CSE 306/506 Operating Systems
File Management

YoungMin Kwon

Filesystem

" Filesystems allow users to create data
collections, called files

" Files have following properties:
= Long-term existence
= Sharable between processes

* Files can have an internal structure and be
organized into a hierarchical structure

File Structure

" Field
= A basic element of data
= E.g., employee’s name, a date, a sensor reading...

= Record

= A collection of related fields that can be treated as
a unit

= E.g., an employee record with name, id, hiring
date, ...

@Koreah ‘

File Structure

" File
= A collection of similar records
= Access control usually apply at the file level

= Database
= A collection of related data

= Designed for use by a number of different
applications

= May consists of one or more types of files

File Management System

" File management system

A set of software that provides services to users and
applications in the use of files

= Requirements

Each user is able to create, delete, read, write, and modify
files

Each user may have controlled access to other user’s files
Each user is able to move data between files
Each user can backup and recover the user’s files

Each user can access files by name rather than by a
numeric id

@Koreaw ‘

File System Architecture

[User program J

]
\
Indexed

Pile Sequential _ . Indexed Hashed
sequential

Logical I/0

Basic I/0 supervisor

Basic file system

Disk device driver Tape device driver

= Device drivers
= Communicate directly with devices

= Responsible for staring I/O operations and handling
the completion of an I/O request

@ Korea_‘_m

File System Architecture

" Basic file system

" Primary interface with the environment outside of the
computer system

= Placement of blocks on the secondary storage device,
buffering of the blocks in main memory

= Does not understand the contents or

the structure of data

= Basic |I/O supervisor R B

= Responsible for all file |/O initiation and termination
= Selecting device, scheduling access, allocating buffer

@ Korea_m

File System Architecture

= Logical I/O

Indexed Hashed

= Enable users and applications to

access records

Tape device driver

= Whereas the basic file system deals with blocks,

logical I/O module deals with records

= Access Method

" Provides standard interfaces between applications

and file systems

@ Koreaw

Elements of File Management

Physical blocks ~ Physical blocks

- in main memory in secondary
Records) iy
. buffers storage (disk)
- structure
Directory Access)
management method : - Disk
Blocking scheduling
User & program |:| 2 [s
commands Operation, File) 4 RO ~ Free storage
file name manipulation [:] \ management
functions
File
l:l allocation

User access
control

File management concerns

Operating system concerns

File Organization and Access

" File organization
" Logical structuring of the records

" Criteria to consider
= Short access time
= Ease of update
= Economy of storage
= Simple maintenance
= Reliability

File Organization and Access

= Five fundamental organizations

Pile

Sequential file
Indexed sequential file
Indexed file

Direct or hashed file

The Pile

= Record organization

= Collected in the order they arrive

= Records may have different fields in different
orders

= Variable length records

= Record access
= Exhaustive search

The Sequential File

= Record organization

= All records are of the same length,

same number of fixed length fields,

in particular order

= There is a key field that identifies the record
= Records are sorted by the key

= Record access
= Sequential scan

= For a new record, append it to a pile type log file and
merge it to the master file later

@ Koreaw

Indexed Sequential File

= Record organization

= Records are a sorted sequence index Main file
based on the key '““f_;‘ -
= Index file has (key, file location) pairs ']™"'L

= New records are added to overflow file

L.
y o

with a link from the main file Overflow

file

A A A

= Record access

= From the index file, find a nearby record location and
do a sequential search from the record

= Multilevel index file
= Lower level indexes are like the sequential file
= Higher level indexes are indexes into lower level

@ Korea_‘_m

Indexed Sequential File

= Example

= A sequential file with 1 million records
= On average 500,000 records are searched

= An indexed sequential file with 1000 indexes and 1 million
records

= On average 500 indexes and 500 records are searched (total 1,000
searches)

= A 2-level indexed sequential file with 100 high-level
indexes, 10,000 low-level indexes, and 1 million records

= On average 50 high-level indexes, 50 low-level indexes, and 50
records are searched (total 150 searches)

@Koream

Direct (or Hashed) File

= Hashing on the key value
= Store data at the hash value location
= Retrieve data from the hash value location

Indexed File

= Indexed sequential file A S S

= |nefficient when multiple keys are used

= Record organization

= Variable-length records are appended
to the primary file

= Multiple index files have its own (key, file location)
pairs

= Record access

* Find a file location from the index file for a certain key

@ Korea_‘_m

B-Tree

platter — track read/write

" For a large file or database

= For efficiency, a multi-level
index file can be used

= A balanced structure is preferred
= To avoid uneven access times

= Need to reduce the access to the secondary memory

= B-tree
= Balanced tree with large branching factor (height is small)
= Each node holds large amount of indexes
= Has efficient searching, adding, and deleting algorithms

@Koreah ‘

B-tree

H Key, Key, * o Keyy |
Subtree, Subtree, Subtree; Subtree, | Subtree;,

A B-tree Node with k& Children

= Definition
= The tree consists of nodes and leaves

= Each node contains at least one key and more than one
pointers to child nodes or leaves

= Each node can have the same maximum number of keys
= Keys in a hode are stored in non-decreasing order

@ Korea_m

B-Tree

" B-tree with minimum degree d
= Every node has at most 2d — 1 keys and 2d children

= Each node (except for the root) has at least d — 1 keys
and d pointers

= The root node has at least 1 key and 2 children
= All leaves appear on the same level
= A non-leaf node with k pointers contain k — 1 keys

51

23] 39] [or[71]ss

[2]10] [o32] [43]24]45] ||52||59ii60i [e7]lss] [73][s4]s5] [oofoe

B-Tree

= Search for a key
= |f the key is found in the node, the search is done

= |f the key is smaller than the smallest key of the node,
follow the leftmost pointer

= |f the key is larger than the largest key of the node,
follow the rightmost pointer

= |f the key is in between two keys of the node, follow
the pointer in between the keys

51

23] 39 617138
., \
2 10|] |]30 32 [43]4a]45] [52]50]e0] [o7 68|] |]73 s4[[85] [oofos

B-Trees

" |nserting a new key

= Search the tree for the new key; if the key is not in the
tree, you are at the lowest level

= |f the node has fewer than 2d — 1 keys, insert the key
to the node at the proper position
= Otherwise split the node
= Move the median key to the parent node

= Split the node into two: LHS node has keys less than the
median key and the RHS node has the other keys

= |f the key is smaller than the median key, insert it to the left
node; otherwise insert it to the right node

= The median key moved to the parent node may split
its parent node again

= Keep splitting the parent node until a non-full node is
encountered or the root node is split

@Koreaw ‘

[23][51][61][71] B-tree (d=3)

[30]3230[43]J44] [52]50 0] [e7fles] [73]s5]s8]9s]

90 is added
[23]5161]71]
[oll32]3043]#4] [52[5°]e0] [[67][e8] [73[ss]ss]oo]os]
233951 61|71 45 is added
2 o sof32] [s3]e4]s5] [52[0] 0] [[67]es] [73]s5]s8]o0] o6
|51
84 is added

617188

143 44"45" s2[[s9fl6o] [[67]l6s] [73]s4[ss] [oo]e

B-Trees

= Deleting a key k

= Find the node that has k

" |f node is non-leaf: replace k with the successor (the smallest
key larger than k) or the predecessor (the largest key smaller
than k)

= |f the node has at least d — 1 keys, we are done

= Otherwise

= Borrow a key from a neighbor if the node has d or more keys
(key rotation)

= Merge with a neighbor that has d — 1 keys and with the
medium key from the parent
= Recursively perform the second step if a key was
removed from the parent

@ Korea_‘_.m

10

10

10

51

B-tree (d=3)

23] 39 l61]71]ss
l /
|]30 321 (43|44l 45] [[521[59]60] |67] 68 [|73 g4ll8s5]l [0 96
51
. 39 is deleted
2343 [o1]71]ss
A J
|]30 32 44|45 [[52]l59] 60l [[67] 68 [|73 84 85 90 [96
51
67 is deleted
23 (43 H60 71 88 (key rotation)
2 \
30|32 4445 52159 o1l68] 173184185 90 [[96 @
Korea

Sl

32 is deleted
(merge)
23 [61]71]ss
| /
10 30| 43|44 || 45 52115960l |67 68 "71 8485 90 [96
61
/ (key rotation)
2351 71188
\ J
10/ 11304344 45 52159 60 67 68 [|73 84185 90 [96
61
/ 88 is deleted
12351 7185
N Y
10 |]30[|43 44 45 521159 60 67 68 73| 84 90 [96

\

-

61

0] [30]43]44]45 52[[s59] 60
61
/
23] 51
0] [30]43]44]4s 52]159] 60
23] 516171
[2]10] [30]43]44]4s 52[[59(60

85 is deleted

96

(merge)

(merge)

71 (90
671 68 73|84
71
67|68 73184190 || 96
67|68 738490

96

