
CSE 306 Operating Systems
Virtual Memory

YoungMin Kwon

Operating System Policies for VM
 Contents

 Fetch policy (disk →mem)
 Demand paging, prefetching

 Placement policy
 Replacement policy

 Optimal, LRU, FIFO, clock, page buffering
 Resident set management

 Fixed/variable set size, global/local scope
 Cleaning policy (mem → disk)

 Demand cleaning, precleaning
 Load control (degree of multiprogramming)

Fetch Policy

 Demand paging
 A page is brought into main memory only when

the page is accessed

 Prepaging
 Pages other than the one accessed are brought in
 Exploits the characteristics of secondary memory

(disks have latency and rotational delay)

Placement Policy

 In pure segmentation system
 Best-fit, first-fit, …
 In pure paging or paging + segmentation systems,

placement is usually irrelevant

 In NonUniform Memory Access (NUMA) system
 Access time to a particular

memory location varies with the
distance between the processor
and the memory

 Need to place data close to the
processors that use them

Replacement Policy

 Replacement Policy
 Selecting a page frame to be replaced

 Frame Locking
 When a frame is locked, the page stored in the

frame will not be replaced
 Most kernel code and key control structures are

held in locked frames

Replacement Policy

 Optimal algorithm
 Select the page that will not be referenced longest
 Not implementable: for the comparison purpose

Replacement Policy

 Least Recently Used (LRU) algorithm
 Select the page that has not been referenced

longest
 Tag each page with the time of its last reference
 Alternatively, maintain a stack of page references

Replacement Policy

 First In First Out (FIFO) Algorithm
 Replace the page that has been in memory the

longest
 Simple to implement (a pointer that cycles all

frames)

Replacement Policy

 Clock algorithm
 Add a use bit to each frame: whenever a page is

referenced its use bit is set
 Like FIFO, a page pointer cycles frames to find a

frame whose use bit is 0
 While scanning frames, set the use bit to 0

Replacement Policy (Clock)

Replacement Policy
 Clock algorithm with modify bit

 Each frame falls into
 Not accessed, not modified (u=0, m=0)
 Accessed, not modified (u=1, m=0)
 Not accessed, modified (u=0, m=1)
 Accessed, modified (u=1, m=1)

 Step 1: starting from the current position, try to
find a frame with (u=0, m=0)

 Step 2: from the current position try to find a
frame with (u=0, m=1). During this scan set u of
encountered frames to 0

 Step 3: Repeat step 1 and step 2 if necessary

Replacement Policy (Clock with modify bit)

Replacement Policy: Comparison

Replacement Policy

 Page buffering
 Similar to FIFO, but victim frames are moved to

one of frame pools: free or modified frame pools
 Their entries in the page table are removed
 If a frame in the pools is accessed, only the page table

is updated without reading the frame from disk

 When a pool is full, swap some frames out to disk
 Modified frames can be swapped out to the disk

together considering the seek time and the rotational
delay

Resident Set Management

 Resident set of a process
 The portion of a process that is actually in main

memory at any time

 Resident set size
 Smaller the size

More processes can reside in main memory
More page fault

 After a certain point, adding more pages to a
particular process will have no noticeable effects

Resident Set Size
 Fixed-allocation policy

 Give a process a fixed number of frames
 On a page fault, one of the frames of the process

needs to be replaced

 Variable-allocation policy
 # of frames allocated to a process will vary over time
 More frames will be given to processes experiencing a

high page fault rates
 Frames will be taken from processes with

exceptionally low page fault rates

Replacement Scope

 Local replacement policy
 Find a victim frame among the frames of the

process that caused the page fault

 Global replacement policy
 Consider all unlocked pages in main memory

Fixed Allocation, Local Scope

 OS must choose one of the frames of the
process for the replacement

 Decide the amount of frames to give to a
process ahead of time
 Too small allocation: high page fault rate
 Too much allocation: low degree of

multiprogramming

Variable Allocation, Global Scope

 Replacement algorithm
 Typically, OS maintains a list of free frames
 On page fault, a free frame is added to the

resident set of the process causing the fault
 When no free frame is available, select a frame

from any processes

Variable Allocation, Local Scope

 Strategy
 When a new process is loaded, allocate to it a

certain number of frames
 Victim page is selected from among the resident

set of the process that caused the fault
 From time to time, reevaluate the allocation and

expand or shrink the allocation to improve overall
performance

Variable Allocation, Local Scope
 Working set

 W(t,): the set of pages referenced during (t-, t]
 t: virtual time representing the memory reference

count of a process

 Working set is a non-decreasing function of the
window size
 W(t,) W(t, + 1)

 The bound of the working set size
 1 ≤ | W(t,) | ≤ min(, N), where the entire process is

held in N pages
at most 1 page per
time window

Working Set Example

Working Set
 For many programs, periods of relative stable working set

sizes alternate with periods of rapid changes

Variable Allocation, Local Scope

 Working set strategy
 Monitor the working set of each process
 Periodically remove from the resident set of a process

those pages not in the working set (like LRU)
 A process may execute only if its working set is in

main memory

 Problems
 The past does not always predict the future
 Computing the working set of processes is impractical
 Optimal value of is unknown

Variable Allocation, Local Scope
 Page Fault Frequency (PFF) algorithm

 When a page fault occurs, OS records its virtual time
 If the elapsed time since the last page fault is less than

a threshold F, add a frame to the resident set of the
process

 Otherwise, discard all frames whose use bit is 0 and
shrink the resident set size accordingly

 Problems with PFF
 Does not perform well during transition periods (shift

to a new locality) resident set size grows

Variable Allocation, Local Scope

 Variable-interval sampled working set (VSWS)
 When accessing a frame, set its use bit
 Any faulted pages are added to the resident set
 At each sampling time

 Scan the frames in the resident set and discard the
frames whose use bit is not set

 Clear the use bit of the remaining frames

Variable Allocation, Local Scope
 Variable-interval sampled working set (VSWS)

 Parameters
 M: the minimum duration of the sampling interval
 L: the maximum duration of the sampling interval
 Q: the number of page faults allowed to occur between

sampling instances
 E: the virtual time since the last sampling time

 Suspend the process and scan the use bit
 If Q page faults occur before L → when E reaches M
 Otherwise → when E reaches L

Load Control

 Load control
 Determines the number of processes that will reside in

main memory

 Too few processes
 All processes can be blocked
 Processor utilization will be low

 Too many processes
 Thrashing: page fault will

occur frequently
 Processor utilization will be low

