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Memory Management

" Every programmer’s ideal memory
= Private
" |nfinitely large
" |nfinitely fast
= Nonvolatile

" However, those memory are expensive
= Solution: memory hierarchy

= OS: abstract the hierarchy into a useful model and
manage the abstraction
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No Memory Abstraction

" Every program sees the physical memory

" mov ax, 1000; load ax with the contents of
physical memory address 1000

" Only one process might be running at a time

Three simple ways of organizing memory
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No Memory Abstraction:
Running multiple processes together

= Static relocation

" Loading: add offset to all memory references

= Swapping
= Save and load entire processes to/from disk
= A way to run multiple processes



(a) A 16-KB program.

No Memory Abstraction:

(b) Another 16-KB program.

(¢) The two programs loaded consecutively
INto Memory.
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Memory Abstraction: Address Space

= Address space

" The set of addresses that a process can use to
address memory

= E.g.: 000-0000 to 999-9999 for telephone numbers,
0.0.0.0 to 255.255.255.255 for IPV4 addresses, ...

" |ssue: how to give each process its own address
space

= Abstraction
" Process: abstraction for CPU
" Address space: abstraction for memory



Memory Abstraction: Address Space

= Base and Limit registers
= Base register: where a program is loaded
" Limit register: length of the loaded program

" Whenever the CPU accesses the memory
" The base register is added to the address
" The address is checked with the limit register
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Memory Abstraction: Address Space
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Memory Abstraction: Address Space

= Swapping

= When there are more processes than the memory can
hold

" Loading a process in its entirety into memory, running
it for a while, and store it into disk
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Memory Abstraction: Address Space

" |f 3 process’s data area grows

= E.g. Heap, Stack
" Reserve extra memory when swap in/out
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Hardware and Control Structures

" Two characteristics of paging and
segmentation

= All memory access within a process are logical
addresses

= A process may be broken up into pieces and they
need not be contiguous in main memory

" |t is not necessary that all of the pages or all of
the segments of a process be in main memory
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Hardware and Control Structures

= Partially loaded processes:
to access instructions or data which are not in
main memory

= An interrupt occurs indicating a memory access
fault

= OS puts the interrupted process in a blocked state
= OSissues a disk I/O

= When the disk |/O is finished, an interrupt is issued
= OS places the process back to the Ready state
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Hardware and Control Structures

= With partially loaded processes

" More processes may be maintained in main
memory

" A process may be larger than all of main memory

" Because of the locality, loading the entire process
in main memory will be wasteful

" Time will be saved during swap in and swap out



Virtual Memory by Paging

" Each process has a page table

= Page table entry
" Frame number of the page

= Present bit (P): indicates whether the page is in main
memory or not

= Modify bit (M): indicates whether the page has been
modified since it was loaded

Virtual address

Page number

Offset

Page table entry

P

M

Other control bits

Frame number
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Page Table Structure

= Address translation

" Virtual address (page #, offset) — Physical address
(frame #, offset)

= Aregister (PTBR) points to the page table in
memory

" The page # is used as an index into the page table

" The physical address comprises the frame # from
the page table and the offset
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Paging: Address Translation
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Multi-level Page Table

" |ssue: page table size is proportional to that of
the virtual memory

= Solution: multi-level page table or inverted page table

= Example: page table size can be large

= 231(2 GB) VM, 2° (512 B) page size => 2?2 page table
entries

= Store page tables in virtual memory rather than
in physical memory

= Page the page table
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Two-Level Page Table

= Example
= 232(4 GB) VM, 2% (4 KB) page size — 2?° pages
= Assuming 4 byte for each PTE, page table size is 2%? (4
VIB) that will be stored in 2'° pages

"= The page table can be mapped by a root page table of
212 (4KB) in main memory

4-Kbyte root

page table <
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4-Mbyte user
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4-Gbyte user 4’
address space e @Knrea



Two-Level Page Table: Address Translation

Virtual address
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10 bits | 12 bits
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Inverted Page Table

" |nverted page table (not per process, but global)
" |ndexed by frame number (not by page number)

= Table is searched (using hash) for the entries having
the page number and the process id

= Page table entries
" Page number: page # of virtual memory
" Process identifier: page # alone is not unique
" Chain pointer: to resolve the hash collision issue
= Control bits: valid, referenced, modified, protection...
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Inverted Page Table

Virtual address

Page # | Offset
Control
n bits bits
Process
Hash m bits Page # ID Chain
function 0
> i
J
Y
gm _ 4 Frame #| Offset
Inverted page table m bits
(one entry for each Real address

physical memory frame)

@ Rores

—



Translation Lookaside Buffer (TLB)

" Every virtual memory reference can cause two
physical memory accesses

" To fetch the page table entry
= To fetch the desired data

" Translation Lookaside Buffer (TLB)

= Cache for page table entries
= Associative mapping using a page number



TLB: Associative Mapping
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Translation Lookaside Buffer (TLB)
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TLB and Cache

TLB operation Cache operation
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Page Size

= Factors to consider

" [nternal fragmentation:

" The larger the page, the more the amount of internal
fragmentation

= Secondary memory:

= With seek time, rotational delay,
disks favor a larger page size

= Page fault rate



Page Size
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P = size ofentire process W — \wprkifigset size N = total number of pages in process

= Page fault rate
" Figure (a): smaller pages have|better locality
= Figure (a): a page large enough to hold the entire process
causes|/no page fault

= Figure (b): given a fixed page size, page fault rate decreases
with the number of pages allocated to a process



Virtual Memory by Segmentation

= Segments
= Visible to programmers
= Dynamic size
= Virtual address (segment #, offset)

Code Segment Descriptor
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Segmentation

= Advantages

= Simplifies the handling of growing data structure

= Allows programs to be altered and recompiled

without requiring entire set of programs to be
relinked and reloaded

" Provides a sharing mechanism among processes
" Provides a protection mechanism



Segmentation: Address Translation

Virtual address
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Combined Paging and Segmentation
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Address Translation in x86
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Address Translation in x86
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Segmentation in Linux

= All processes running in User mode
= Use the same pair of segments for instructions and data
= User code segment, user data segment

= All processes running in Kernel mode
= Use the same pair of segments for instructions and data
= Kernel code segment, kernel data segment

Segment Base G Limit S Type DPL D/B P
user code 0X00000000 1 oxfffff 1 10 3 1 1
user data 0X00000000 1 oxfffff 1 2 3 1 1
kernel code 0X00000000 1 oxfffff 1 10 0 1 1
kernel data 0Xx00000000 1 oxfffff 1 2 0 1 1



