CSE 306 Operating Systems
Virtual Memory

YoungMin Kwon

Memory Management

" Every programmer’s ideal memory
= Private
" |nfinitely large
" |nfinitely fast
= Nonvolatile

" However, those memory are expensive
= Solution: memory hierarchy

= OS: abstract the hierarchy into a useful model and
manage the abstraction

@Koream

No Memory Abstraction

" Every program sees the physical memory

" mov ax, 1000; load ax with the contents of
physical memory address 1000

" Only one process might be running at a time

Three simple ways of organizing memory

T .. -
Operating ~ Device
system in drivers in ROM

ROM

User
program

User
program

User
program

Operating Operating
system in system in
RAM RAM

(@)

(c)

No Memory Abstraction:
Running multiple processes together

= Static relocation

" Loading: add offset to all memory references

= Swapping
= Save and load entire processes to/from disk
= A way to run multiple processes

(a) A 16-KB program.

No Memory Abstraction:

(b) Another 16-KB program.

(¢) The two programs loaded consecutively
INto Memory.

ADD

MOV

JMP 24

(a)

16380

28
24
20
16
12

CMP

JMP 28

(b)

Running multiple

16380

28
24
20
16
12

0

32764

CMP

16412

16408

16404

16400

16396

16392

16388

JMP 28

16384

Orocesses together

0

ADD

28

MOV

24

JMP 24

20
16
12

(c)

This code will not
work

Static relocation:
add 16384 to all
addresses
references

@ Rores

—

Memory Abstraction: Address Space

= Address space

" The set of addresses that a process can use to
address memory

= E.g.: 000-0000 to 999-9999 for telephone numbers,
0.0.0.0 to 255.255.255.255 for IPV4 addresses, ...

" |ssue: how to give each process its own address
space

= Abstraction
" Process: abstraction for CPU
" Address space: abstraction for memory

Memory Abstraction: Address Space

= Base and Limit registers
= Base register: where a program is loaded
" Limit register: length of the loaded program

" Whenever the CPU accesses the memory
" The base register is added to the address
" The address is checked with the limit register

@ Korea '

Memory Abstraction: Address Space

16384

= Base and Limit registers 1
p rOVi d e Limit register

= Relocation
® Protection

0

| 32764

CMP

16412

16408

16404

16400

16396

16392

16384

16388

-

/

Base register

Code Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

.
G‘D‘O‘Y) BASE (16-23)

BASE(24-31)

BASE(0-15) LIMIT'(0-15)

313029 28 27 26 25 24 3 22120 191817161514 13121110 9 8 7 6 5 4 3 2 10

JMP 28

16384

16380

ADD

MOV

JMP 24

Memory Abstraction: Address Space

= Swapping

= When there are more processes than the memory can
hold

" Loading a process in its entirety into memory, running
it for a while, and store it into disk

Time —>
% % 7 W) W) Wz Wz
/ / C G G C C
7
// B B B B %/
7 > 7 A
// D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a) (b) (c) (d) (e) (f) (9) @
Korea

Memory Abstraction: Address Space

" |f 3 process’s data area grows

= E.g. Heap, Stack
" Reserve extra memory when swap in/out

B-Stack
r Room for growth -~ e)
t \ » Room for growth
\ B-Data
B > Actually in use
B-Program
7777 D%
7. 2
A-Stack
r Room for growth ~ p-————- 1 3
t L » Room for growth
A-Data
A > Actually in use
A-Program
Operating Operating
system system

(a) (b) @K‘.’f‘?f‘w

Hardware and Control Structures

" Two characteristics of paging and
segmentation

= All memory access within a process are logical
addresses

= A process may be broken up into pieces and they
need not be contiguous in main memory

" |t is not necessary that all of the pages or all of
the segments of a process be in main memory

@ Korea '

Hardware and Control Structures

= Partially loaded processes:
to access instructions or data which are not in
main memory

= An interrupt occurs indicating a memory access
fault

= OS puts the interrupted process in a blocked state
= OSissues a disk I/O

= When the disk |/O is finished, an interrupt is issued
= OS places the process back to the Ready state

@ Korea '

Hardware and Control Structures

= With partially loaded processes

" More processes may be maintained in main
memory

" A process may be larger than all of main memory

" Because of the locality, loading the entire process
in main memory will be wasteful

" Time will be saved during swap in and swap out

Virtual Memory by Paging

" Each process has a page table

= Page table entry
" Frame number of the page

= Present bit (P): indicates whether the page is in main
memory or not

= Modify bit (M): indicates whether the page has been
modified since it was loaded

Virtual address

Page number

Offset

Page table entry

P

M

Other control bits

Frame number

@ Korea '

Page Table Structure

= Address translation

" Virtual address (page #, offset) — Physical address
(frame #, offset)

= Aregister (PTBR) points to the page table in
memory

" The page # is used as an index into the page table

" The physical address comprises the frame # from
the page table and the offset

@ Korea)

Paging: Address Translation

Virtual address

Page #

Offset

n bits

Register

Page table ptr

Program

TR L L L T I L T N I

Page table

Physical address l

Frame #

Offset

A

| Frame #

Paging mechanism

m bits

()I'I'scli

Page
frame

4

Main memory

@K_orea

Multi-level Page Table

" |ssue: page table size is proportional to that of
the virtual memory

= Solution: multi-level page table or inverted page table

= Example: page table size can be large

= 231(2 GB) VM, 2° (512 B) page size => 2?2 page table
entries

= Store page tables in virtual memory rather than
in physical memory

= Page the page table

@ Korea)

Two-Level Page Table

= Example
= 232(4 GB) VM, 2% (4 KB) page size — 2?° pages
= Assuming 4 byte for each PTE, page table size is 2%? (4
VIB) that will be stored in 2'° pages

"= The page table can be mapped by a root page table of
212 (4KB) in main memory

4-Kbyte root

page table <
1r\

4-Mbyte user
page table

4-Gbyte user 4’
address space e @Knrea

Two-Level Page Table: Address Translation

Virtual address

10 bits

10 bits | 12 bits

l

Frame #

Offset

1

——————— —— ————— v ——— — — — -

Root page
table ptr

Program

Root page table
(contains 1024 PTEs)

A

Paging mechanism

4-Kbyte page
table (contains
1024 PTEs)

@

Page
frame

Main memory

@ Rores

Inverted Page Table

" |nverted page table (not per process, but global)
" |ndexed by frame number (not by page number)

= Table is searched (using hash) for the entries having
the page number and the process id

= Page table entries
" Page number: page # of virtual memory
" Process identifier: page # alone is not unique
" Chain pointer: to resolve the hash collision issue
= Control bits: valid, referenced, modified, protection...

@ Korea '

Inverted Page Table

Virtual address

Page # | Offset
Control
n bits bits
Process
Hash m bits Page # ID Chain
function 0
> i
J
Y
gm _ 4 Frame #| Offset
Inverted page table m bits
(one entry for each Real address

physical memory frame)

@ Rores

—

Translation Lookaside Buffer (TLB)

" Every virtual memory reference can cause two
physical memory accesses

" To fetch the page table entry
= To fetch the desired data

" Translation Lookaside Buffer (TLB)

= Cache for page table entries
= Associative mapping using a page number

TLB: Associative Mapping

Virtual address Virtual address
Page # Offset Page # Offset
| 5 | 502 | | 5 | 502 |
| [
Page # PT entries
> 19
—-- 5 | |
e 37
— |4
— | 37 —— |
) | |
—_— 5 | 37
- 0)()
e ®
L] []
e °
: , .
. | 37 [502 | I | 37 [502 |
- Frame # Offset Translation lookaside buffer Frame # Offset
Real address Real address
Page table
(a) Direct mapping (b) Associative mapping

@K_orea

Translation Lookaside Buffer (TLB)

Main memory SEILSES:;)
Virtual address
Page # | Offset \‘/\ \/\
Translation
lookaside buffer
> |
- TLB hit _
e ()it’scli
5 - -
Load
Page table page
\/-\ -
TLB miss
Y Y
Frame #| Offset
Real address \/\

Page fault

@K_orea

Return to
faulted instruction

Page fault
handling routine

OS instructs CPU

Y

CPU checks the TLB

Page table
entry in
TLB?

Access page table
(=]

Page

No in main

A

to read the page
from disk

CPU activates
[/O hardware

Page transferred
from disk to
main memory

Memory Yes

memory?

Update TLB

y

CPU generates
physical address

1'UIV

No

Y

A J

Page tables
updated

Perform page
replacement

@ Rores

TLB and Cache

TLB operation Cache operation
PSS ssmscssccscmassomssaas I e |
I Virtual address : : Realndiress I
v Y : | Y :
l " » Fe » I . .
I Page # | Offset TLB I Tag | Remainder Hit ! Value
| I | Cache | >
| - -
| . | <
| TLB miss I | N :
: TLB C o |
| hit ' | :
l---l---- . S . . S S S — _------I ' ————————————————————————— —

\/\ Main

memory

Value
—

Page table \/\

Page Size

= Factors to consider

" [nternal fragmentation:

" The larger the page, the more the amount of internal
fragmentation

= Secondary memory:

= With seek time, rotational delay,
disks favor a larger page size

= Page fault rate

Page Size

A A
2 E
Q (b
g‘;; =4
- e
I
|
\
[L | o
o w N

P

(a) Pagesize (b) Number of page frames allocated

P = size ofentire process W — \wprkifigset size N = total number of pages in process

= Page fault rate
" Figure (a): smaller pages have|better locality
= Figure (a): a page large enough to hold the entire process
causes|/no page fault

= Figure (b): given a fixed page size, page fault rate decreases
with the number of pages allocated to a process

Virtual Memory by Segmentation

= Segments
= Visible to programmers
= Dynamic size
= Virtual address (segment #, offset)

Code Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

A
G‘DMV LIMIT
|

D
BASE(24-31) (16:19) 1‘ P
|

BASE(0-15) LIMITI(0%15)

TYPE

BASE (16-23)

1

313029 28 27 26 25 24 23 2221 2019181716 1514 13 121110 9 8 7 6 5 4 3 2 10

.

Segmentation

= Advantages

= Simplifies the handling of growing data structure

= Allows programs to be altered and recompiled

without requiring entire set of programs to be
relinked and reloaded

" Provides a sharing mechanism among processes
" Provides a protection mechanism

Segmentation: Address Translation

Virtual address

Seg #

Offset=d

Register

Seg Table Pur

Program

Physical address

Base +d

Segment table

| Length | Base

Segmentation mechanism

Segment

@

Main memory

@K_orea

Combined Paging and Segmentation

I I I
' I I |
Virtual address : : :
Seg # | Page # | Offset | | : Frame #| Offset :
I I 1 I
t t |
! : |)
T T |
I I I
: Seg table ptr : :
I . I |
| Segment I Page I
: table : table :
I I I .
| | 4; 1 |Offset i Ehis
I I ch | > s
| I & | frame
I I
T | |
I I |
I I |
I I |
I I I
I I I
I I | o
I I |
I I |
I I I
Program - Segmentation | Paging : Main memory
I - : |
| mechanism : mechanism |

@.K_orea

Address Translation in x86

Logical address) SEGMS;:'TTA e Linear address i Pﬁﬂ#ﬁ Physical address T’

gdt or Idt Linear Address
Descriptor ‘ ;
A
Code Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46
gdtror ldtr BASE(24:31) |G| DMG (16:19)
Y [Rs

BASE(0-15)

3098726548020 2019181716151413121110 9876543210

P
|

Selector offset
Index Tl : | I
Logical Address

Address Translation in x86

Linear Address
31 2 2 12 1M 0

DIRECTORY TABLE OFFSET

Page

O

A

Page Table

Page Directory X
c ’—. —>
+ o
a3

Segmentation in Linux

= All processes running in User mode
= Use the same pair of segments for instructions and data
= User code segment, user data segment

= All processes running in Kernel mode
= Use the same pair of segments for instructions and data
= Kernel code segment, kernel data segment

Segment Base G Limit S Type DPL D/B P
user code 0X00000000 1 oxfffff 1 10 3 1 1
user data 0X00000000 1 oxfffff 1 2 3 1 1
kernel code 0X00000000 1 oxfffff 1 10 0 1 1
kernel data 0Xx00000000 1 oxfffff 1 2 0 1 1

