
CSE 306 Operating Systems
Virtual Memory

YoungMin Kwon

Operating System Policies for VM
 Contents

 Fetch policy (disk →mem)
 Demand paging, prefetching

 Placement policy
 Replacement policy

 Optimal, LRU, FIFO, clock, page buffering
 Resident set management

 Fixed/variable set size, global/local scope
 Cleaning policy (mem → disk)

 Demand cleaning, precleaning
 Load control (degree of multiprogramming)

Fetch Policy

 Demand paging
 A page is brought into main memory only when

the page is accessed

 Prepaging
 Pages other than the one accessed are brought in
 Exploits the characteristics of secondary memory

(disks have latency and rotational delay)

Placement Policy

 In pure segmentation system
 Best-fit, first-fit, …
 In pure paging or paging + segmentation systems,

placement is usually irrelevant

 In NonUniform Memory Access (NUMA) system
 Access time to a particular

memory location varies with the
distance between the processor
and the memory

 Need to place data close to the
processors that use them

Replacement Policy

 Replacement Policy
 Selecting a page frame to be replaced

 Frame Locking
 When a frame is locked, the page stored in the

frame will not be replaced
 Most kernel code and key control structures are

held in locked frames

Replacement Policy

 Optimal algorithm
 Select the page that will not be referenced longest
 Not implementable: for the comparison purpose

Replacement Policy

 Least Recently Used (LRU) algorithm
 Select the page that has not been referenced

longest
 Tag each page with the time of its last reference
 Alternatively, maintain a stack of page references

Replacement Policy

 First In First Out (FIFO) Algorithm
 Replace the page that has been in memory the

longest
 Simple to implement (a pointer that cycles all

frames)

Replacement Policy

 Clock algorithm
 Add a use bit to each frame: whenever a page is

referenced its use bit is set
 Like FIFO, a page pointer cycles frames to find a

frame whose use bit is 0
 While scanning frames, set the use bit to 0

Replacement Policy (Clock)

Replacement Policy
 Clock algorithm with modify bit

 Each frame falls into
 Not accessed, not modified (u=0, m=0)
 Accessed, not modified (u=1, m=0)
 Not accessed, modified (u=0, m=1)
 Accessed, modified (u=1, m=1)

 Step 1: starting from the current position, try to
find a frame with (u=0, m=0)

 Step 2: from the current position try to find a
frame with (u=0, m=1). During this scan set u of
encountered frames to 0

 Step 3: Repeat step 1 and step 2 if necessary

Replacement Policy (Clock with modify bit)

Replacement Policy: Comparison

Replacement Policy

 Page buffering
 Similar to FIFO, but victim frames are moved to

one of frame pools: free or modified frame pools
 Their entries in the page table are removed
 If a frame in the pools is accessed, only the page table

is updated without reading the frame from disk

 When a pool is full, swap some frames out to disk
 Modified frames can be swapped out to the disk

together considering the seek time and the rotational
delay

Resident Set Management

 Resident set of a process
 The portion of a process that is actually in main

memory at any time

 Resident set size
 Smaller the size

More processes can reside in main memory
More page fault

 After a certain point, adding more pages to a
particular process will have no noticeable effects

Resident Set Size
 Fixed-allocation policy

 Give a process a fixed number of frames
 On a page fault, one of the frames of the process

needs to be replaced

 Variable-allocation policy
 # of frames allocated to a process will vary over time
 More frames will be given to processes experiencing a

high page fault rates
 Frames will be taken from processes with

exceptionally low page fault rates

Replacement Scope

 Local replacement policy
 Find a victim frame among the frames of the

process that caused the page fault

 Global replacement policy
 Consider all unlocked pages in main memory

Fixed Allocation, Local Scope

 OS must choose one of the frames of the
process for the replacement

 Decide the amount of frames to give to a
process ahead of time
 Too small allocation: high page fault rate
 Too much allocation: low degree of

multiprogramming

Variable Allocation, Global Scope

 Replacement algorithm
 Typically, OS maintains a list of free frames
 On page fault, a free frame is added to the

resident set of the process causing the fault
 When no free frame is available, select a frame

from any processes

Variable Allocation, Local Scope

 Strategy
 When a new process is loaded, allocate to it a

certain number of frames
 Victim page is selected from among the resident

set of the process that caused the fault
 From time to time, reevaluate the allocation and

expand or shrink the allocation to improve overall
performance

Variable Allocation, Local Scope
 Working set

 W(t, ): the set of pages referenced during (t-, t]
 t: virtual time representing the memory reference

count of a process

 Working set is a non-decreasing function of the
window size
 W(t, ) W(t,  + 1)

 The bound of the working set size
 1 ≤ | W(t, ) | ≤ min(, N), where the entire process is

held in N pages
at most 1 page per
time window

Working Set Example

Working Set
 For many programs, periods of relative stable working set

sizes alternate with periods of rapid changes

Variable Allocation, Local Scope

 Working set strategy
 Monitor the working set of each process
 Periodically remove from the resident set of a process

those pages not in the working set (like LRU)
 A process may execute only if its working set is in

main memory

 Problems
 The past does not always predict the future
 Computing the working set of processes is impractical
 Optimal value of  is unknown

Variable Allocation, Local Scope
 Page Fault Frequency (PFF) algorithm

 When a page fault occurs, OS records its virtual time
 If the elapsed time since the last page fault is less than

a threshold F, add a frame to the resident set of the
process

 Otherwise, discard all frames whose use bit is 0 and
shrink the resident set size accordingly

 Problems with PFF
 Does not perform well during transition periods (shift

to a new locality)  resident set size grows

Variable Allocation, Local Scope

 Variable-interval sampled working set (VSWS)
 When accessing a frame, set its use bit
 Any faulted pages are added to the resident set
 At each sampling time

 Scan the frames in the resident set and discard the
frames whose use bit is not set

 Clear the use bit of the remaining frames

Variable Allocation, Local Scope
 Variable-interval sampled working set (VSWS)

 Parameters
 M: the minimum duration of the sampling interval
 L: the maximum duration of the sampling interval
 Q: the number of page faults allowed to occur between

sampling instances
 E: the virtual time since the last sampling time

 Suspend the process and scan the use bit
 If Q page faults occur before L → when E reaches M
 Otherwise → when E reaches L

Load Control

 Load control
 Determines the number of processes that will reside in

main memory

 Too few processes
 All processes can be blocked
 Processor utilization will be low

 Too many processes
 Thrashing: page fault will

occur frequently
 Processor utilization will be low

