Temple Color 128 - Color Tracking Benchmark


Abstract

While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on a RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues including the behavior of various combinations between color model and visual tracker, the hardness of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation and benchmark for future work on encoding color in visual tracking.

The dataset and source code of some color trackers are made available for reference.


Reference

Encoding Color Information for Visual Tracking: Algorithms and Benchmark
P. Liang, E. Blasch, and H. Ling
IEEE Trans. on Image Processing (T-IP), 24(12): 5630-5644, 2015.
PDF

Dataset

How to download the benchmark?

All the 128 sequences of Temple Color 128 including ground truth and attribute annotation can be downloaded entirely Temple-color-128.zip, or downloaded separately by clicking the name of each sequence below.

How to use the data?

The folder of each sequence contains the following files:

Note: The sequence name of which ending with "ce" are newly collected from the Interent (78 in total); others are collected from previous studies (50 in total). There are two targets in the sequence "Jogging".


Airport_ce
SV,OCC

Baby_ce
SV,OCC,DEF,OPR

Badminton_ce1
DEF,MB,OPR

Badminton_ce2
DEF,MB,OPR

Ball_ce1
OCC,MB,IPR,OPR...

Ball_ce2
IV,OCC,MB,OV...

Ball_ce3
OV,SV,FM

Ball_ce4
FM,OCC,OPR,OV

Basketball
IV,OPR,OCC,DEF...

Basketball_ce1
IV,SV,OCC,DEF...

Basketball_ce2
IV,OCC,DEF,OPR...

Basketball_ce3
SV,OCC,DEF,MB...

Bee_ce
BC,LR

Bicycle
IV,SV,BC

Bike_ce1
IV,SV,FM,IPR...

Bike_ce2
SV,IPR,LR

Biker
SV,MB,FM,OPR

Bikeshow_ce
SV,DEF,FM,IPR...

Bird
OCC,FM,OPR

Board
SV,MB,FM,OV...

Boat_ce1
SV,OCC,IPR,OPR

Boat_ce2
SV,OCC,FM,IPR...

Bolt
OPR,OCC,DEF,IPR

Boy
OPR,SV,MB,FM...

Busstation_ce1
OCC,BC

Busstation_ce2
OCC,IPR,OPR,BC

CarDark
IV,BC

CarScale
OPR,SV,OCC,FM...

Carchasing_ce1
IV,SV,OCC,FM...

Carchasing_ce3
 

Carchasing_ce4
SV

Charger_ce
IV,OCC,MB,IPR...

Coke
IV,OPR,OCC,FM...

Couple
OPR,SV,DEF,FM...

Crossing
SV,DEF,BC

Cup
BC

Cup_ce
MB,IPR,OPR,FM

David
IV,OPR,SV,OCC...

David3
OPR,OCC,DEF,BC

Deer
MB,FM,IPR,BC

Diving
SV,DEF,MB

Doll
IV,OPR,SV,OCC...

Eagle_ce
SV,IPR,OPR,BC

Electricalbike_ce
SV,OCC

FaceOcc1
OCC

Face_ce
SV,OCC,IPR,OPR...

Face_ce2
IV,OCC,MB,IPR...

Fish_ce1
OCC,IPR,OPR,SV

Fish_ce2
OCC,IPR,OPR,SV

Football1
OPR,IPR,BC

Girl
OPR,SV,OCC,IPR

Girlmov
OCC,MB,OPR

Guitar_ce1
FM

Guitar_ce2
IV,FM,IPR,OPR

Gym
SV,DEF,IPR,OPR

Hand
IV,SV

Hand_ce1
FM,DEF,MB,BC

Hand_ce2
MB,OV,FM

Hurdle_ce1
DEF,MB,BC

Hurdle_ce2
DEF,FM,BC

Iceskater
SV,IPR,OPR

Ironman
IV,OPR,OCC,MB...

Jogging [1] [2]
OPR,OCC,DEF

Juice
SV

Kite_ce1
OCC,IPR,BC

Kite_ce2
SV,OCC,IPR,BC

Kite_ce3
FM,IPR,BC

Kobe_ce
SV,OCC,DEF,MB...

Lemming
IV,OPR,SV,OCC...

Liquor
IV,OPR,SV,OCC...

Logo_ce
SV,IPR

Matrix
IV,OPR,SV,OCC...

Messi_ce
SV,OCC,DEF,MB...

Michaeljackson_ce
IV,DEF,FM,IPR...

Microphone_ce1
OCC,FM

Microphone_ce2
OPR,LR

MotorRolling
IV,SV,MB,FM...

Motorbike_ce
IV,OCC,BC

MountainBike
OPR,IPR,BC

Panda
SV,OCC,IPR,LR

Plane_ce2
SV,FM,IPR,OPR

Plate_ce1
SV,LR

Plate_ce2
LR

Pool_ce1
LR

Pool_ce2
LR

Pool_ce3
MB,BC,LR

Railwaystation_ce
OCC,IPR,BC

Ring_ce
BC,LR

Sailor_ce
FM

Shaking
IV,OPR,IPR,BC

Singer1
IV,OPR,SV,OCC

Singer2
IV,OPR,DEF,IPR...

Singer_ce1
IV,DEF,FM,BC

Singer_ce2
IV,SV,DEF,OPR...

Skating1
IV,OPR,SV,OCC...

Skating2
SV,DEF,FM,OPR

Skating_ce1
SV,OCC,DEF,FM...

Skating_ce2
SV,MB,FM,IPR...

Skiing
IV,OPR,SV,DEF...

Skiing_ce
SV,OCC,FM

Skyjumping_ce
IV,SV,DEF,FM...

Soccer
IV,OPR,SV,OCC...

Spiderman_ce
OCC,SV,FM,IPR...

Subway
OCC,DEF,BC

Suitcase_ce
IV,OCC,BC

Sunshade
IV

SuperMario_ce
OV,LR

Surf_ce1
OCC,SV,FM,IPR...

Surf_ce2
OCC,SV,FM,IPR...

Surf_ce3
OCC,FM,IPR,OPR

Surf_ce4
FM,IPR,OPR

TableTennis_ce
MB,BC,LR

TennisBall_ce
OCC,MB,FM,LR

Tennis_ce1
SV,MB,IPR,OPR

Tennis_ce2
MB,FM,IPR,OPR

Tennis_ce3
OPR

Thunder_ce
  

Tiger1
IV,OPR,OCC,DEF...

Tiger2
IV,OPR,OCC,DEF...

Torus
OPR

Toyplane_ce
SV,OCC,FM,OPR

Trellis
IV,OPR,SV,IPR...

Walking
SV,OCC,DEF,LR

Walking2
SV,OCC

Woman
IV,OPR,SV,OCC...

Yo-yos_ce1
MB,OV,LR,FM

Yo-yos_ce2
MB,OV,LR,FM

Yo-yos_ce3
MB,FM,OV,SV


Evaluation

All the evaluation resulsts (bounding box in each frame) and the code for generating the success and precision plots in the paper can be downloaded here.

Table 1 The performances (AUC) and rankings (in parentheses) of different color representations for different trackers.
  Avg. rank ASLA CPF CSK CT DFT FCT Frag IVT KCF L1APG LOT MEEM MIL OAB SemiT Struck
OPP 1.94 0.395(2) 0.303(5) 0.350(1) 0.336(2) 0.313(3) 0.357(1) 0.375(2) 0.304(1) 0.418(2) 0.376(1) 0.358(1) 0.483(3) 0.387(2) 0.368(2) 0.365(1) 0.462(2)
HSV 2.63 0.375(4) 0.342(1) 0.340(3) 0.345(1) 0.314(2) 0.349(2) 0.408(1) 0.281(4) 0.405(3) 0.320(6) 0.350(2) 0.489(2) 0.374(3) 0.343(4) 0.354(3) 0.464(1)
LAB 2.75 0.406(1) 0.308(4) 0.346(2) 0.334(3) 0.303(6) 0.347(3) 0.364(4) 0.275(5) 0.418(1) 0.360(2) 0.298(5) 0.500(1) 0.393(1) 0.389(1) 0.357(2) 0.459(3)
RGB 4.31 0.380(3) 0.314(3) 0.307(5) 0.322(4) 0.312(4) 0.315(5) 0.374(3) 0.289(2) 0.384(8) 0.325(4) 0.330(3) 0.459(5) 0.334(5) 0.316(7) 0.312(4) 0.441(4)
TRGB 4.63 0.366(5) 0.315(2) 0.309(4) 0.320(5) 0.316(1) 0.317(4) 0.044(9) 0.289(3) 0.385(7) 0.325(5) 0.330(4) 0.473(4) 0.347(4) 0.318(6) 0.307(5) 0.405(6)
C-OPP 6.06 0.328(7) 0.253(8) 0.265(7) 0.297(6) 0.224(7) 0.294(7) 0.264(6) 0.244(7) 0.394(4) 0.354(3) 0.286(6) 0.448(6) 0.313(7) 0.344(3) 0.304(6) 0.396(7)
Intensity 6.94 0.350(6) 0.260(6) 0.297(6) 0.285(9) 0.308(5) 0.291(8) 0.324(5) 0.254(6) 0.386(6) 0.318(7) 0.250(8) 0.431(9) 0.291(9) 0.300(9) 0.303(7) 0.409(5)
N-OPP 7.75 0.175(9) 0.249(9) 0.243(8) 0.290(8) 0.183(9) 0.296(6) 0.264(7) 0.182(8) 0.388(5) 0.302(9) 0.246(9) 0.437(7) 0.314(6) 0.309(8) 0.300(8) 0.368(8)
rg 8.00 0.327(8) 0.256(7) 0.231(9) 0.295(7) 0.197(8) 0.283(9) 0.250(8) 0.169(9) 0.375(9) 0.304(8) 0.250(7) 0.435(8) 0.305(8) 0.318(5) 0.293(9) 0.251(9)
Hue 10.00 0.118(10) 0.100(10) 0.016(10) 0.122(10) 0.047(10) 0.113(10) 0.043(10) 0.039(10) 0.325(10) 0.160(10) 0.071(10) 0.327(10) 0.112(10) 0.175(10) 0.154(10) 0.183(10)

Fig. 1 Comparison of color models in color tracking for the base trackers using success plots.

Fig. 2 Success and precision plots for all color-enhanced trackers and some recently proposed color trackers on TColor-128.


Code

Following are the source code of two color-enhanced trackers.

Base tracker Code enhanced
KCF: J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” PAMI, 2015. Download
Struck: S. Hare, A. Saffari, and P. H. Torr, “Struck: Structured output tracking with kernels,” ICCV, 2011 Download


Contact

If you have any questions, please contact Pengpeng Liang at pliang AT temple.edu or Haibin Ling at hbling AT temple.edu.