
CSE 306 Operating Systems
Virtual Memory

YoungMin Kwon



Memory Management

 Every programmer’s ideal memory
 Private
 Infinitely large
 Infinitely fast
 Nonvolatile

 However, those memory are expensive
 Solution: memory hierarchy
 OS: abstract the hierarchy into a useful model and 

manage the abstraction



No Memory Abstraction

 Every program sees the physical memory
 mov ax, 1000; load ax with the contents of 

physical memory address 1000

 Only one process might be running at a time

Three simple ways of organizing memory



No Memory Abstraction:
Running multiple processes together

 Static relocation
 Loading: add offset to all memory references

 Swapping
 Save and load entire processes to/from disk 
 A way to run multiple processes



No Memory Abstraction:
Running multiple processes together

This code will not 
work
Static relocation: 
add 16384 to all 
addresses
references



Memory Abstraction: Address Space

 Address space
 The set of addresses that a process can use to 

address memory
 E.g.: 000-0000 to 999-9999 for telephone numbers,

0.0.0.0 to 255.255.255.255 for IPV4 addresses, …
 Issue: how to give each process its own address 

space

 Abstraction
 Process: abstraction for CPU
 Address space: abstraction for memory



Memory Abstraction: Address Space

 Base and Limit registers
 Base register: where a program is loaded
 Limit register: length of the loaded program

 Whenever the CPU accesses the memory
 The base register is added to the address
 The address is checked with the limit register



Memory Abstraction: Address Space

 Base and Limit registers
provide
 Relocation
 Protection



Memory Abstraction: Address Space

 Swapping
 When there are more processes than the memory can 

hold
 Loading a process in its entirety into memory, running 

it for a while, and store it into disk



Memory Abstraction: Address Space
 If a process’s data area grows

 E.g. Heap, Stack
 Reserve extra memory when swap in/out



Hardware and Control Structures

 Two characteristics of paging and 
segmentation
 All memory access within a process are logical 

addresses
 A process may be broken up into pieces and they 

need not be contiguous in main memory

 It is not necessary that all of the pages or all of
the segments of a process be in main memory



Hardware and Control Structures

 Partially loaded processes:
to access instructions or data which are not in 
main memory
 An interrupt occurs indicating a memory access 

fault
 OS puts the interrupted process in a blocked state
 OS issues a disk I/O
 When the disk I/O is finished, an interrupt is issued
 OS places the process back to the Ready state



Hardware and Control Structures

 With partially loaded processes
 More processes may be maintained in main 

memory
 A process may be larger than all of main memory
 Because of the locality, loading the entire process

in main memory will be wasteful
 Time will be saved during swap in and swap out



Virtual Memory by Paging

 Each process has a page table

 Page table entry
 Frame number of the page
 Present bit (P): indicates whether the page is in main 

memory or not
 Modify bit (M): indicates whether the page has been 

modified since it was loaded



Page Table Structure

 Address translation
 Virtual address (page #, offset)  Physical address 

(frame #, offset)

 A register (PTBR) points to the page table in 
memory

 The page # is used as an index into the page table
 The physical address comprises the frame # from 

the page table and the offset



Paging: Address Translation



Multi-level Page Table

 Issue: page table size is proportional to that of 
the virtual memory
 Solution: multi-level page table or inverted page table

 Example: page table size can be large
 231 (2 GB) VM, 29 (512 B) page size => 222 page table 

entries

 Store page tables in virtual memory rather than 
in physical memory
 Page the page table



Two-Level Page Table
 Example

 232 (4 GB) VM, 212 (4 KB) page size  220 pages
 Assuming 4 byte for each PTE, page table size is 222 (4 

MB) that will be stored in 210 pages
 The page table can be mapped by a root page table of 

212 (4KB) in main memory



Two-Level Page Table: Address Translation



Inverted Page Table

 Inverted page table (not per process, but global)
 Indexed by frame number (not by page number)
 Table is searched (using hash) for the entries having 

the page number and the process id

 Page table entries
 Page number: page # of virtual memory 
 Process identifier: page # alone is not unique
 Chain pointer: to resolve the hash collision issue
 Control bits: valid, referenced, modified, protection…



Inverted Page Table



Translation Lookaside Buffer (TLB)

 Every virtual memory reference can cause two 
physical memory accesses
 To fetch the page table entry
 To fetch the desired data

 Translation Lookaside Buffer (TLB)
 Cache for page table entries
 Associative mapping using a page number



TLB: Associative Mapping



Translation Lookaside Buffer (TLB)





TLB and Cache



Page Size

 Factors to consider
 Internal fragmentation:

 The larger the page, the more the amount of internal 
fragmentation

 Secondary memory:
 With seek time, rotational delay,

disks favor a larger page size

 Page fault rate



Page Size

 Page fault rate
 Figure (a): smaller pages have better locality
 Figure (a): a page large enough to hold the entire process

causes no page fault
 Figure (b): given a fixed page size, page fault rate decreases 

with the number of pages allocated to a process



Virtual Memory by Segmentation

 Segments
 Visible to programmers
 Dynamic size
 Virtual address (segment #, offset)



Segmentation

 Advantages
 Simplifies the handling of growing data structure
 Allows programs to be altered and recompiled 

without requiring entire set of programs to be 
relinked and reloaded

 Provides a sharing mechanism among processes
 Provides a protection mechanism



Segmentation: Address Translation



Combined Paging and Segmentation



Address Translation in x86



Address Translation in x86



Segmentation in Linux

 All processes running in User mode 
 Use the same pair of segments for instructions and data
 User code segment, user data segment

 All processes running in Kernel mode 
 Use the same pair of segments for instructions and data
 Kernel code segment, kernel data segment


