CSE595 Topics in Convergence Research Model Checking

YoungMin Kwon

Challenger Disaster

Tacoma (WA) Bridge Collapse

https://www.youtube.com/watch?v=j-zczJXSxnw

Chernobyl Nuclear Power Plant Disaster

Ariane 5 Rocket Failure

https://www.youtube.com/watch?v=PK yguLapgA

- Traditional validations methods
 - Simulation with models
 - Testing on real systems
 - Reasoning (manual or computer aided proof)
- Model Checking
 - Automatic techniques for verifying concurrent systems
 - Always terminate with yes/no answer

Model Checking Process

Modeling

 Convert a design into a formalism accepted by a model checking tool

Specification

- State the properties that the design must satisfy
- Temporal logics are commonly used

Verification

- Check whether the model satisfies the specification
- Need to analyze the traces for the negative results

Modeling Systems

- State
 - Snapshot or instantaneous description of the system
- Transition
 - Change of states
- Computation
 - Infinite sequence of states where the change of states is defined by the transition

Kripke Structure

- A state transition graph
 - A set of states
 - A set of transitions between states
 - A function that labels each state with a set of properties that are true in this state
 - Paths in a Kripke structure model computations of the system

Kripke Structure

- Formally, a Kripke structure M over a se of atomic propositions AP is a four tuple M=(S,S₀,R,L), where
 - S is a finite set of states
 - $-S_0\subseteq S$ is the set of initial states
 - R⊆SxS is a transition relation
 - L: S→ 2^{AP} is a function that labels each with the set of atomic propositions that are true in that state

Kripke Structure

Example

- States: $\{S_0, S_1, S_2, S_3\}$
- Transitions: $\{(S_0,S_2), (S_1,S_0), (S_1,S_3), (S_2,S_1), (S_3,S_1)\}$
- Labeling function: $L(S_0)=r$, $L(S_1)=y$, $L(S_2)=g$, $L(S_3)=b$

Specification

Properties of a system can be described by temporal logics

- Temporal logics are a logic with temporal operators as well as logical operators
- Sequences of state transitions of a system can be described by temporal logics

A Kripke Structure

Unwind State Graph

- Logical operators
 - ~: not
 - /\: and
 - \/: or
- Temporal operators
 - X: next
 - <>: eventually
 - []: always
 - U: until
 - R: release
- Path quantifiers
 - A: for all computation paths
 - E: for some computation paths

- State Formula and Path Formula
 - If $p \in AP$, then p is a state formula.
 - If f and g are state formulas, then $\neg f$, $f \lor g$ and $f \land g$ are state formulas.
 - If f is a path formula, then \mathbf{E} f and \mathbf{A} f are state formulas.
 - If f is a state formula, then f is also a path formula.
 - If f and g are path formulas, then $\neg f$, $f \lor g$, $f \land g$, \mathbf{X} f, \mathbf{F} f, \mathbf{G} f, f \mathbf{U} g, and f \mathbf{R} g are path formulas.

Formal Semantics

```
M, s \models p \Leftrightarrow p \in L(s).
M, s \models \neg f_1 \iff M, s \not\models f_1.
M, s \models f_1 \lor f_2 \Leftrightarrow M, s \models f_1 \text{ or } M, s \models f_2.
M, s \models f_1 \land f_2 \Leftrightarrow M, s \models f_1 \text{ and } M, s \models f_2.
M, s \models \mathbf{E} \ g_1 \iff \text{there is a path } \pi \text{ from } s \text{ such that } M, \pi \models g_1.
M, s \models A g_1 \Leftrightarrow \text{ for every path } \pi \text{ starting from } s, M, \pi \models g_1.
M, \pi \models f_1 \Leftrightarrow s \text{ is the first state of } \pi \text{ and } M, s \models f_1.
M, \pi \models \neg g_1 \Leftrightarrow M, \pi \not\models g_1.
M, \pi \models g_1 \vee g_2 \Leftrightarrow M, \pi \models g_1 \text{ or } M, \pi \models g_2.
M, \pi \models g_1 \land g_2 \Leftrightarrow M, \pi \models g_1 \text{ and } M, \pi \models g_2.
M, \pi \models \mathbf{X} g_1 \Leftrightarrow M, \pi^1 \models g_1.
M, \pi \models \mathbf{F} g_1 \iff \text{ there exists a } k \geq 0 \text{ such that } M, \pi^k \models g_1.
M, \pi \models \mathbf{G} g_1 \Leftrightarrow \text{ for all } i \geq 0, M, \pi^i \models g_1.
M, \pi \models g_1 \cup g_2 \Leftrightarrow \text{there exists a } k \geq 0 \text{ such that } M, \pi^k \models g_2 \text{ and }
                                        for all 0 \le j < k, M, \pi^j \models g_1.
                                        for all j \ge 0, if for every i < j M, \pi^i \not\models g_1 then
M, \pi \models g_1 \mathbf{R} g_2
                                        M, \pi^j \models g_2.
```

- LTL (Linear Temporal Logic)
 - A f, where f has unrestricted use of logical and temporal operators but without path quantifiers
- CTL (Computation Tree Logic)
 - Temporal operators must be immediately preceded by path quantifiers
- CTL* (Computation Tree Logic)
 - Logical operators, temporal operators, and path quantifiers can be used without restriction

Linear Temporal Logic

Suppose that S₀ is the initial state

Linear Temporal Logic

```
-r, r / g, r / o
-X o, X r, X g
-X (o / r / g)
-X \circ -> XX r
-X \circ -> XXX g
- \leftrightarrow r, \leftrightarrow g, \leftrightarrow o
-[](g \rightarrow X(o / r))
-[]((r /\ \sim g) \rightarrow X g)
-[] \leftrightarrow o, [] \leftrightarrow r, [] \leftrightarrow g
-[] \leftrightarrow (o \ / r)
```

- Finite Automata (FA)
 - Accept or reject a finite string
 - Regular expressions can be converted to an FA

- A finite automaton A is a quintuple
 - $A = (\Sigma, Q, \Delta, Q^0, F)$
 - $-\Sigma$ is the finite alphabet
 - Q is the finite set of states
 - $-\Delta \subseteq Qx\Sigma xQ$ is the transition relation
 - Q^0 ⊆Q is the set of initial states
 - $F \subseteq Q$ is the set of final states
- A finite string s is accepted by A iff there is a run for s that ends with a state in F

- Büchi automata
 - A Büchi automaton B has the same representation as a finite automaton B = $(\Sigma, Q, \Delta, Q^0, F)$
 - An infinite string s is accepted by B iff a state in F appears infinitely often in a run
- An LTL formula can be converted to a Büchi automaton

- LTL Model Checking
 - Build a Büchi automaton $B_{\sim f}$ for the negation of a given specification f
 - Build an intersection automaton I_{~f} between a Kripke structure model and B_{~f}
 - If I_{~f} accepts a string, the string is a counterexample witnessing the violation of the specification.

Links to Lecture Slides

 http://www3.cs.stonybrook.edu/~youngkwon/cse595/ ModelChecking1.pdf

http://www3.cs.stonybrook.edu/~youngkwon/cse595/
 ModelChecking2.pdf