Home
Schedule
Labs
Links
Policies
Grades

Syllabus:


Date
Topic
Homeworks/Labs Readings
Handouts
09/01 Intro, schedule, logistics   Provost Ch. 1 dataScienceIntro
09/03 Compoenents and tasks   Provost Ch. 2 componentsTasks
09/08 Data types project 1 out Aggarwal: Ch. 2.2 dataTypes
09/10 Statistics foundations, intro to R     statistics R-tutorial
09/15 Visual analytic, intro to D3     visualAnalytics d3Intro
09/17 Data preparation and reduction: data reduction   Aggarwal: Ch. 2.3-2.4 dataPrep1
09/22 Project 1 presentations project 1 due    
09/24 Data preparation and reduction: transformation project 2 out Aggarwal: Ch. 2.3-2.4 dataPrep2
09/29 Harvest Moon -- no class      
10/01 Data preparation and reduction: dimension reduction, LDA   Aggarwal: Ch. 2.3-2.4 LDA
10/06 Similarity and distance metrics   Aggarwal: Ch. 3 similarity
10/08 Cluster analysis I   Aggarwal: Ch. 5.1-5 clusterAnalysis1 clustering
10/13 Project 2 preparation      
10/15 Project 2 presentations project 2 due    
10/20 Cluster analysis II   Aggarwal: Ch. 6.6-7 clusterAnalysis2 DBSCAN
10/22 Pattern mining   Aggarwal: Ch. 4 patternMining
10/27 Final project prosposal prepartion final project proposal due    
10/29 Midterm      
11/03 Midterm discussion      
11/05 Outlier analysis   Aggarwal: Ch. 8, 9 outlierAnalysis
11/10 Classifiers   Aggarwal: Ch. 10 classifiers
11/12 Classifiers: advanced concepts
  Aggarwal: Ch. 11 see above
11/17 Optimization methods     optimization
11/19 Final project progress presentation final project preliminary report due    
11/24 Tine series   Aggarwal: Ch. 14 timeSeries
11/26 Final project session    
12/01 Streaming Data   Aggarwal: Ch. 12 streamData
12/03 Graph data mining   Aggarwal: Ch. 17 graphMining
12/08 Data journalism      
12/15 Final project presentations (3:15-5:45pm)