Course Structure


 COURSE SYLLABUS


 

CONTENT

CHAPTER

1

Introduction & Intelligent Agents

Chapter 1,2

2

Problem Solving as Search

Problem Spaces

Uninformed Search:

      •  Breadth-first 

      •  Depth-first 

      •  Iterative Deepening  

Informed (Heuristic) Search:

      •  Best-first 

      •  A* Search 

Chapter 3

3

Game Playing :

      •  Minmax 

      •  Alpha-beta Pruning 

Chapter 5

4

Constraint Satisfaction

Chapter 6

5

Knowledge Representation:

      •  Propositional Logic 

      •  First-Order Logic 

Logical Reasoning:

      •  Deductive Inference 

      •  Unification 

      •  Resolution 

Chapter 7,8,9

6

Planning

Chapter 11

7

Reasoning under Uncertainty:

      •  Bayesian Networks 

      •  Markov Decision Processes 

Chapter 14

8

Machine Learning:

      •  Concept Learning 

      •  Decision Trees 

Chapter 18

9

Statistical Learning :

      •  Naive Bayes 

      •  Density Estimation 

      •  Expectation Maximization 

Chapter 20 & Additional Notes

10

Reinforcement Learning

Chapter 21

 

GRADING

          There will be Midterm, Final and 4-5 Projects.

          The Final grades will be based on following weights:

                •  Midterm : 35%         

                •  Final       : 45%                 

                •  Projects  : 20%