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Encoding Color Information for Visual Tracking:
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Abstract—While color information is known to provide rich
discriminative clues for visual inference, most modern visual
trackers limit themselves to the grayscale realm. Despite re-
cent efforts to integrate color in tracking, there is a lack of
comprehensive understanding of the role color information can
play. In this paper, we attack this problem by conducting
a systematic study from both the algorithm and benchmark
perspectives. On the algorithm side, we comprehensively encode
10 chromatic models into 16 carefully selected state-of-the-art
visual trackers. On the benchmark side, we compile a large
set of 128 color sequences with ground truth and challenge
factor annotations (e.g., occlusion). A thorough evaluation is
conducted by running all the color-encoded trackers, together
with two recently proposed color trackers. A further validation
is conducted on a RGBD tracking benchmark. The results clearly
show the benefit of encoding color information for tracking. We
also perform detailed analysis on several issues including the
behavior of various combinations between color model and visual
tracker, the degree of difficulty of each sequence for tracking, and
how different challenge factors affect the tracking performance.
We expect the study to provide the guidance, motivation and
benchmark for future work on encoding color in visual tracking.

Index Terms—Visual tracking, color, benchmark, evaluation.

I. INTRODUCTION

Being an important topic in computer vision, visual tracking
has a wide range of applications including human computer
interaction, video surveillance, vehicle navigation, robotics,
etc. In practice, tracking algorithms are often challenged by
various factors such as illumination changes, occlusion, pose
change, abrupt motion, and background clutter. Consequently,
a great amount of effort has been devoted to extract robust
visual cues, such as shape and appearance, to distinguish
a tracking target apart from its surrounding. Most modern
trackers, however, rely purely on the grayscale version of an
input sequence, leaving out the rich chromatic information.
There are several possible reasons for this: (1) color infor-
mation can be corrupted by environmental factors such as
change in the illumination; (2) encoding color may increase the
computational burden; and (3) grayscale images are sometimes
sufficient to produce reasonably good results. In this paper, we
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Fig. 1. Color information for visual tracking, results shown in bounding boxes
are from Struck [1] (first row) and color-encoded Struck (second row). When
color information is discarded, the target can be hardly distinguished from
its surrounding (right column), and consequently confuses the tracker. On the
contrary, the color information helps the tracker to avoid such drifting. This
figure should be viewed in color.

show that color information is indeed very helpful to improve
visual tracking and the improvement it brings is general for
different tracking algorithms. An intuitive example observed
in our experiment is shown in Figure 1. The figure shows
that, while the target blends into the background in grayscale
images (in frame 148), it clearly distinguishes itself when color
information is utilized.

To capture the chromatic information, several visual track-
ing algorithms have encoded color information (See Sec. II),
including recent ones such as [2] that achieves state-of-the-art
performance. Despite these efforts, there is a lack of systematic
study on the effects of using color for visual tracking, and
several questions remain unanswered: Is color useful for visual
tracking in general, or just for some specific trackers? How
will existing state-of-art trackers behave if color information is
encoded? What chromatic representations are the most suitable
for visual tracking? What are the main challenges even when
color is used? In this paper we seek answers to these questions.

As the first comprehensive investigation of encoding color
in visual tracking, our study tackles the problem from two
aspects: algorithm and benchmark. On the algorithm side,
inspired by recent work on color descriptor evaluation [3], [4],
[5], we create a set of 160 trackers by combining various color
representations and existing visual trackers. In particular, 10
different color models are chosen to cover different chromatic
properties; and 16 state-of-the-art grayscale visual trackers
are carefully chosen that have achieved top performances in
recent tracking evaluations [6], [7], [8]. On the benchmark
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side, to address the issue of lacking appropriate datasets, we
compile a set of 128 color sequences (Fig. 2), named TColor-
128 (Temple Color 128), along with ground truth annotation.
Out of the 128 sequences, 78 have never before been used for
visual tracking, and as shown in our analysis, they are often
more challenging than previously tested ones. The challenge
factors (e.g., occlusion and out of plane rotation) for each se-
quence is also provided, enabling a more detailed performance
analysis. The data set is available for research exploration at
http://www.dabi.temple.edu/∼hbling/data/TColor-128.html.

The 160 color-encoded visual trackers, along with recently
proposed color trackers, are evaluated together on TColor-128.
The results show that, by encoding color information properly,
we can consistently improve the baseline trackers where color
has not been used. Detailed analysis is also conducted, show-
ing that (1) Some color models (Opponent, HSV and LAB) are
in general more effective for improving tracking performance;
(2) Color information helps the most when targets are under
deformation or rotation (both in plane and out of plane). For
further validation, an additional evaluation is conducted on
the Princeton Tracking Benchmark (PTB) [8], where similar
conclusions can be drawn.

To summarize, our contribution is four-fold:
• Color-encoded visual trackers. We systematically com-

bine various color models with state-of-the-art grayscale
trackers and investigate their performances.

• Color tracking benchmark. We create a large color se-
quence benchmark with annotated groundtruth.

• Color tracking evaluation. We thoroughly evaluate dif-
ferent combinations of color models and visual trackers,
along with recently proposed color trackers.

• Color tracking analysis. We perform comprehensive ex-
perimental analysis of the effect of encoding color for
tracking over a wide variety of scenarios.

Having observed the increasing popularity of color video in
real world applications, we expect our study to provide guid-
ance, motivation and benchmark towards future exploration of
color tracking; and, we also expect the data and codes to serve
as a basis for future studies.

In the rest of the paper, related work is summarized in Sec-
tion II. Then, the encoding of color information into state-of-
the-art visual trackers is described in Section III. After that, the
collected TColor-128 benchmark is introduced in Section IV,
followed by the evaluation and analysis in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. Trackers Using Color Information

As a fundamental problem in vision, visual tracking has
been drawing research attention for decades. A comprehensive
review of the topic can be found in [33]. Since our focus is
on integrating color information in tracking, we review only
previous color trackers due to space limitation. Table I lists
the abbreviations of trackers discussed in this paper.

A notable early work on color tracking is the color particle
filter introduced in [11], which calculates the likelihood of
each particle by comparing its color histogram from the HSV

TABLE I
ABBREVIATION OF TRACKERS

Tracker Brief description
ASLA [9] Adaptive structural local sparse appearance model

BSBT [10] Beyond semi-supervised tracking
CPF [11] Color particle filter
CSK [12] Tracking by detection with circulant structure

CT [13] Compressive tracking
CXT [14] Context tracker
DFT [15] Distribution fields for tracking
FCT [16] Fast compressive tracking
Frag [17] Fragments based tracking using the integral histogram
IVT [18] Incremental learning for tracking

KCF [19] Tracking with kernelized correlation filters
L1APG [20] L1 tracker using accelerated proximal gradient

L1T [21] Tracking via sparse representation
LOT [22] Locally orderless tracking
LSK [23] Local sparse appearance model and k-selection

MEEM [24] Multi-expert restoration using entropy minimization
MTT [25] Tracking via multi-task sparse learning
OAB [26] Tracking via on-line boosting
OFS [27] Online selection of discriminative tracking features

SCM [28] Tracking via sparsity-based collaborative model
SemiT [29] Semi-supervised on-line boosting for tracking

Struck [1] Structured output tracking
TLD [30] Tracking-learning-detection
VTD [31] Visual tracking decomposition
VTS [32] Tracking by sampling trackers

color space with the reference color model. In [34], the target
model and target candidates are represented by smoothed
color histograms quantized from the RGB color space, and
mean shift is used to minimize the distance between the
discrete distributions of the target model and target candidates.
In [35], RGB color distribution was used to describe the target
model and candidates, and the target object was located by
minimizing the Kullback Leibler distance between the color
distributions of the target model and candidates with the help
of a trust-region method. VTD [31] integrates basic trackers
derived from the combination of different basic observation
and motion models, and four basic observation models, which
use hue, saturation, intensity and edge templates as features
respectively, are adopted. LOT [22] measures the similarity
between a candidate and the target using locally orderless
matching, and HSV color space is used to describe the
appearance of each pixel. MEEM [24] uses features extracted
in the LAB color space. In the most recent work [2], CSK [12]
is extended with color names [36], and to speed up, the
dimension of the original color names is reduced with an
adaptive dimensionality reduction technique. There are also
trackers that take color input (e.g., [37]), but do not explicitly
exploit the use of color information.

Despite previous arts, there is a lack of a systematic study
and understanding of how color information can be used to
improve visual tracking. Our work aims to fill the gap by
thoroughly investigating the behavior of numerous state-of-
the-art visual trackers with various color representations.

B. Visual Tracking Benchmark and Evaluation

The advance in visual tracking algorithms makes it imper-
ative to have large scale benchmarks for evaluation purposes.
Recently, there are several remarkable studies along this
line [6], [7], [8], [38], [39]. In [6], the authors collected 50

http://www.dabi.temple.edu/~hbling/data/TColor-128.html
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Ball, 0.961 Cup, 0.959 Tennis, 0.934 Face, 0.926 Biker, 0.904 Table tennis, 0.846 Car, 0.832 Yo-yos, 0.812
FM,OCC,OPR,OV MB,IPR,OPR,FM OCC,MB,FM,LR SV,OCC,IPR,BC... SV,IPR,LR MB,BC,LR SV MB,FM,OV,SV

Motorbike, 0.799 Ball, 0.792 Human, 0.779 Plane, 0.740 Head, 0.722 Face, 0.721 Human, 0.697 Player, 0.692
IV,SV,MB,FM,... OCC,MB,IPR,FM,... OCC,BC SV,OCC,FM,OPR IV,OPR,OCC,MB,... IV,OPR,SV,OCC,... OCC,IPR,BC IV,OCC,DEF,BC,...

Head, 0.692 Boat, 0.685 Spiderman, 0.660 Diver, 0.642 Hand, 0.614 Human, 0.597 Fish, 0.587 Human, 0.573
IV,OPR,SV,OCC,... SV,OCC,IPR,OPR OCC,SV,FM,IPR,... SV,DEF,MB IV,SV IV,SV,DEF,FM,... OCC,IPR,OPR,SV SV,OCC

Charger, 0.564 Eagle, 0.553 Biker, 0.537 Panda, 0.537 Surfer, 0.532 Singer, 0.528 Skier, 0.527 Player, 0.525
IV,OCC,MB,IPR,... SV,IPR,OPR,BC SV,DEF,FM,IPR,... SV,OCC,IPR,LR FM,IPR,OPR IV,SV,DEF,OPR,... IV,OPR,SV,DEF,... SV,OCC,DEF,MB,...

Skater, 0.524 Human, 0.522 Pool, 0.522 Boat, 0.514 Child, 0.494 Fish, 0.494 Skater, 0.492 Ball, 0.491
IV,OPR,SV,OCC,... OPR,OCC,DEF MB,BC,LR SV,OCC,FM,IPR,... SV,OCC,DEF,OPR OCC,IPR,OPR,SV SV,DEF,FM,OPR OV,SV,FM

Human, 0.483 Car, 0.481 Face, 0.468 Ball, 0.466 Kite, 0.463 Can, 0.462 Human, 0.435 Human, 0.424
OPR,SV,DEF,FM,BC OPR,SV,OCC,FM,... IV,OCC,MB,IPR,... IV,OCC,MB,OV,FM OCC,IPR,BC IV,OPR,OCC,FM,... IV,SV,BC SV,OCC

Human, 0.418 Singer, 0.417 Suitcase, 0.400 Human, 0.398 Hand, 0.397 Head, 0.384 Child, 0.371 Human, 0.365
SV,MB,FM,OPR IV,OPR,SV,OCC IV,OCC,BC OCC,DEF,BC FM,DEF,MB,BC IV,OPR,IPR,BC OCC,MB,OPR DEF,FM,BC

Toy, 0.362 Mario, 0.360 Face, 0.349 Bottle, 0.349 Hand, 0.337 Singer, 0.329 Toy, 0.323 Board, 0.313
IV,OPR,SV,OCC,... OV,LR OPR,SV,OCC,IPR IV,OPR,SV,OCC,... MB,OV,FM IV,DEF,FM,IPR,... IV,OPR,OCC,FM,... SV,MB,FM,OV,OPR

Fig. 2. Selected sequences from TColor-128. The first frame with the ground truth bounding box is shown. The sequences are ordered from hardest to easiest
based on the “degree of difficulty” estimated in our evaluation (Sec. V-A4). The tracking target and its degree of difficulty are listed below each frame. We
use red font for newly collected sequences and blue for those used in previous studies. The challenge factors are also listed, and for the meanings of the
acronyms, please refer to Sec. IV.

sequences which were most commonly used in previous liter-
atures and evaluated the overall performances of 29 tracking
algorithms on the benchmark and their performance on the
different subsets of the benchmark having different challeng-
ing factors. To rank the state-of-the-art trackers with as little
subjective bias as possible, four different ranking algorithms
were adopted in [7] to analyze the comparison results extracted
from selected published papers. In [8], in order to study the
role of depth in helping visual tracking, a benchmark with 100

RGBD sequences was constructed, and several RGBD baseline
algorithms were proposed and evaluated. In the Visual Object
Tracking (VOT) workshop 2013 [38], a dataset containing 16
sequences was provided along with an evaluation protocol, and
the competition results of 27 trackers were reported. In [39],
19 trackers were evaluated on a large benchmark and the
overall performance and the results for different challenge
factors were investigated. Aside from these works, there are
some classic efforts for tracking evaluation, such as the VIVID
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TABLE II
INVARIANCE PROPERTIES OF DIFFERENT PHOTOMETRIC

REPRESENTATIONS [3], [5].

RGB HSV LAB rg TRGB OPP C-OPP N-OPP Hue
Highlight × × × ×

√
×

√
×

√

Shadow × × ×
√ √

× ×
√ √

Tracking Evaluation Website [40].
Compared with these studies, our work is the first large scale

evaluation for studying color factors in visual tracking. Note
that VOT 2013 [38] also paid attention to color and conducted
separated experiments using grayscale information and color
information. However, VOT 2013 does not explore the effects
of enhancing existing grayscale visual trackers with color
information. By contrast, we extend such grayscale trackers
to color versions by integrating different color models.

C. Color Information in Other Vision Tasks

Not surprisingly, the discriminative power of color infor-
mation has been systematically investigated for various vision
topics, such as object recognition [3], [4], [41], [42], human
action recognition [5], [43], object detection [44], etc. While
being highly motivated by these pioneering works and bor-
rowing some ideas from them, our work however focuses on
visual tracking. To the best of our knowledge, this is the first
comprehensive study on encoding color information for visual
tracking. In fact, as shown in our experiments, many modern
grayscale trackers, when augmented with color information,
outperform previously proposed color trackers.

III. ENCODING COLOR INFORMATION IN VISUAL
TRACKING

A. Photometric Representations

There are various color models used in computer vision,
each with different photometric invariance. Thorough evalua-
tions of these models have been conducted for visual recog-
nition tasks [3], [5]. Motivated by these works, we inherit the
photometric representations in these studies for visual tracking.
In this subsection, we review these photometric representations
and their photometric invariance properties.

In [3] and [5], the diagonal model [45] and the dichromatic
reflection model [46] are used respectively to analyze the
invariance properties of different photometric representations.
In visual tracking, we consider invariance against light inten-
sity changes due to highlights, shadows or shading. In the
following, we list the photometric representations explored in
our work, and their invariance properties are summarized in
Table II.
RGB: The standard RGB color model with three color chan-
nels; namely red, blue and green.
HSV: The standard HSV color model, where H (hue) and S
(saturation) are invariant to light intensity change, and H is
also invariant to highlights. Such invariance, however, does
not hold for the V (value) channel.
LAB: The LAB is a perceptually uniform color space. More
specifically, the same amount of change in the LAB color

value produces the same amount of change in perception. The
LAB color space also has no invariance properties.
rg [3]: The rg color model refers to the r and g channels of
the normalized RGB color model:(

r
g

)
=

( R
R+G+B

G
R+G+B

)
(1)

The normalization makes r and g invariant to shadows and
shading.
TRGB [3]: Transformed RGB (TRGB) is obtained by nor-
malizing each channel of the RGB color space to a zero-mean
and unit-variance distribution, i.e., R′

G′

B′

 =


R−µR

σR
G−µG

σG
B−µB

σB

 (2)

where µC and σC are the mean and standard deviation of the
distribution in channel C. The normalization makes TRGB
invariant to highlights and light intensity change.
OPP [3], [5]: The opponent color space (OPP) is transformed
from the RGB color space, O1

O2

O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (3)

The intensity information is contained in O3, and the chro-
matic information in O1 and O2. While O1 and O2 are
invariant to highlights due to the intensity cancelation, the
combination of all three channels is not.
C-OPP [5]: The C-OPP [O1, O2] refers to the chromatic
components of the opponent space, which is invariant to
highlights.
N-OPP [5]: The N-OPP

[
O1

O3
, O2

O3

]
is the normalized C-Oppo.

The normalization makes N-Oppo invariant to shadows and
shading.
Hue [5]: Hue is defined as the ratio between the two chromatic
opponents:

[
O1

O2

]
. It is invariant to shadows, shading and

highlights. Hue used here is a little different from the H
channel of HSV color space which contains an extra hexagon-
to-circle transformation.

B. Selection of Trackers

It is unrealistic to test the effect of using color information
in all existing visual trackers. Instead, we include in our list
representative trackers that have ranked high in recent bench-
mark evaluations. The selection of visual trackers includes two
stages: initial selection and fine adjustment. Short descriptions
of the selected trackers can be found in Table I.

Initial selection. For initial selection, the basic idea is to
construct a set of trackers, such that each selected tracker has
been ranked in the top 10 in at least one of the three recent
evaluations ([6], [7], [8]) according to at least one of the crite-
ria (whenever multiple criteria are used). The evaluation in [6]
involves 29 tracking algorithms on 50 sequences using two
evaluation criteria and three robustness evaluation strategies:
one-pass evaluation (OPE), temporal robustness evaluation
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(TRE), and spatial robustness evaluation (SRE). The initial
selection derived from [6] is denoted by

T1 = {ASLA,CPF,CSK,CXT,DFT,LOT,LSK,MTT,
OAB,SCM,Struck,TLD,VTD,VTS}.

Similarly, the set of selected trackers derived from [7] is

T2 = {BSBT,CPF,Frag, IVT,L1T,MIL,MTT,OAB,
OFS,SemiT,Struck,TLD,VTD}.

In [8], six state-of-the-art 2D trackers are evaluated and they
form the selected tracker set

T3 = {CT,MIL,SemiT,Struck,TLD,VTD}.

Combining T1, T2 and T3, we get the initial selection as

Tinit =T1 ∪ T2 ∪ T3
= {ASLA,BSBT,CPF,CSK,CT,CXT,DFT,Frag,

IVT,L1T,LSK,LOT,MIL,MTT,OAB,OFS,
SCM,SemiT,Struck,TLD,VTD,VTS}.

Fine adjustment. Since we need to modify the original
code of the trackers to encode color information, we remove
from Tinit the trackers without available source code. In
addition, we adjust the selection according to the following
rules: (1) We exclude some trackers that are very slow even
before encoding color information. (2) Some trackers have
several components and it is hard to determine which part
is more critical for encoding color information. (3) For L1T,
we replace it by its new version L1APG, which speeds up
the L1 minimization using an accelerated proximal gradient
approach. (4) For CPF, although there is no available source
code for this tracker, we implement it ourselves since the
particle filter tracking framework is fairly standard. (5) We also
incorporate FCT [16], which accelerates CT with a coarse-
to-fine search search strategy. (6) There are several recently
proposed trackers achieving promising performances on the
CVPR2013 benchmark, such as [19], [24], [47], [48], [49],
[50], [51], [52]. Among them, we sample KCF [19] and
MEEM [24] in our study due to the availability of source
code. With the above adjustments, our final selection contains
the following 16 state-of-the-art trackers:

Tbase = {ASLA,CPF,CSK,CT,DFT,FCT,Frag, IVT,KCF,
L1APG,LOT,MEEM,MIL,OAB,SemiT,Struck}.

In the rest of the paper, we call these trackers base trackers
to distinguish from the versions using color information.

C. Encoding Color in Visual Tracking

To maximize the benefit of using color information, one
may need to design a tracker-specific strategy for encoding
color for each individual tracker. It is however far from trivial
to come up with “best” strategies for all base trackers in Tbase.
Consequently, we rely on straightforward solutions, which,
besides being relatively fair, have demonstrated clear improve-
ment over the original grayscale base trackers. We mainly use
two strategies: First, for trackers that learn their model via

feature selection mechanisms, we enrich the feature pool by
including features from multiple color channels. Second, for
trackers using fixed grayscale-based representation, we extend
such representation to multiple color channels and concatenate
the results as a new representation. In the rest of the paper,
we call a color-enhanced version of a base tracker a color
enhanced tracker.

ASLA. In [9], a robust tracking algorithm using adaptive
structural local sparse appearance model is proposed to handle
occlusion and locate the target. For appearance modeling,
both holistic templates and local patches are represented by
vectorized `2 normalized pixel intensities. To encode color
information, we concatenate the `2 normalized vectors from
all color channels of a given color model, for representing
both local image patches and holistic templates.

CPF. In [11], color histogram in the HSV color space is used
to model an image patch in the particle filter tracking frame-
work [53]. Since CPF already uses color information from
the HSV space, we directly generalize it to other photometric
representations for comparison.

CSK. CSK [12] uses a kernel regularized least squares
classifier trained on all subwindows around the target, by
exploiting the circulant structure in the Fourier domain. To
encode color information, we concatenate the vectorized pixel
values from all color channel to represent an image patch (i.e.,
a sample), and extend the RBF kernel in the original CSK by
summing over the RBF kernels of individual color channels.

CT. In [13], a compressive tracker is presented that maps
a high-dimensional feature vector, extracted from a target
sample, to a low dimensional space, through a sparse random
measurement matrix. The resulting low-dimensional represen-
tation is then fed into a naive Bayes classifier for target
localization. To encode color information given a specific color
model, we extend the feature projection to all color channels,
and concatenate the resulting low-dimensional feature vectors
as a new target representation.

DFT. In [15], distribution fields (DFs) is proposed for
building image descriptors in visual tracking. The tracking
inference is based on the L1 distance between the smoothed
DFs of a candidate region and that of the target model. To
encode color information, given a color model, we concatenate
the smoothed DFs of the target or candidates from each color
channel to form the representation.

FCT. FCT [16] extends CT mainly in using a coarse-to-fine
sliding window for acceleration. Similar to CT, we concatenate
the low-dimensional feature vectors from all the channels to
encode color information.

Frag. The Frag tracker [17] represents a tracking object
(template or candidate patch) by multiple image fragments to
handle partial occlusion and capture spatial structures. Each
fragment patch is represented by a histogram that is efficiently
calculated by the integral histogram [54] algorithm. To convert
Frag to a color version, we represent each fragment using the
concatenation of the histograms from each color channel of a
given color model.

IVT. IVT [18] uses incremental subspace learning for robust
visual tracking. The idea is to dynamically and incrementally
maintain and update a subspace for target appearance represen-
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tation. In the original IVT algorithm, an object patch is first
represented by vectorized pixel intensities. To include color
information in IVT, we concatenate the pixel values from all
channels of a color model, and then follow the same subspace
learning and inference procedure as the original IVT.

KCF. KCF [19] is the extension of CSK in that KCF
uses multiple channels by summing over the results from
all the channels in the Fourier domain. In addition, HOG is
used to further boost the performance. To incorporate color
information, we concatenate HOG from each channel of a
given color model.

L1APG. L1APG [20] is an extension of the sparse
representation-based visual tracker [21]. The key idea is to
use an accelerated proximal gradient algorithm to speed up
the L1 minimization used to compare a candidate to a set of
templates. In L1APG, a candidate or template is represented by
a normalized vector of pixel intensities. To incorporate color
information, we concatenate such vectors from all channels
of a given color model before seeking solutions of the sparse
representation.

LOT. Capturing the degree of local disorder of the tracking
target, LOT [22] deals with both rigid and deformable targets
with no prior assumption. In LOT, each pixel in an image patch
is represented by its location and appearance, and superpixels
are used in practice for efficiency. Since LOT itself has already
used the HSV color model, we modify the original LOT by
replacing HSV with other color models for comparison.

MEEM. In [24], historical tracking results are used to
build an expert ensemble. To avoid the contamination of the
target model, the best expert is selected to restore the tracking
result when needed based on a minimum entropy criterion.
The original MEEM already uses LAB color space to extract
features, so we just replace LAB with other color models for
evaluation.

MIL. The key idea of MIL [55] is to handle the unavoidable
label noise in a multiple instance learning framework. MIL
uses Haar-like features [56] to model the appearance of
the target. In particular, a feature pool containing Haar-like
features is generated and the learning process selects effective
features from the pool to construct the classifier. To encode
color information using a specific color model, we enlarge the
feature pool by including Haar-like features from all channels
of the color model. Then, the learning process is the same as
the original MIL.

OAB. OAB [26] employs an on-line Adaboost algorithm to
address the target appearance variation during the course of
tracking. According to the implementation from the authors’
website1, Haar-like features are used to form the feature
pool for Adaboost. Then, similar to MIL, we encode color
information into OAB by enlarging the feature pool with
features extracted from involved color channels of a given
color model.

SemiT. SemiT [29] uses a semi-supervised on-line boosting
algorithm for visual tracking. The implementation of SemiT
is based on OAB and the Haar-like features are again used

1http://www.vision.ee.ethz.ch/boostingTrackers/

Fig. 3. The distribution of challenge factors in TColor-128.

for constructing the feature pool. As a result, we encode color
information for SemiT in the same way as for OAB.

Struck. Struck [1] uses a kernelized structured output
support vector machine to distinguish the target from the
background. For modeling target appearance, Struck uses a
192 dimensional Haar-like [56] feature vector obtained from
a 4× 4 grid at two scales with six different filters. To encode
color information, we concatenate the features from different
color channels into a larger feature vector for both training
and updating the classifier. In particular, if the photometric
representation has n channels, the final feature vector is
n× 192 dimensional.

IV. COLOR TRACKING BENCHMARK

As summarized in Section II, there is a lack of benchmark
datasets devoted to color visual tracking. Addressing this issue,
we construct a large dataset with 128 color sequences, named
TColor-128, as a color tracking benchmark. The sequences
in TColor-128 come from two main sources: previous studies
and new collections.

For the first part, we have collected 50 frequently tested
color sequences used in previous studies, such as [6] and
[38]. These sequences are however insufficient for thoroughly
evaluating color trackers. On the one hand, due to the large
number of factors involved in visual tracking and many tunable
parameters in visual trackers, experiments on 50 sequences
may not be enough to reach a significant conclusion. On
the other hand, due to the popularity of these sequences in
previous studies, the performance on them are often close
to saturation and many of them are not as difficult as they
originally appear to be (see Fig. 2). The two observations
motivate us to collect more color sequences, which form the
second part of TColor-128.

The second part of TColor-128 contains 78 color sequences
newly collected from the Internet. The 78 sequences, by
design, largely increase the diversity and difficulty over the
first 50 sequences: various circumstances are involved such as
highway, airport terminal, railway station, concert, etc.; none
of them were taped purposely for evaluating visual tracking
algorithms; these sequences have many challenge factors such
as full target occlusion, large illumination change, significant
target deformation and low resolution.

Fig. 2 shows the first frame of 80 selected sequences with
the bounding box of the tracking target. These sequences
are ordered according to their degree of challenges in visual
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tracking, measured by the average performances of the color
trackers experimented in our study (details in Sec. V). Fig. 2
shows that newly collected sequences are often much harder
than classically used ones, justifying the inclusion of these
new sequences.

In addition to tracking ground truth, each sequence in
TColor-128 is also annotated by its challenge factors. Same as
in [6], 11 factors are used for TColor-128, including illumi-
nation variation (IV), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM), in-
plane rotation (IPR), out-of-plane rotation (OPR), out-of-view
(OV), background clutters (BC), and low resolution (LR). In
particular, scale variation is decided when the ratio of the size
of the bounding box in the current frame to that in the first
frame falls out of the range [0.5, 2]; fast motion is decided
when the target motion is larger than 20 pixels; low resolution
is decided when the number of pixels inside the groundtruth
bounding box is fewer than 400 pixels. Fig. 3 gives the
distribution of challenge factors in TColor-128. Although we
try to make the dataset balanced in terms of challenging
factors, trackers that handle OPR, SV, OCC, FM and IPR
better may have some advantages over those who handle OV
and LR better.

V. EVALUATION

We first evaluate color tracking using the proposed TColor-
128 benchmark, with detailed analysis on the effects of differ-
ent combinations of color-representations and visual trackers,
as well as comparison with recently proposed color trackers.
Then, for further validation, we run the color-encoded trackers
on the Princeton Tracking Benchmark (PTB) where the results
are consistent with the results on TColor-128.

A. Evaluation Color Trackers on TColor-128

Our main goal is to study the effectiveness of encoding color
information for visual tracking. Toward this goal, we conduct
thorough experiments on TColor-128 to explore the following
issues: the gain by encoding color information, effects of
different color representations on base trackers, and degree
of difficulty of the sequences in TColor-128.

1) Evaluation Metrics: Following the protocol in [6], we
use two widely used metrics for tracking evaluation. The main
metric we use is the Area Under Curve (AUC) derived from
the success plot of tracking algorithms. More specifically, for
each frame, given the tracking output bounding box (rt) and
ground truth bounding box (rg), the overlap ratio (S) is used
as the basic measure for tracking success. The overlap ratio is
defined by S =

|rt
⋂
rg|

|rt
⋃
rg| , where | · | denotes the area. Then, the

success rate of a tracker on a sequence is the percentage of
frames whose overlap score S is larger than a given threshold.
By varying the threshold from 0 to 1, one can generate the
success plot, and the AUC can be derived afterwards.

Another metric used in our evaluation is the precision plot
as in [55], [6]. It is based on the center location error (CLE),
defined as the Euclidean distance between the centers of the
tracking result and groundtruth. Traditionally, the average CLE
over all the frames have been used to measure the tracking

Fig. 6. Performance gain of using color in terms of AUC. The best color
model for each base tracker is given in the parentheses.

performance. Such measurement, however, can be meaning-
lessly large when a tracker completely loses the target. The
precision plot addresses this issue by showing the precision,
defined as the percentage of frames whose CLEs are smaller
than a threshold, against the CLE threshold. Same as in [6], we
use the precision at the threshold 20 to rank the performance.
It is worth mentioning that our goal is to comprehensively
study the performance of different color models rather than
the robustness of the state-of-the-art trackers, we use one-pass
evaluation (OPE) in the following evaluation.

2) Gain from Encoding Color Information: The combi-
nation of different color representations and base trackers
generates 160 = 16 × 10 trackers (including the base ones).
We run all of them on TColor-128 to study the effects of
encoding color for tracking. The performances are plotted in
details in Figures 4 and 5, containing respectively success
plots (based on AUC) and precision plots. The plots show
clearly that, when appropriate color models (e.g., Opponent,
LAB and HSV) are used, encoding color information always
boosts the performance of base trackers. Since different base
trackers favor different color models, we create a set of “best”
color-enhanced trackers as

Tbest = {MEEM(LAB),Struck(HSV),KCF(LAB),

Frag(HSV),ASLA(LAB),MIL(LAB),OAB(LAB),

L1APG(OPP),SemiT(OPP),LOT(OPP),

FCT(OPP),CSK(OPP),CT(HSV),

CPF(HSV),DFT(TRGB), IVT(OPP)}.

To further understand the gain of using color information,
we calculate the performance gain (in terms of AUC) achieved
by the best color-enhanced trackers in Tbest. For example,
for MEEM, the gain is 0.069 = 0.5 − 0.431 achieved by
LAB. Such performance gains are summarized in Fig. 6. It
clearly shows that for most base trackers, color information
can significantly improve tracking performance by more than
10%. Among all the trackers, LOT benefits most by using the
concatenated pixel values from each channel of the Opponent
space. Fig. 8 shows some example frames where color helps.
Considering that only straightforward ways are used to encode
color information into base trackers, the improvement is very
promising and we expect that further performance gains can
be achieved by more carefully encoding color information in
the trackers.

3) Comparison with Other Color Trackers: As discussed
in the related works Section, several notable tracking algo-
rithms have recently been proposed that explicitly take color
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Fig. 4. Comparison of color models in color tracking for the base trackers in Tbase using success plots. The AUC score of each color model for a given
tracker is shown in the legend.

information into consideration. It is imperative to evaluate
them together with the color enhanced trackers proposed in
this paper. We include two such trackers in our experiments,
namely CN2 [2] and VTD [31]. The two trackers are evaluated
on the TColor-128 benchmark together with the 16 color
enhanced trackers (same as listed in Fig. 6).

Fig. 7 gives the success and precision plots of the evaluation.
It shows that MEEM+LAB outperforms other color trackers by
a noticeable margin. Moreover, it shows that some grayscale
trackers (e.g., Frag and ASLA), after boosting with color
information, outperforms recently proposed color trackers.
Such observations again confirm the effectiveness of using
color for visual tracking and implies there is still room for
improvement.

4) Analysis and Discussion: Comparison of color repre-
sentations: While different base trackers favor different color
representations, some representations bring more advantages

than others. For a quantitative comparison, we calculate the
average rank of each color representation by averaging its
ranks of all color-enhanced trackers, and the result is shown in
Table III. In addition, we calculate the mean performance gain
by averaging the gain measured using AUC of all the evaluated
trackers. The statistics are visualized in Fig. 9, together with
standard deviations.

The results show that Opponent, HSV, LAB and RGB are in
general helpful for visual tracking. It is worth noting that these
four representations do not have any photometric invariance
properties, but they have strong discriminative capability.
The performance gains from other color models are either
insignificant or negative.

Performance gain of color representations with respect
to challenge factors: Taking benefit of the challenge factor
annotation in TColor-128, we study the specific performance
of each color representation with respect to each challenge
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Fig. 5. Comparison of color models in color tracking for the base trackers in Tbase using precision plots. The precision obtained at threshold 20 is shown
in the legend.

Fig. 7. Success and precision plots for all color-enhanced trackers and come recently proposed color trackers on TColor-128.

factor, and such a study can provide further understanding of
why and how color helps in visual tracking.

For each of the 11 challenge factors (see Sec. IV), we
construct a subset of TColor-128 containing all sequences

that involve the factor. Then, the performances of all color
encoded trackers on such subsets are summarized in terms
of AUC. The results and rankings are given in Table IV.
From the results, we can see the performances of different
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(a) LOT (C-OPP) (b) CSK (HSV)

(c) Struck (LAB) (d) IVT (N-OPP)

Fig. 8. Examples where color helps tracking. For each sequence, the results are from the tracker (shown under the frames) that gains the most by using color.

TABLE III
THE PERFORMANCES (AUC) AND RANKINGS (IN PARENTHESES) OF DIFFERENT COLOR REPRESENTATIONS FOR DIFFERENT TRACKERS. THE FIRST AND

SECOND BESTS ARE INDICATED BY RED AND BLUE RESPECTIVELY.

Avg. rank ASLA CPF CSK CT DFT FCT Frag IVT KCF L1APG LOT MEEM MIL OAB SemiT Struck
OPP 1.94 0.395(2) 0.303(5) 0.350(1) 0.336(2) 0.313(3) 0.357(1) 0.375(2) 0.304(1) 0.418(2) 0.376(1) 0.358(1) 0.483(3) 0.387(2) 0.368(2) 0.365(1) 0.462(2)
HSV 2.63 0.375(4) 0.342(1) 0.340(3) 0.345(1) 0.314(2) 0.349(2) 0.408(1) 0.281(4) 0.405(3) 0.320(6) 0.350(2) 0.489(2) 0.374(3) 0.343(4) 0.354(3) 0.464(1)
LAB 2.75 0.406(1) 0.308(4) 0.346(2) 0.334(3) 0.303(6) 0.347(3) 0.364(4) 0.275(5) 0.418(1) 0.360(2) 0.298(5) 0.500(1) 0.393(1) 0.389(1) 0.357(2) 0.459(3)
RGB 4.31 0.380(3) 0.314(3) 0.307(5) 0.322(4) 0.312(4) 0.315(5) 0.374(3) 0.289(2) 0.384(8) 0.325(4) 0.330(3) 0.459(5) 0.334(5) 0.316(7) 0.312(4) 0.441(4)

TRGB 4.63 0.366(5) 0.315(2) 0.309(4) 0.320(5) 0.316(1) 0.317(4) 0.044(9) 0.289(3) 0.385(7) 0.325(5) 0.330(4) 0.473(4) 0.347(4) 0.318(6) 0.307(5) 0.405(6)
C-OPP 6.06 0.328(7) 0.253(8) 0.265(7) 0.297(6) 0.224(7) 0.294(7) 0.264(6) 0.244(7) 0.394(4) 0.354(3) 0.286(6) 0.448(6) 0.313(7) 0.344(3) 0.304(6) 0.396(7)

Intensity 6.94 0.350(6) 0.260(6) 0.297(6) 0.285(9) 0.308(5) 0.291(8) 0.324(5) 0.254(6) 0.386(6) 0.318(7) 0.250(8) 0.431(9) 0.291(9) 0.300(9) 0.303(7) 0.409(5)
N-OPP 7.75 0.175(9) 0.249(9) 0.243(8) 0.290(8) 0.183(9) 0.296(6) 0.264(7) 0.182(8) 0.388(5) 0.302(9) 0.246(9) 0.437(7) 0.314(6) 0.309(8) 0.300(8) 0.368(8)

rg 8.00 0.327(8) 0.256(7) 0.231(9) 0.295(7) 0.197(8) 0.283(9) 0.250(8) 0.169(9) 0.375(9) 0.304(8) 0.250(7) 0.435(8) 0.305(8) 0.318(5) 0.293(9) 0.251(9)
Hue 10.00 0.118(10) 0.100(10) 0.016(10) 0.122(10) 0.047(10) 0.113(10) 0.043(10) 0.039(10) 0.325(10) 0.160(10) 0.071(10) 0.327(10) 0.112(10) 0.175(10) 0.154(10) 0.183(10)

TABLE IV
THE PERFORMANCES (AUC) AND RANKINGS (IN PARENTHESES) OF DIFFERENT COLOR REPRESENTATIONS UNDER DIFFERENT CHALLENGE FACTORS.

THE FIRST AND SECOND BESTS ARE INDICATED BY RED AND BLUE RESPECTIVELY.

IV OPR SV OCC DEF MB FM IPR OV BC LR
OPP 0.362(2) 0.360(1) 0.350(1) 0.335(2) 0.360(2) 0.322(2) 0.353(2) 0.352(1) 0.299(2) 0.362(2) 0.318(1)
HSV 0.365(1) 0.355(3) 0.340(3) 0.327(3) 0.363(1) 0.306(3) 0.339(3) 0.349(2) 0.287(3) 0.366(1) 0.313(2)
LAB 0.359(3) 0.358(2) 0.347(2) 0.336(1) 0.359(3) 0.323(1) 0.353(1) 0.346(3) 0.304(1) 0.356(3) 0.300(4)
RGB 0.317(5) 0.325(4) 0.317(4) 0.308(4) 0.332(4) 0.286(4) 0.320(4) 0.316(4) 0.265(4) 0.328(4) 0.300(3)

TRGB 0.301(6) 0.307(6) 0.297(6) 0.291(5) 0.310(5) 0.263(6) 0.297(6) 0.295(6) 0.242(6) 0.307(5) 0.272(6)
C-OPP 0.320(4) 0.320(5) 0.298(5) 0.285(6) 0.290(7) 0.283(5) 0.301(5) 0.314(5) 0.252(5) 0.299(7) 0.245(7)

Intensity 0.298(8) 0.296(7) 0.294(7) 0.284(7) 0.295(6) 0.262(7) 0.296(7) 0.288(7) 0.239(8) 0.306(6) 0.278(5)
rg 0.298(7) 0.295(8) 0.276(8) 0.265(8) 0.274(9) 0.244(8) 0.271(8) 0.288(8) 0.233(9) 0.273(9) 0.217(9)

N-OPP 0.291(9) 0.289(9) 0.275(9) 0.256(9) 0.278(8) 0.244(9) 0.271(9) 0.283(9) 0.239(7) 0.276(8) 0.219(8)
Hue 0.143(10) 0.138(10) 0.129(10) 0.127(10) 0.121(10) 0.119(10) 0.131(10) 0.137(10) 0.099(10) 0.115(10) 0.082(10)

Fig. 9. Average performance gains for different color representations in AUC.

color representations under different challenge factors have
very similar trends as those under general cases (i.e., for all
sequences). OPP, HSV, LAB and RGB again rank top four

for all challenge factors (except for illumination variation
(IV) on which RGB ranks the fifth), though none of them
is fully invariant to highlights or shadow-shading. On the
other hand, even for sequences with significant illumination
variation (IV), the color representations with strong invariance
properties, such as Hue and N-OPP, do not perform well.
These observations imply that the discriminative power is more
important for the success of a color representation than are
invariance properties.

For further understanding the gain using color information,
for each sequence, we also record the best performance,
named AUC0, achieved over Tbest. Then the gain for this
sequence is calculated as the difference between AUC0 and
the AUC achieved by the corresponding base tracker. The
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Fig. 10. Performance gain of using color information with respect to different
challenge factors, in terms of AUC. The challenge factors (x-axis) are ordered
according to performance gain.

average gain for each challenge factor is then estimated for
all sequences involve the challenge factor. Fig. 10 summarizes
these performance gains. The figure shows that, while using
color helps improving tracking for all challenge factors, de-
formation (DEF), in plane rotation (IPR), out of plane rotation
(OPR) and illumination variation (IV) benefit relatively more
than other attributes. By contrast, the performance gains for
occlusion (OCC), fast motion (FM) and low resolution (LR)
are relatively small. This can be explained by the instability
or unavailability of appearance information under these chal-
lenges.

Failure cases: Though color information helps improving the
tracking performance, tracking in general remains a challeng-
ing problem. In the following we discuss some typical failure
cases observed in our experiments (Fig. 11).

As shown in Fig. 10, occlusion (OCC) and out of view
(OV) are two key sources for tracking failure. When a target
is seriously occluded or leaves the view, it is hard for trackers
to catch it when it reappears, as illustrated in Fig. 11(b) and
Fig. 11(e). One reason for the failure is the contamination of
target model from the background when part or whole of the
target is missing. Meanwhile, when the target reappears, it
may fall out of the search range of the current tracker.

Fast motion (FM) and motion blur (MB) are another pair of
challenge factors that bother tracking algorithms, as shown in
Fig. 11(c). When there is a large target movement between two
frames, the target may fall out of the search range of a tracker
and then trigger a failure. Using color information helps little
in such a scenario, though color can bring discriminative
information for motion blurred target appearance.

Another factor that often causes problems is low target
resolution (LR), as shown in Fig. 11(a). When the target is
too small, it is hard to capture enough appearance information
to distinguish the target from background, even with color
information encoded.

From the above discussion, we see that OV, OCC, MB, FM
and LR contribute to a large portion of tracking failures, and
they can not be addressed by simply using color information.
Improving the search strategy may be an option for them,
though often at the sacrifice of run time efficiency. In addition
to these factors, we also show some failure cases due to scale
variation (SV) and background clutters (BC) in Fig. 11(d) and
Fig. 11(f), respectively.

Degree of difficulty of sequences in TColor-128. For the
newly proposed TColor-128 benchmark, it is to quantitatively
analyze the degree of difficulty of the sequences in terms of
visual tracking. We formally derive the degree of difficulty
(DoD) for each sequence based on the above evaluations.
Specifically, for each sequence, the AUCs of the 16 best color-
enhanced trackers in Tbest are recorded. Then, the tracking
degree of difficulty is formally defined as

DoD = 1− (average AUC of the top 5 results).
The degrees of difficulty for some sequences are listed in

Fig. 2. The results show that many newly included sequences
are very challenging for visual tracking, especially compared
with previously used ones. We will disclose the degrees of dif-
ficulty for all sequences when sharing the TColor-128 dataset.

B. Validation on Princeton Tracking Benchmark

Fig. 12. Performance gain of using color in terms of overall success rate
on the Princeton Tracking Benchmark. The best color model for each base
tracker is given in the parentheses.

Princeton Tracking Benchmark (PTB) [8] is a recently
proposed dataset containing 100 RGBD sequences. Among the
100 sequences, the ground truth of 5 sequences are released
for parameter tuning, and the rest 95 sequences are withheld
for evaluation. The color components of PTB make it suitable
for testing color trackers. That said, we use PTB for validation
rather than for the main evaluation since PTB is designed for
evaluating RGBD trackers, and the collection of the sequences
is specific for environments where the depth information plays
an important role. In addition, due to the limitation in current
depth acquisition techniques, the sequences are limited to
indoor environments and targets are close to cameras.

Since our focus is on 2D color tracking, we exclude the
trackers using 3D depth information such as those proposed
in [8]. We run the 16 best color-encoded trackers in Tbest and
their corresponding base trackers on all sequences in PTB.
Then, following the protocol in [8], we submit the tracking
results to PTB website for evaluation.

The evaluation results, together with those reported in [8],
are summarized in Table V. In [8], the sequences are divided
into several categories according to target type, target size,
movement, occlusion and motion type. In Table V, the trackers
are ranked according to the average success rate, which is
calculated by thresholding the overlap between the estimated
bounding box of the target and the ground truth. In addition,
similar to analysis on TColor-128, we summarize in Fig. 12 the
performance gains achieved by integrating color information
for the 16 base trackers.
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(a) Low resolution (tracking a tennis) (b) Occlusion (tracking a car)

(c) Fast motion and blur (tracking a yoyo) (d) Scale variation (tracking a car)

(e) Out of view (tracking a ball) (f) Background clutters (tracking a player)

Fig. 11. Typical failures observed in our experiments involving different challenge factors as listed in the subtitles.

TABLE V
EVALUATION RESULTS ON THE PRINCETON TRACKING BENCHMARK. SUCCESS RATE (SR) AND CORRESPONDING RANKINGS (IN PARENTHESES) ARE

GIVEN UNDER DIFFERENT CATEGORIZATIONS.

Algorithm Avg.
rank

all
SR

target type target size movement occlusion motion type
human animal rigid large small slow fast yes no passive active

MEEM(LAB) 1.73 0.572 0.510(1) 0.510(7) 0.680(2) 0.580(1) 0.560(1) 0.680(1) 0.530(1) 0.460(1) 0.720(2) 0.690(1) 0.530(1)
KCF(LAB) 2.45 0.536 0.420(5) 0.540(2) 0.680(1) 0.510(3) 0.550(2) 0.670(2) 0.480(2) 0.400(5) 0.720(1) 0.660(2) 0.490(2)

KCF 4.27 0.519 0.420(4) 0.500(10) 0.650(3) 0.480(7) 0.540(3) 0.650(5) 0.470(3) 0.410(2) 0.670(4) 0.650(3) 0.470(3)
Struck(HSV) 5.18 0.488 0.400(7) 0.520(3) 0.580(6) 0.490(5) 0.490(4) 0.620(7) 0.430(4) 0.350(7) 0.680(3) 0.590(6) 0.450(5)
Frag(HSV) 6.27 0.494 0.410(6) 0.460(18) 0.610(4) 0.520(2) 0.470(7) 0.650(4) 0.430(5) 0.400(4) 0.620(8) 0.630(4) 0.440(7)

MEEM 6.45 0.488 0.430(2) 0.490(13) 0.560(7) 0.500(4) 0.480(5) 0.640(6) 0.430(7) 0.410(3) 0.600(13) 0.570(7) 0.460(4)
CN2 9.00 0.471 0.420(3) 0.500(9) 0.510(13) 0.480(6) 0.460(11) 0.570(17) 0.430(6) 0.350(8) 0.640(6) 0.520(14) 0.450(6)

ASLA(LAB) 9.64 0.445 0.340(14) 0.540(1) 0.520(11) 0.430(12) 0.460(10) 0.650(3) 0.360(14) 0.330(10) 0.610(10) 0.540(11) 0.410(10)
CSK(OPP) 10.64 0.445 0.360(9) 0.510(6) 0.500(14) 0.430(13) 0.450(13) 0.620(8) 0.380(12) 0.330(11) 0.610(11) 0.550(9) 0.400(11)

SemiT(OPP) 11.27 0.446 0.340(13) 0.420(22) 0.590(5) 0.430(11) 0.460(8) 0.570(15) 0.400(8) 0.350(6) 0.570(18) 0.590(5) 0.390(13)
Struck 11.36 0.444 0.350(12) 0.470(16) 0.530(10) 0.450(10) 0.440(14) 0.580(12) 0.390(10) 0.300(17) 0.640(5) 0.540(10) 0.410(9)
VTD 12.91 0.430 0.310(19) 0.490(11) 0.540(8) 0.390(17) 0.460(9) 0.570(16) 0.370(13) 0.280(18) 0.630(7) 0.550(8) 0.380(16)

CT(HSV) 14.09 0.417 0.320(17) 0.510(5) 0.480(17) 0.400(15) 0.430(15) 0.590(10) 0.350(15) 0.270(21) 0.610(9) 0.490(17) 0.390(14)
MIL(LAB) 14.18 0.428 0.350(11) 0.470(15) 0.490(15) 0.380(19) 0.470(6) 0.520(27) 0.390(9) 0.310(13) 0.590(14) 0.480(19) 0.410(8)
OAB(LAB) 14.36 0.434 0.340(15) 0.440(21) 0.540(9) 0.460(9) 0.410(18) 0.540(23) 0.390(11) 0.310(16) 0.610(12) 0.530(12) 0.400(12)
LOT(OPP) 15.91 0.418 0.360(10) 0.440(20) 0.480(18) 0.430(14) 0.410(17) 0.590(11) 0.350(17) 0.310(15) 0.560(20) 0.510(15) 0.380(18)

ASLA 16.73 0.406 0.280(25) 0.500(8) 0.510(12) 0.350(25) 0.450(12) 0.600(9) 0.330(19) 0.270(22) 0.590(15) 0.480(20) 0.380(17)
Frag 17.64 0.412 0.390(8) 0.410(26) 0.440(21) 0.460(8) 0.370(24) 0.580(14) 0.350(16) 0.330(12) 0.520(23) 0.460(27) 0.390(15)
CSK 18.82 0.396 0.310(20) 0.460(17) 0.460(19) 0.390(18) 0.400(19) 0.550(18) 0.330(20) 0.280(19) 0.560(19) 0.490(18) 0.360(20)

FCT(OPP) 19.27 0.401 0.310(22) 0.520(4) 0.440(23) 0.380(20) 0.420(16) 0.550(22) 0.340(18) 0.270(25) 0.580(17) 0.470(26) 0.370(19)
OAB 22.45 0.381 0.310(21) 0.450(19) 0.430(25) 0.360(24) 0.400(20) 0.530(25) 0.320(21) 0.270(24) 0.540(22) 0.470(25) 0.350(21)
FCT 22.73 0.379 0.280(27) 0.490(12) 0.430(26) 0.370(23) 0.390(22) 0.550(21) 0.310(24) 0.230(33) 0.580(16) 0.480(22) 0.340(24)
CT 23.73 0.364 0.310(18) 0.470(14) 0.370(30) 0.390(16) 0.340(30) 0.490(29) 0.310(22) 0.230(30) 0.540(21) 0.420(29) 0.340(22)

TLD 23.73 0.359 0.290(23) 0.350(33) 0.440(20) 0.320(27) 0.380(23) 0.520(28) 0.300(25) 0.340(9) 0.390(31) 0.500(16) 0.310(26)
CPF(HSV) 23.91 0.355 0.280(26) 0.410(24) 0.410(28) 0.370(22) 0.350(29) 0.580(13) 0.270(28) 0.310(14) 0.420(29) 0.470(23) 0.310(27)

L1APG(OPP) 24.00 0.360 0.240(29) 0.370(31) 0.490(16) 0.320(30) 0.390(21) 0.550(20) 0.290(27) 0.280(20) 0.470(28) 0.520(13) 0.300(29)
IVT(OPP) 24.18 0.363 0.290(24) 0.400(28) 0.430(24) 0.350(26) 0.370(25) 0.550(19) 0.290(26) 0.270(23) 0.490(25) 0.480(21) 0.320(25)

MIL 25.55 0.355 0.320(16) 0.370(30) 0.380(29) 0.370(21) 0.350(28) 0.460(30) 0.310(23) 0.260(26) 0.490(24) 0.400(31) 0.340(23)
L1APG 27.00 0.342 0.230(30) 0.420(23) 0.440(22) 0.320(29) 0.360(27) 0.530(26) 0.270(29) 0.240(29) 0.490(26) 0.430(28) 0.310(28)

IVT 28.27 0.334 0.220(33) 0.410(27) 0.420(27) 0.300(32) 0.360(26) 0.530(24) 0.260(30) 0.230(31) 0.480(27) 0.470(24) 0.290(30)
DFT(TRGB) 31.82 0.293 0.210(34) 0.390(29) 0.330(32) 0.310(31) 0.280(33) 0.460(31) 0.230(32) 0.220(34) 0.400(30) 0.320(33) 0.280(31)

LOT 31.91 0.296 0.250(28) 0.360(32) 0.310(34) 0.320(28) 0.280(34) 0.450(32) 0.230(33) 0.230(32) 0.380(33) 0.370(32) 0.270(33)
SemiT 32.18 0.283 0.220(31) 0.330(34) 0.330(31) 0.240(35) 0.320(31) 0.380(35) 0.240(31) 0.250(27) 0.330(34) 0.420(30) 0.230(35)
DFT 32.73 0.281 0.190(35) 0.410(25) 0.320(33) 0.260(34) 0.290(32) 0.440(33) 0.220(34) 0.200(35) 0.390(32) 0.300(35) 0.270(32)
CPF 33.64 0.260 0.220(32) 0.280(35) 0.300(35) 0.270(33) 0.250(35) 0.430(34) 0.190(35) 0.240(28) 0.290(35) 0.310(34) 0.240(34)

From the results, we can see that all the evaluated trackers
benefit from integrating color information on PTB, which
is consistent with the observation on TColor-128. MEEM,
when enhanced by LAB, achieves the best performance in

terms of the average rank, which is expected given MEEM’s
outstanding performances on the CVPR2013 benchmark [6]
and TColor-128. A somewhat surprising observation is the
excellent performance by Frag (enhanced by HSV). An ex-
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planation is that more than half of the sequences in PTB
involve occlusion, and Frag is specifically developed to handle
occlusion by using multiple image patches to represent the
tracking target. Compared with results on TColor-128, the
performance gain on PTB has larger variances. In particular,
SemiT benefits the most from using color, with 0.163 increase
in success rate (over 60%); by contrast, the performance gain
for DFT is only 0.012.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a study on using color information
for visual tracking. On one hand, a new large tracking bench-
mark is constructed containing 128 color sequences associated
with annotations. On the other hand, 16 state-of-the-art visual
trackers have been enhanced with 10 different color models for
evaluation. As the first comprehensive color tracking bench-
mark, our study systematically demonstrates the effectiveness
of encoding color information for visual tracking. In particular,
our results show that, when appropriate color models are used,
the performances of existing grayscale trackers are consistently
improved. Some trackers even outperform recently proposed
color trackers.

More detailed analysis has been conducted for deeper
understanding. First, it has been shown that different trackers
are in favor of different color models. That said, Opponent,
HSV, LAB, and RGB are in general very helpful for boosting
tracking performance, though none of them possesses strong
invariance properties. Second, it has been observed that color
information is particularly helpful for addressing challenges
due to deformation, in plane rotation, out of plane rotation
and illumination variation. By contrast, out of view, occlusion,
fast motion, motion blur and low resolution remain to be main
challenges for visual tracking.

A limitation of encoding color information in our straight-
forward framework is the sacrifice of efficiency. It would be
interesting to investigate how to make use of color information
in a more efficient way, for example, utilizing dimensionality
reduction technique as [2]. Also, we focus on general effects
of integrating color in tracking, no tracker-specific strategy
has been developed for enhancing grayscale trackers. It would
therefore be attractive to explore how to encode color infor-
mation in a more tracker-aware way, e.g., allowing decisions
from different color channels to collaborate with each other as
[31]. Given the promising results delivered in this paper and
by sharing the resources in our study, we expect our study
to provide the guidance, motivation and benchmark for future
work on encoding color in visual tracking.
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