CSE 306 Operating Systems
Memory Management

Memory Management

" |n uniprogramming environment

= Main memory is divided into OS and another
program

" |n multiprogramming environment

" The user part of memory is further divided for
multiple processes

= Memory management

" The task of dynamically subdividing memory
performed by OS

@Koreah)

Memory Management Requirements

= Relocation

= Protection

= Sharing

" Logical organization
= Physical organization

Memory Management Requirements

= Relocation

= We cannot know where a program will be placed
ahead of time

" Programmers cannot know which other programs will
be resident in main memory when their programs are
being executed

= We must allow that programs may be moved in
main memory

= When a program is swapped back in, it may be placed
in a memory region different than when it was
swapped out

@ Korea)

Memory Management Requirements

[]
. Re I O Ca t I O n Process control >
information Entry point -
to program

Process control block

Branch

OS needs to manage
] Location Of PCB Program instruction

. StaCk Increasing

address
values

= Program entry point T

to data

= Memory references for e
branch operations and
d ata Current top >

of stack

Stack

.

Memory Management Requirements

=" Protection

"= Normally, a user process should not access OS’s
program nor data

= Without an agreement, a process should not
access other processes” memory area

= Memory protection should be provided by HW
rather than OS

= |t will be prohibitively time consuming to check each
memory access

@ Korea)

Memory Management Requirements

= Sharing

= Allow several processes to access the same
portion of memory

" Processes executing the same program can share
the same code rather than having their own copy

= Collaborating processes can share the same data
structure

Memory Management Requirements

" Logical organization

= Most main memory in a computer system is organized
as a linear (one-dimensional) address space

= Most programs are organized into modules
= Some of which are unmodifiable (read only, execution only)
= Some of which contain modifiable data

= Desirable system capabilities

= Memory references among modules are resolved at
runtime

= Different degrees of protection to different modules
(read only, execution only)

= Modules can be shared among processes

@Koreah)

Memory Management Requirements

" Physical organization

= Computer memory is organized into at least two
levels

= Main memory: fast, expensive, volatile

= Secondary memory: slower, cheaper, nonvolatile

" Moving information between the two levels of
memory is a system responsibility

Operating system
&M

8M

8M

8M

8M

8M

8M

8M

Memory Partitioning

" Fixed partitioning
= OS occupies some fixed portion of
main memory

" The rest of main memory is available
for multiple processes

" One simple scheme is to partition
the available memory into fixed
regions

Fixed Partitioning

" Equal size fixed partitioning

= Any process whose size is less than or equal to the
partition size can be loaded

" |ssues

= A process may be too big to fit into a partition
= Overlays: only a portion of a program is loaded in memory

* Modules loaded at runtime need to use the process’
partition (possibly with overlay)

= Memory utilization is low

" |nternal fragmentation: no matter how small a process is,
it takes an entire partition

= Unequal size partitioning can lessen the issue

@Koream

Fixed Partitioning

Operating system
8M

. = Unequal size fixed partitioning

" = Assign a process to the smallest partition

oM that can hold the process

= Minimize internal fragmentation
= Larger partitions may remain unused

SM

8M

" Disadvantages

12M = # of partitions specified at system generation
time limits the # of active processes in the

system

= Small jobs will not utilize partition space
efficiently

16M

@Koream

Fixed Partitioning

Operating
syste

Operating
syste

T T :

TTTTTTT et

T T et

TITTTT Ty

TTTTTTT et

= Left: processes are assigned to the smallest partition that
can hold the process

= Right: processes can be assigned to the smallest available

partition that can hold the process

* When processes are swapped in, find the smallest available

partition again

@ Korea)

Dynamic Partitioning

" The partitions are of variable length and
number

= When a process in loaded, it is allocated exactly as
much memory as it requires

Operating : Operating Operating Operating
system M system system system
Process 1 | } 20M Process 1 |} 20M Process 1 | } 20M
{
L S6M Process 2 | 14M Process 2 | » 14M
> 36M
L 99M Process 3 | ¢ I8M

} 4M @Kpfe?.,.m.k

Dynamic Partitioning

Operating Operating Operating Operating
system system system system
Process 2 14M
Process | | } 20M Process 1 20M 20M
6M
Process 4 8SM Process 4 SM Process 4 SM
> 14M
6M 6M oM
Process 3 | » 18M Process 3 18M Process 3 18M Process 3 18M
}4aM 4M 4M 4M

= External fragmentation

= Memory that is external to all partitions becomes
increasingly fragmented with time

= Compaction: shift the processes so that they are
contiguous and all free blocks are merged together

e

Dynamic Partitioning

= Placement algorithm

= Best-fit: choose the block that is closest in size to the
request
= Memory can be easily fragmented

= First-fit: find the first available block from the
beginning
= Leave large free blocks at the end of memory

» Next-fit: find the available block from the last
placement

= Large free block of memory that usually appear at the end of
memory is quickly broken up into small fragments

Dynamic Partitioning

8M 8M
12M L g 12M
First fit
22M \—+
6M
Best fit
Last 18M
allocated M
block (14K)
SM 8SM
oM oM
I:l Allocated block
[] Freeblock
14M I:] Possible new allocation 14M
Next fit
36M
20M

Before and after allocating a 16 VIB block @

¥
Buddy System f@f‘[\

L4
al L2

= Buddy system

= Memory blocks are available in 2 words LS K< U,
where
= 2L : smallest size of block
= 2U: [argest size of block (entire memory)

Buddy System

" Allocation algorithm

= |If the request size sis 2" <s < 2Y, :
the entire block is allocated

= Otherwise, split the block into two 2Y* size blocks. If
the request size s is 2Y7 < s < 2" the request is
allocated to one of the blocks

= Otherwise, split one of the block, and continue until
block size becomes 2"

= Whenever two buddies are unallocated, they are
coalesced into a single block

.

I-Mbyte block
Request 100K
Request 240K
Request 64K
Request 256K
Release B
Release A
Request 75K
Release C
Release E

Release D

Buddy System

IM
A = 128K 128K 256K 512K
A = 128K 128K B = 256K 512K
A = 128K [C=64K| 64K B = 256K 512K
A = 128K [C=64K| 64K B = 256K D = 256K 256K
A = 128K [C=64K| 64K 256K D = 256K 256K
128K [c=64K| 64K 256K D = 256K 256K
E = 128K [C=64K| 64K 256K D = 256K 256K
E = 128K 128K 256K D = 256K 256K
512K D = 256K 256K
IM

@ Rores

Buddy System

IM
512K
256K
128K

64K

¥

| A= 128K [c= kK[64K | 256K D = 256K | 256K

O Leal node for O Leal node for @ Non-leal node
allocated block

unallocated block

Tree representation of the buddy system

Relocation

= Relocation

= A process may be swapped in to a partition different
than the one when it was swapped out

= After compaction processes are shifted while they are
In memory

= Addresses

" Logical address: reference to a memory location
independent of the physical memory

= Relative address: a logical address where addresses
are relative to a known place (a register)

= Physical address: absolute location in memory

@Koreah)

Relocation

Relative address

Process image in
main memory

Process control block
e s ot A A G S =h
- Adder Program
Absolute
4 address
Bounds register > Comparator == === Y
: | i
I I :
: y g Data
I Interrupt to
: operating system
R — -
Stack
= HW support for relocation
= Value in the base register is added to the relative address

= Resulting address is compared to the value in the bounds

register
@ Rores .

Paging
= Paging

= Main memory is divided into small fixed size chunks
= Each process is also divided into the same size chunks

= Chunks of a process, known as pages, could be
assigned to available chunks of memory, known as
frames.

= Page table
= A table of base registers for each page of a process

" |ogical address consists of a page number and an
offset within the page

= Address translation: (page number, offset) — (frame
number, offset)

@Koreah)

Frame
number

10
11
12
13
14

(a) Fifteen available frames

I
12
13
14

Main memory

Main memory

A0

A.l

A2

_b\\\\

NN

DUNEEANN

7/

N

/8777,

/8777

(d) Load process C

Main memory

A

Al

A2

A3

(b) Load process A

Main memory

A0

A.l

A2

A3

N7

/////s’f///

7
/. ///.C’}'////

(e) Swap out B

Main memory

A0

Al

A2

A3
ANNNNNE O NN

NNCTANN

NANEANNN

(¢) Load process B

Main memory

A0

A.l

A2

W19 | =

Process A
page table

7

8
9

10

Process C
page table

13
14

Free frame
list

0 —

|
2 |

Process B
page table

o[4
I
2 6
311
4l 12

Process D
page table

A3

D.0

ID.1

N2

/80777

N7

/877,

"////f.////

D.4

(f) Load process D

@ Rores

Paging

= Address translation example

= 16 bit address with the page size of 1KB
" Page number: the first 6 bits
= Offset: the last 10 bits
= OxO5DE (0000 0101 1101 1110)

16-bit logical address

o

_O-bit page # 10-bit offset

e

[O]O|O|O[O|1l0[l|1|1[0]1|l]1[1|5]

|
0(000101
11000110

21011001
Process

page table

Y
lolofof1f1{olofafa[1]of1[1[1]1]0]

16-bit physical address @Korea

Segmentation

= Segmentation
= Segments are unequal-size block of memory
" Logical addresses consist of two parts

= Asegment number and an offset
" A program may occupy more than one partition
and the partitions need not be contiguous

* No internal fragmentation

= Less external fragmentation: a process is broken up into
a number of smaller pieces

@Koreah)

Segmentation

= Address translation example

= 16 bit logical address with the first 4 bits for the
segment number and the last 12 bits for the offset

= Ox12F0 (0001 0010 1111 0000)

16-bit logical address
4-bit segment # | 2-bit offset

L
—

l0lolof1]olo]a]ofa]1]a[2]o]o]0]0]
Length Base l

01001011101110[/0000010000000000
- | Oil;J.OOlLllOOOJ.OOOOOOOJ.OOOOO—)-T

Process segment table

[0jof1jojofo]1]1[ofofof1]0[0[0]O]

16-bit physical address @
- Koregmm

Relative address = 1502
10000010111011110)

User process
(2,700 bytes)

-~

A

~

(a) Partitioning

Logical Addresses

Logical address =
Page# = 1, Offset = 478

100000101 11011110|

-]
o)

£0 %
e
o 1)

Q
=0 <
501

il

<]
TR

-~

(b) Paging (page size =

-

478

\'_-V—}

Internal

fragmentation

—

K)

Logical address =
o

Segment# = 1, Offset = 752

10001[00101 1110000

-

Segment 0
750 bytes
A

Segment 1
1,950 bytes

“

(¢) Segmentation

@ Rores

—

Module |

Module 2

Module n

i

a1l

|

Linking and Loading

—- | _inker

Dynamic

library

Load
module

Loader

Run-time
linker/
loader

> {

/\/

Main memory

Absolute and Relocatable Load

Symbolic Absolute Relative Main memory
addresses addresses addresses addresses
PROGRAM 1024 [pPROGRAM O PROGRAM * [PROGRAM
JUMP X JUMP 1424 JUMP 400 JUMP 400
- 1424 S 400 — 400 + x e
LOADY LOAD 2224 LOAD 1200 LOAD 1200
[DATA | | DATA | DATA | | DATA |
Y - 2224 o 1200 - 1200 + x -

(d) Relative load module
loaded into main memory
starting at location x

(a) Object module (b) Absolute load module (c) Relative load module

@ Rores

Linking

= Each object module may contain references to
symbols in other modules

= Such references are expressed symbolically in an
unlinked object module

" Linking
= After combining the same sections, an address is
assigned to the symbols in the modules

= The symbol references in other modules are resolved

@ Korea '

External
reference to
module B

Module A

CALL B;

Return

Module B

CALL C;

Return

Module C

Return

(a) Object modules

Linking

> Length L

> Length M

> Length N

Relative

addresses

0

L=]

L+M=—1
L+M

LtM+N—=I

Module A

JSR"L"

Return
Module B -

JSR"L - M"

Return

Module C ==

Return

(b) Load module

@Korﬂ

