CSE595 Topics in Convergence Research Model Checking for Smart Grids

YoungMin Kwon

Smart Grid System

- Control the electricity demand by pricing
- Smart meters
 - Enable two way communications between electricity providers and customers
 - Post electricity price
 - Report energy consumption level

Smart Grid System

- Real-time pricing
 - Electricity price is computed real-time based on the current load
 - Can control the demand efficiently
- Day-ahead pricing
 - Price schedules for a day is announced before the day
 - No uncertainty about electricity prices
 - Some tasks are not interruptible (e.g. laundry)

Smart Grid System

Linear System Model

Superposition principle

$$-F(a \cdot x + b \cdot y) = a \cdot F(x) + b \cdot F(y)$$

Linear Time Invariant System Model

Specification on Linear System Model

 Let x: Nat → Real and y: Nat → Real be outputs of an LTI system.

```
- y > 1

- X y > 10

- [] y < 200

- <> y > 100

- x > 2 U y > 10

- <> [] ( 10 < y /\ y < 20 )
```

Smart Grid System Model

- The change of electricity demand is
 - Proportional to the difference between the expected load and the current load
 - Negatively proportional to the electricity price change

$$\dot{e}(t) = a \cdot (\ell(t) - e(t)) - b \cdot p(t)$$

Smart Grid System Model

- Some representative types of loads
 - Sensitivity to the difference between expected loads and the current load
 - (+) TV, Heater
 - (-) Refrigerator, Vacuum machine
 - Sensitivity to the price
 - (+) Laundry machine, Vacuum machine, TV
 - (-) Heater, Refrigerator

Smart Grid System Model

Demand Changes in response to expected load and price changes

Requirements on Smart Grid Systems

- The total energy demand of all devices should never exceed 1.65 GWh
- The price changes are always within ± 0.1 \$/KWh range of the nominal value
- The accumulated price changes for a day never exceed $\pm 0.1 \, \text{$/$KWh}$
- The accumulated demand of each device type is within ± 0.5 GWh range of the accumulated expected load of the device for the day

Model Description

```
model:
var
      # energy and accumulated energy demand
  ext:state, et:output, Ext:state, Et:output,
  exh:state, eh:output, Exh:state, Eh:output,
  exv:state, ev:output, Exv:state, Ev:output,
  exf:state, ef:output, Exf:state, Ef:output,
 # total demand of all devices:et + eh + ev + ef
  e: output,
 # expected load , acc. expected load
 lt: input, lh: input, lv: input, lf: input,
 Lxt: state, Lxh: state, Lxv: state, Lxf: state,
 Lt: output, Lh: output, Lv: output, Lf: otuput,
 # price change, acc. price change
 p: input, Px: state, P: output,
 # clock and tick
 c: state, dc: input;
```

```
mode
  M = \{
  # individual device's energy demand
  ext = 0.0009 * ext + 0.1426 * lt - 0.1019 * p
  exh = 0.0025*exh + 0.1658*lh - 0.0276*p,
  exv = 0.1353*exv + 0.3738*lv - 1.3084*p.
  exf = 0.9512*exf + 0.0476*lf - 0.0476*p
               ext + 0.8573*lt - 0.6123*p,
  eh =
               exh + 0.8337*lh - 0.1390*p.
  ev =
               exv + 0.5677*lv - 1.9868*p
               exf + 0.0246*lf - 0.0246*p,
  # total energy demand of all devices
  e = ext + exh + exv + exf
    + 0.8573*lt + 0.8337*lh + 0.5677*lv
    + 0.0246*lf - 2.7627*p,
  # accumulated energy demand
  Ext = Ext + 0.1427 * ext + 0.9796 * lt - 0.6997 * p.
  Exh = Exh + 0.1663*exh + 0.9724*lh - 0.1621*p
  Exv = Exv + 0.4323*exv + 0.8131*lv - 2.8458*p
  Exf = Exf + 0.9754*exf + 0.0486*lf - 0.0486*p,
```

```
Et = Ext + 0.3775*lt - 0.2697*p
Eh = Exh + 0.3610*lh - 0.0602*p,
Ev = Exv + 0.2162*lv - 0.7566*p.
Ef = Exf + 0.0082*lf - 0.0082*p,
# accumulated expected energy
Lxt = Lxt + lt.
                  Lt = Lxt + 0.5*lt.
Lxh = Lxh + lh.
                  Lh = Lxh + 0.5*lh
Lxv = Lxv + lv.
                  Lv = Lxv + 0.5*lv
Lxf = Lxf + lf.
                  Lf = Lxf + 0.5*lf.
# accumulated price change
Px = Px + p.
                  P = Px + 0.5*p.
# clock
c = c + dc
1:
```

Specification Description

```
specification:
condition
# Initial conditions
Init=(Ext=0 /\ Exh=0 /\ Exv=0 /\ Exf=0 /\
      Lxt=0 /\ Lxh=0 /\ Lxv=0 /\ Lxf=0 /\
       ext=0.01 /\ exh=0.12 /\ exv=0 /\ exf=0.44 /\
      Px=0 / c=0),
# Final conditions
Final=(
  # accumulated energy demand of each device should
  # be close to its expected accumulated energy
  Lt - 0.5 <= Et /\ Et <= Lt + 0.5 /\
  Lh - 0.5 \le Eh / Eh \le Lh + 0.5 /
  Lv - 0.5 \ll Ev / Ev \ll Lv + 0.5 /
  Lf - 0.5 \ll Ef / Ef \ll Lf + 0.5 /
  # Bound for acc. price change
  -0.1 \le P / P \le 0.1,
# Always enforced conditions
Safety=(
 # total energy demand should be less than 1.65 GWh
 e <= 1.65 /\
 # price change should be within +- 0.1 $/KWh range
 -0.1 \le p / p \le 0.1 /
 # positive energy demand and dc
 et >= 0 /\ eh >= 0 /\ ev >= 0 /\ ef >= 0 /\
 dc = 1.0),
# Expected load for the day
Load=Init /\
  lt = 0.10 / lh = 0.70 / lv = 0.00 / lf = 0.40 / 
X(lt = 0.00 /\ lh = 0.70 /\ lv = 0.00 /\ lf = 0.40 /\
X(lt = 0.00 /\ lh = 0.70 /\ lv = 0.00 /\ lf = 0.40 /\
```

Model Checking Results

Pharmacokinetic Model

- Drug Kinetics (ADME)
 - Absorption
 - Distribution
 - Metabolism
 - Excretion

Perfusion model

Pharmacokinetic Model

- Compartment model
 - Drug molecules are moving from one compartment to other compartments
 - The rate of drugs leaving a compartment is proportional to the amount of drug in the compartment
 - Drug kinetics can be modeled as a Markov chain
 - Each compartment corresponds to a state
 - Drug transition rates correspond to probability transition rates

Requirements for a Prescription

- The onset time is no later that 1.5 hours (sampling time is 10 min)
- The active duration is at least 6 hours
 - The minimum effective concentration level (mec) is 1.4 ug/ml
- The drug concentration should never exceed the toxic limit
 - The minimum toxic concentration level (mtc) is 2.1 ug/ml

Model Checking Results

Model Checking Results

