CSE 306/506 Operating Systems
File Management

YoungMin Kwon

File Directories

.
.
Unit_A =
.
.
.
story "Uni
@

@
ABC

File
"ABC"

Pathnam

@
ABC

Pathname: /User_B/Draw/ABC

e: /User_B/Word/Unit_A/ABC

File
"ABC"

= Directory itself is a file

= A directory has a list of
file name and its location
information

= A process has a current
directory (aka working
directory)

File Sharing

= Access rights

None: users may not know the existence of the file

Knowledge: users know the existence of the file and
its owner

Execution: users can load and execute a program but
cannot copy it

Reading: users can read the for copying and execution

Appending: users can add data at the end of the file,
but cannot modify the existing contents

Updating: users can modify the contents of the file

Changing protection: users can change the access
right

Deletion: users can delete the file

@Koreaw ‘

Record Blocking

= Records must be organized as blocks
= Records are the logical unit of access of a structured file
= Blocks are the unit of |/O with secondary storage

= Fixed or Variable size block
= On most systems, blocks are of fixed length

= Sjze of a block

= Large block: more records per an |/O operation
= Good for sequential access
= Not good for random access (unnecessary read/write)

@Koreaw ‘

Record Blocking

= Fixed blocking
" |[ntegral number of fixed-length records in a block
= May have unused space at the end of each block

R1

R3 R4

RS

R6

SN

R7 RS

\:' Data

\:I Gaps due to hardware design

Ls
Waste due to block fit to track size

\ - .
& Waste due to record fit to blocksize

Waste due to blocksize constraint
from fixed record size

Track 1

Track 2

@ Koream_

Record Blocking

= Variable-length spanned blocking
= Variable length records are packed in a block

= Some records may span two blocks
= A pointer to the successor block
= No unused space

L
R1 R2 R3 R4 R4 RS R6 g Track |
Y f ‘r
R6 R7 RS RY R9 | RI0O R11 R12 |RI13 \ Track 2
AN

@ Koream_

= Variable-length unspanned blocking
= Variable length records are used
= Spanning is not employed

Record Blocking

R1 R2 R3 § R4 RS &wé
R6 R7 &N RS R9 R10 Sé

Track 1

Secondary Storage Management

= File allocation

= Should allocate space in advance at once when files
are created?

= Space is allocated to a file as one or more contiguous
units (portion)

= What size of portion?
= What sort of data structure to use to keep track of

portions?
= E.g. File Allocation Table (FAT) in DOS

@ Korea_‘_.m

Preallocation vs Dynamic Allocation

= Preallocation

= Need the maximum file size at the time of
creation

" Program compilation, Summary data, Network file
transfer

" |n general, it is difficult to know the maximum
= Users tend to overestimate — waste of space

" Dynamic allocation
= Allocate space to a file in portions as needed

@Koream

Portion Size

Small portion vs large portion trade-offs
= Contiguity of space increases performance

" Large number of small portions — increase the size of file
allocation table

= Fixed size portions simplify the reallocation of space

Two major alternatives

= Variable, large contiguous portions

= Better performance, no waste of space, small file allocation table
= Space is hard to reuse

= Blocks
= Greater flexibility
= Large table, contiguity is abandoned, blocks are allocated as needed

@ Ko rea

File Allocation Methods

= Contiguous allocation

= Asingle contiguous set of blocks is allocated to a
file at the time of creation

< > File allocation table

File A File name Start block Length
O I R I T NN TN IRTANNY File A : .
File B 9 5
sL_1e[170 1s[] o] e DS 3 :
File B File E 26 3
of ol Ji2l i] |
sl e[17 s v
File C
20V 210 22V 23 VA4 247
File E
35V A2 |27] 28] 29|]
File D

30RJ R 2 33 34]
o

@ Korea_m

File Allocation Methods

" Contiguous allocation
= Preallocation strategy
= Variable-size portions

= File allocation table needs a single entry for each
file (starting block, length)

= Performs better for sequential accesses: multiple
blocks can be read in at a time

" External fragmentation will occur (need
compaction)

= Need to declare file size at the file creation time

@Koreaw ‘

File Allocation Methods

= Contiguous allocation (after compaction)

< > File allocation table

File A File name Start block Length

INNEINNEINE File A 0 3

File B [iilCB 3 5

s o[7] s 922 flec 8 ;

= L Lile C : File E 16 3
WA w2V s
File E File D
R 77750 R R R
20 21 []2][]
25 26| 27| |28 |29 |
300 |3 |32 [33] |34 |

@ Korea_m

File Allocation Methods

= Chained allocation

= Each block contains a pointer to the next block

S > File allocation table

File B File name _ Start block Length
()I | I| | 2| | %l 4| see soe soe
File B I 5
sLJ o[7 sl
ol Ju fr2l]z |14]

@ Korea_m

File Allocation Methods

= Chained allocation
= Allocation is on an individual block basis

= File allocation table needs a single entry for each
file (starting block, length of the file)

= Any free block can be allocated as needed
= No external fragmentation

= Performs well with sequential files with sequential
access

" Need to trace through chains to select a specific block
= For locality, periodically consolidate files

@Koreaw ‘

File Allocation Methods

= Chained allocation (after consolidation)

< > File allocation table

File B File name Start block Length

o[(L] 2L sE o] | [eee wose wes
W e AW W File B 0 5

s el 7 |89 | *e e ot
o Jul Jee[]l][]
s el |7l sl o] |
00 T2 J22[23] 24]
os[J26[J27[J2s[J2o[|
o[I3[s2[133]34]

w

@ Korea_m

File Allocation Methods

®» |[ndexed allocation

= File allocation table contains a separate one-level
index for each file

O File allocation table

File B File name Index block
ol | 1] 2| eee eee
\ File B 24
5| |(| |7| eee eee
ol || 2
is| el 17|
e
20 |2a1[|[22] 8
o 134
s J2s[]| | 1
3ol |31]3]

@ Koream_

File Allocation Methods

®» |[ndexed allocation

= Typically, file indexes for a file are keptin a
separate block

= File allocation table has an entry pointing to this
index block

= Allocation can be on the basis of fixed-size blocks
or variable-size portions

= File consolidation can be done from time to time

" Indexed allocation supports both sequential
access and direct access to the file

@ Koreaw

File Allocation Methods

" |ndexed allocation with variable-length
portions

Q File allocation table

File B File name Index block
ol | o 2] 3] 4[| soe
File B 24
s el 7018 |9 | *ee
o ol e[[|]
ts| Jwel 7 Js[ol]
_ | Start block Length
20 Jar[J2of J23[Jaa[] | 3
Tk 28 4
2s{ l2e[|27[Jasfd2of] [-~ 14 '
\\
o |3l 32 |33 |34 |

@ Koreaw

Free Space Mahagement

= Bjt table

= Uses a vector containing one bit for each block

= 0 means a free block, 1 means an allocated block
= E.g.0011100001111100001111111111111011000

= Easy to find a contiguous group of free blocks
= Small in size: (disk size)/(8 x block size)

Free Space Mahagement

" Chained free portions

= Free portions are chained by using a pointer and
length

= Negligible space overhead
= |nefficient when the disk is quite fragmented
= |nefficient when deleting a highly fragmented file

" |Indexing

=" Treat free spaces as a file and use an index table for
them

@ Korea_m

Free Space Manhagement

= Free block list

= A block number for each free block is maintained in a
reserved portion of the disk

= Stack can be used as a data structure
= Allocation is done by popping from the stack
= Deallocation is done by pushing to the stack

* Only certain amount the stack top is maintained in the main
memory

= FIFO queue can be used also

* Allocation is done by removing from the queue head
= Deallocation is done by adding to the tail of the queue
" Only certain amount of head and tail area is maintained in the

main memory
@Koream

Disk Scheduling Policies

platter = track read/write
eac

®m Goal: reduce the seek time

= First-In-First-Out
" Process items in the queue in the sequential order

= Priority

= Schedule based on the system priority (in a batch
system, short jobs have higher priority than longer
ones)

@ Ko rea

Disk Scheduling Policies

= Last-In-First-Out
= Recent requests have the locality

= Shortest-Service-Time-First
= Select the request that will move the arm the least

= SCAN
= Except for FIFO, all scheduling algorithms have a starvation
problem

= With SCAN, the arm is required to move in one direction
only until it reaches the last track or there are no more
requests in that direction

@Koream

Disk Scheduling Policies

= C-SCAN (Circular SCAN)

= Restricts the scanning to one direction only

= When the arm reaches to the last track, it returns
to the opposite end and begins the scan again

= Reduces the maximum delay

Disk Scheduling Policies

(a) FIFO (starting
at track 100)

(b) SSTF (starting
at track 100)

(¢) SCAN (starting
at track 100, in the
direction of increasing
track number)

(d) C-SCAN (starting
at track 100, in the
direction of increasing
track number)

Number
Next track of tracks
accessed traversed
55 45
58 3
39 19
18 21
90 72
160 70
150 10
38 112
184 146
Average 93.3
seek
length

Number
Next track of tracks
accessed traversed
90 10
58 B
55 3
39 16
38 |
18 20
150 132
160 10
184 24
Average 270
seek
length

Number
Next track of tracks
accessed traversed
150 50
160 10
184 24
90 04
58 32
55 3
39 16
38 |
18 20
Average 27.8
seek
length

Next Number
track of tracks
accessed traversed
150 50
160 10
184 24
18 166
38 20
39 1
55 16
58 3
90 32
Average 358
seek
length

RAID

= RAID (Redundant Array of Independent Disks)

= A set of physical disk drives viewed as a single
logical drive

= Data are distributed across physical drives

= Redundant disk capacity is used to store parity
information (data recoverability)

RAID Level O

= No redundancy
= Data are striped across the available disks

= A unit of data in the logical disk (stripe) are
mapped to consecutive physical disks

ATy

> > > >
strip 0 strip 1 strip 2 strip 3
strip 4 strip 5 strip 6 strip 7
strip 8 strip 9 strip 10 strip 11
strip 12 strip 13 strip 14 strip 15

| L | |

\ /I \ /l . /l N >

= Served by the faster of the two (smaller seek time +
rotational delay)

RAID Level 1

= Redundancy is achieved by duplicating data
= Read request

= \Write performance
= Dictated by the slower of the two

strip 0 strip 1 strip 2
strip 4 strip 5 strip 6
N N~
strip 8 strip 9 strip 10
— P,
strip 12 strip 13 strip 14

~—— -

N ——— -

~—— -

T
—

strip 3
e—
strip 7

strip 11
re— 1

N —— — -

RAID Level 2

= For RAID 2 and RAID 3, spindles of the
individual drives are synchronized

= Redundancy: Hamming code

= Can correct 1-bit error, can detect 2-bit errors

RAID Level 3

= Asingle redundancy disk is used
= Can detect 1-bit error, no error correction
= Can recover from a disk drive failure

= Redundancy: Parity

" E.g. X, ~ X; data disk, X, parity disk, ®: exclusive or
X () = X,(i) @ X, (i) @ X, (i) ® X, (i)

" Suppose that drive X, has failed .
X, (1) = X,4(i) @ Xs(1) @ X, (i) @ X (i)

RAID Level 4

= For RAID 4 to RAID 6, disks are not synchronized

= Separate I/O requests can be satisfied in parallel

= More suitable for high 1/0 requests than high data
transfer rates

Al E-> @ @ >
block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 block 7 P(4-7)
block 8 block 9 block 10 block 11 P(8-11)
block 12 block 13 block 14 block 15 P(12-15)

|_&______/| \%"'_"/1 l\"&—_"/| _____/_,/l ______,_,/l

— — — — — — — — —_— . —_—

RAID Level 4

RAID 4 penalizes small writes

= E.g. Initial configuration
X (i) = X5(1) @ X,(i) ® X, () © X, (i)

= When X,(i) is modified to X (i)’
X,(1) = X3(i) S, Xz(i) D XI(i)’ S, Xo(i) | |
= X,(1) ® X,(0) © X,(i)’ ® Xy(0) ® X,(1) & X, (i)
= X,(i) ® X, (i) ® X, (i) ® X,(i) @ X, (i) ® X, (1)’
= X,(1) @ X,(1) & X,(1)’

= Write involves 4 disk access
= Read old data and parity
= Write new data and parity

RAID Level 5

n RAID 4, the parity disk drive can be a
pottleneck

n RAID 5, distribute the parity data across all disk
drives

= The potential I/O bottleneck issue can be fixed

s OO T O T

block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 P(4-7) block 7
block 8 block 9 P(8-11) block 10 block 11
block 12 P(12-15) block 13 block 14 block 15
Ne— ~ e — N
P(16-19) block 16 block 17 block 18 block 19
— ~_ N~ N~ N~

T e — T e — T e — - T e o m - _— e ——

RAID Level 6

= 2 different parity calculations (P, Q) are used
= Can recover from 2 disk drive failures
= Extremely high data availability
" [ncurs a substantial write penalty

T e — =

T e —

T o ———

T ——

e ——

T T P =
e T T OOy T OO
block 0 block 1 block 2 block 3 P(0-3) Q(0-3)
_______/ o
block 4 block 5 block 6 P(4-7) Q4-7) block 7
block 8 block 9 P(8-11) Q(8-11) block 10 block 11
N~ N~ N M — N
block 12 P(12-15) Q(12-15) block 13 block 14 block 15
\‘——-“"/I | | a——— r_____/l [|_____/|
| | | | | | I | l I I |
\ ~ “ / . / \ ~ “ - LS -

T o ——

