin.
Subsequent nodes trace the transformation of hidden states across
layers, projected into two-dimensional space using t-SNE. Each
pathway is color-coded based on the selected token, with dashed
lines indicating the second token in Compare Mode and a dashed
vertical line visually anchors the origin. The number of layers and
corresponding nodes are derived directly from the shape of the hid-
den state tensor. This pathway provides a visual representation of
semantic drift, illustrating how a token’s meaning evolves as it con-
tributes to the selected output token.

To support semantic interpretability, each hidden state is com-
pared to the model’s embedding space to retrieve the top-K nearest
tokens by cosine similarity. These nearest tokens serve as optional
semantic anchors and are shown using the Show Nearest Tokens
toggle (see Fig. 1). This option is disabled at the final layer, where
representations are projected into the output space and proximity to
embeddings becomes uninformative.

Attention arcs provide additional context by showing how all
prior tokens influence the pathway token at a specific layer. When
users click a layer label, red arcs are rendered from each prior to-
ken to the pathway token, with thickness scaled to attention weight.
These attentions are averaged across heads for clarity. Although
not causal, they provide interpretable signals of contextual focus
and the distribution of influence.

Each node in the semantic pathway includes a pie chart that sum-
marizes attention received from prior tokens at that layer, with a dis-
tinct segment for self-attention. The self-attention slice is filled with
a dark shade matching the pathway color, while attention from other
tokens is shown in red (see Fig. 3, part (b)). Hovering over a node
reveals a ranked list of top contributors and their corresponding at-
tention percentages, allowing for fine-grained inspection without
overwhelming the interface.

Finally, the model’s output distribution is displayed as a radial
plot after the last layer. The predicted token is centered, with top-
N alternatives shown around it. Each line’s length reflects softmax
probability, helping users assess model uncertainty and plausible
continuations (see Fig. 3, part (c)).

Compare mode allows the simultaneous selection of two gener-
ated tokens. Their pathways are rendered together using solid and
dashed lines, enabling users to compare how the same prior token
may evolve differently. Attention arcs and output views are also
shown side by side, supporting contrastive analysis of model behav-
ior (Fig. 2). The interface preserves user state across interactions,
such as selected layers and Compare Mode toggles.

3 OBSERVATIONS

Using Semantic Pathway to explore hidden states, attention pat-
terns, and output predictions, we identified several recurring behav-
iors in how Transformer models internally process language. These
insights emerged across diverse prompts and generation scenarios.

In early layers, hidden states change gradually as tokens begin
to form internal structure. From middle to deeper layers, represen-
tations drift more noticeably, capturing richer context. At the final
layer, trajectories sharply turn or collapse inward, signaling com-
pression into the output space. This progression reflects a shift from
incremental encoding to decisive semantic shaping, and finally, pre-
dictive resolution.

Attention patterns also evolve across layers. Early attention
is diffuse and dominated by self-attention. As layers deepen,
the model refines its focus, reinforcing key tokens while others
fade. Self-attention declines, and attention becomes increasingly
focused on a few influential tokens. Positional decay is also evi-
dent—nearby tokens typically receive more attention than distant
ones. Yet, the model compensates for this by reintroducing specific
tokens over long ranges in later layers. The first input token of-
ten remains a strong influence throughout many steps, serving as a
contextual anchor.

Nearest-token projections provide a semantic lens into hidden
states. In intermediate layers, nearest neighbors are often consis-
tent function words like “of” or “in.” Although semantically light,
their layerwise stability suggests an interpretable structure. In con-
trast, final layer neighbors are erratic or repeated across contexts,
e.g., “SPONSORED” or “Reviewer”, indicating that this space pri-
oritizes output optimization over meaning and no longer supports
useful semantic anchoring.

Compare Mode reveals how the same prior token can evolve dif-
ferently depending on the output. Since hidden states are recom-
puted at each generation step, prior tokens shift subtly as the con-
text grows, even without positional changes. Some maintain similar



semantic pathways, while others diverge sharply in deeper layers
(Fig. 2). Notably, these divergences occur even when attention arcs
are nearly identical, underscoring that semantic representations are
shaped not just by attention but by the full transformation stack ap-
plied at each step.

Insight: Final-layer hidden states often lose semantic clarity as
they collapse into logit space. Interpretability is strongest mid-
depth, where semantic structure evolves most meaningfully.

4 CHALLENGES AND DESIGN DECISIONS

Visualizing many layers in deep models quickly exceeds available
screen width and introduces visual clutter. Even when space per-
mits, showing every layer often obscures meaningful transitions
due to cognitive overload. Design Decision: We render semantic
trajectories using 2D projections and display only a subset of layers
based on semantic deviation. This emphasizes informative tran-
sitions without burdening users with redundant or minor changes.
Attention overlays can be toggled per layer to inspect internal focus
without introducing clutter.

Hidden states are high-dimensional vectors that change across
layers, making them difficult to interpret directly. Design Deci-
sion: We apply t-SNE to project hidden states into 2D space, en-
abling semantic comparison across layers. While PCA was initially
explored, t-SNE better preserved the local structure of the data. To
interpret the projection, we overlay the nearest token from the em-
bedding space. Since these often include semantically light terms
(e.g., “the”, “in”), a toggle allows users to hide them, reducing vi-
sual noise.

Each generated token attends to all prior tokens (T ) across mul-
tiple heads (H) and layers (L), forming a dense attention tensor of
shape [L × H × T × T ]. Identifying the most influential context
tokens requires careful aggregation. Design Decision: We aver-
age the attention weights across heads, then sum across layers to
compute context token influence. These influence scores deter-
mine which prior tokens appear in the left panel and scale their
font size, emphasizing the most relevant contributors for pathway
exploration.

Compare Mode introduces complexity by displaying multiple se-
mantic pathways and associated views. Overlapping arcs and di-
verging trajectories can create visual confusion. Design Decision:
We limit comparison to two output tokens, distinguish their path-
ways using solid and dashed lines, and synchronize all views to
maintain clarity.

As users switch between output tokens, the set of influential prior
tokens can change, potentially causing disorientation in users. De-
sign Decision: We maintain original token ordering in the left panel
and persist highlight states for previously selected tokens, ensuring
interaction stability.

Users differ in their level of interest in exploring model behav-
ior. While experts may seek fine-grained inspection, others may
prefer high-level overviews. Design Decision: We support multi-
level exploration through semantic pathway summaries, attention
arc overlays, and hover-based breakdowns, enabling flexible yet in-
terpretable analysis for diverse user needs.

5 LIMITATIONS

Semantic Pathway currently targets smaller decoder-only models
(e.g., GPT-2) and has not been evaluated on deeper or instruction-
tuned architectures. While effective for short and medium-length
sequences, the interface may become visually cluttered when ap-
plied to longer contexts or document-scale generations. Compare
Mode is limited to two output tokens, which restricts temporal or
multi-token exploration.

Hidden states are projected using t-SNE, which may intro-
duce spatial distortions; distances and trajectories should be inter-
preted qualitatively. We average attention weights across heads,

potentially suppressing head-specific behaviors. Influence scores
are computed heuristically and may not reflect causal attribution.
While the system supports exploratory insight into token-level dy-
namics, it does not provide definitive explanations. Semantic
Pathway does not incorporate gradient-based attribution techniques
[4] or circuit-level tracing frameworks like TransformerLens [11],
which could offer complementary, causally grounded perspectives
on internal model behavior.

6 FUTURE WORK

Semantic Pathway could be extended to support larger or
instruction-tuned models such as GPT-3 or LLaMA-2, which fea-
ture deeper architectures and more complex prompting behavior.
These models may require scalable summarization methods and
new abstractions to manage their expanded internal structure.

To handle more extensive sequences and document-scale gener-
ations, future designs may incorporate features such as zooming,
panning, or collapsible views to support hierarchical navigation.

Compare Mode may evolve beyond pairwise outputs to support
top-k continuations or temporally aligned comparisons, enabling
richer exploration of divergence and ambiguity in generation.

Deeper semantic insight could be gained by clustering hidden
states across tokens and layers to reveal functional units such as
syntactic roles or semantic detectors. Comparing hidden states with
the vocabulary embedding space may also clarify how intermediate
layers refine or repurpose static embeddings. These methods may
also help connect internal dynamics to interpretable features, such
as syntax, sentiment, or factual grounding.

Future work could explore per-head attention analysis, attention
flow tracking, or clustering of attention patterns to uncover head
specialization and routing behavior.

Finally, aligning internal signals with user-defined semantics,
task labels, or prediction outcomes could bridge model behavior
with external meaning, supporting both interpretability and down-
stream diagnostics.

7 CONCLUSION

Semantic Pathway introduces an interactive framework for explor-
ing how token representations evolve across layers in autoregressive
language models. By integrating hidden state projections, attention-
based influence visualizations, and comparative pathway analysis,
the system reveals layered dynamics of meaning construction and
context shaping during generation.

Rather than offering absolute interpretability, the system empha-
sizes structured transparency, surfacing patterns that support human
reasoning and diagnostic insight. Observations reveal persistent in-
fluence from early tokens, shifting semantic pathways across layers,
and reduced interpretability near the output stage.

While the current system focuses on autoregressive architec-
tures and short sequences, it lays the foundation for future exten-
sions toward deeper models, longer contexts, and user-aligned sig-
nals. Attention-based influence scores, although heuristic, provide
a structured lens for tracing semantic evolution and contextual influ-
ence. Semantic Pathway supports both exploration and educational
insight for technical and non-technical audiences. Beyond research
applications, it may also serve as a pedagogical tool, offering learn-
ers a visual scaffold to understand how language models construct
meaning layer by layer.

This layered progression can be interpreted as a narrative of com-
peting possibilities. Early layers maintain broader semantic am-
biguity, with multiple plausible continuations coexisting—for in-
stance, “life” or “food” as alternatives to “water” in the prompt “A
river is source of. . . ”. As the model advances, attention and hid-
den state transformations incrementally filter and refine these can-
didates. By the final layer, semantic uncertainty collapses into a



confident prediction, highlighting how the model organizes mean-
ing over depth as a form of internal time.

SUPPLEMENTAL MATERIALS

A short video demonstration of the Semantic Pathway interface is
available at https://vimeo.com/1080448380/2f38ba5dfc. It
showcases key interactions and visual components discussed in the
paper. The video is accessible via direct link only.
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