
CSE 306 Operating Systems
Virtual Memory

YoungMin Kwon

Memory Management

 Every programmer’s ideal memory
 Private
 Infinitely large
 Infinitely fast
 Nonvolatile

 However, those memory are expensive
 Solution: memory hierarchy
 OS: abstract the hierarchy into a useful model and

manage the abstraction

No Memory Abstraction

 Every program sees the physical memory
 mov ax, 1000; load ax with the contents of

physical memory address 1000

 Only one process might be running at a time

Three simple ways of organizing memory

No Memory Abstraction:
Running multiple processes together

 Static relocation
 Loading: add offset to all memory references

 Swapping
 Save and load entire processes to/from disk
 A way to run multiple processes

No Memory Abstraction:
Running multiple processes together

This code will not
work
Static relocation:
add 16384 to all
addresses
references

Memory Abstraction: Address Space

 Address space
 The set of addresses that a process can use to

address memory
 E.g.: 000-0000 to 999-9999 for telephone numbers,

0.0.0.0 to 255.255.255.255 for IPV4 addresses, …
 Issue: how to give each process its own address

space

 Abstraction
 Process: abstraction for CPU
 Address space: abstraction for memory

Memory Abstraction: Address Space

 Base and Limit registers
 Base register: where a program is loaded
 Limit register: length of the loaded program

 Whenever the CPU accesses the memory
 The base register is added to the address
 The address is checked with the limit register

Memory Abstraction: Address Space

 Base and Limit registers
provide
 Relocation
 Protection

Memory Abstraction: Address Space

 Swapping
 When there are more processes than the memory can

hold
 Loading a process in its entirety into memory, running

it for a while, and store it into disk

Memory Abstraction: Address Space
 If a process’s data area grows

 E.g. Heap, Stack
 Reserve extra memory when swap in/out

Hardware and Control Structures

 Two characteristics of paging and
segmentation
 All memory access within a process are logical

addresses
 A process may be broken up into pieces and they

need not be contiguous in main memory

 It is not necessary that all of the pages or all of
the segments of a process be in main memory

Hardware and Control Structures

 Partially loaded processes:
to access instructions or data which are not in
main memory
 An interrupt occurs indicating a memory access

fault
 OS puts the interrupted process in a blocked state
 OS issues a disk I/O
 When the disk I/O is finished, an interrupt is issued
 OS places the process back to the Ready state

Hardware and Control Structures

 With partially loaded processes
 More processes may be maintained in main

memory
 A process may be larger than all of main memory
 Because of the locality, loading the entire process

in main memory will be wasteful
 Time will be saved during swap in and swap out

Virtual Memory by Paging

 Each process has a page table

 Page table entry
 Frame number of the page
 Present bit (P): indicates whether the page is in main

memory or not
 Modify bit (M): indicates whether the page has been

modified since it was loaded

Page Table Structure

 Address translation
 Virtual address (page #, offset) Physical address

(frame #, offset)

 A register (PTBR) points to the page table in
memory

 The page # is used as an index into the page table
 The physical address comprises the frame # from

the page table and the offset

Paging: Address Translation

Multi-level Page Table

 Issue: page table size is proportional to that of
the virtual memory
 Solution: multi-level page table or inverted page table

 Example: page table size can be large
 231 (2 GB) VM, 29 (512 B) page size => 222 page table

entries

 Store page tables in virtual memory rather than
in physical memory
 Page the page table

Two-Level Page Table
 Example

 232 (4 GB) VM, 212 (4 KB) page size 220 pages
 Assuming 4 byte for each PTE, page table size is 222 (4

MB) that will be stored in 210 pages
 The page table can be mapped by a root page table of

212 (4KB) in main memory

Two-Level Page Table: Address Translation

Inverted Page Table

 Inverted page table (not per process, but global)
 Indexed by frame number (not by page number)
 Table is searched (using hash) for the entries having

the page number and the process id

 Page table entries
 Page number: page # of virtual memory
 Process identifier: page # alone is not unique
 Chain pointer: to resolve the hash collision issue
 Control bits: valid, referenced, modified, protection…

Inverted Page Table

Translation Lookaside Buffer (TLB)

 Every virtual memory reference can cause two
physical memory accesses
 To fetch the page table entry
 To fetch the desired data

 Translation Lookaside Buffer (TLB)
 Cache for page table entries
 Associative mapping using a page number

TLB: Associative Mapping

Translation Lookaside Buffer (TLB)

TLB and Cache

Page Size

 Factors to consider
 Internal fragmentation:

 The larger the page, the more the amount of internal
fragmentation

 Secondary memory:
 With seek time, rotational delay,

disks favor a larger page size

 Page fault rate

Page Size

 Page fault rate
 Figure (a): smaller pages have better locality
 Figure (a): a page large enough to hold the entire process

causes no page fault
 Figure (b): given a fixed page size, page fault rate decreases

with the number of pages allocated to a process

Virtual Memory by Segmentation

 Segments
 Visible to programmers
 Dynamic size
 Virtual address (segment #, offset)

Segmentation

 Advantages
 Simplifies the handling of growing data structure
 Allows programs to be altered and recompiled

without requiring entire set of programs to be
relinked and reloaded

 Provides a sharing mechanism among processes
 Provides a protection mechanism

Segmentation: Address Translation

Combined Paging and Segmentation

Address Translation in x86

Address Translation in x86

Segmentation in Linux

 All processes running in User mode
 Use the same pair of segments for instructions and data
 User code segment, user data segment

 All processes running in Kernel mode
 Use the same pair of segments for instructions and data
 Kernel code segment, kernel data segment

