
CSE 306 Operating Systems
Memory Management

YoungMin Kwon



Memory Management
 In uniprogramming environment

 Main memory is divided into OS and another 
program

 In multiprogramming environment
 The user part of memory is further divided for 

multiple processes

 Memory management
 The task of dynamically subdividing memory 

performed by OS



Memory Management Requirements

 Relocation
 Protection
 Sharing
 Logical organization
 Physical organization



Memory Management Requirements

 Relocation
 We cannot know where a program will be placed 

ahead of time 
 Programmers cannot know which other programs will 

be resident in main memory when their programs are 
being executed

 We must allow that programs may be moved in 
main memory
 When a program is swapped back in, it may be placed 

in a memory region different than when it was 
swapped out



Memory Management Requirements

 Relocation
OS needs to manage
 Location of PCB
 Stack
 Program entry point
 Memory references for 

branch operations and 
data



Memory Management Requirements

 Protection
 Normally, a user process should not access OS’s

program nor data
 Without an agreement, a process should not 

access other processes’ memory area

 Memory protection should be provided by HW
rather than OS
 It will be prohibitively time consuming to check each 

memory access



Memory Management Requirements

 Sharing
 Allow several processes to access the same 

portion of memory

 Processes executing the same program can share 
the same code rather than having their own copy

 Collaborating processes can share the same data
structure



Memory Management Requirements

 Logical organization
 Most main memory in a computer system is organized 

as a linear (one-dimensional) address space
 Most programs are organized into modules

 Some of which are unmodifiable (read only, execution only)
 Some of which contain modifiable data

 Desirable system capabilities
 Memory references among modules are resolved at 

runtime
 Different degrees of protection to different modules

(read only, execution only)
 Modules can be shared among processes



Memory Management Requirements

 Physical organization
 Computer memory is organized into at least two 

levels
 Main memory: fast, expensive, volatile
 Secondary memory: slower, cheaper, nonvolatile

 Moving information between the two levels of 
memory is a system responsibility



Memory Partitioning

 Fixed partitioning
 OS occupies some fixed portion of 

main memory
 The rest of main memory is available 

for multiple processes
 One simple scheme is to partition 

the available memory into fixed 
regions



Fixed Partitioning
 Equal size fixed partitioning

 Any process whose size is less than or equal to the 
partition size can be loaded

 Issues
 A process may be too big to fit into a partition

 Overlays: only a portion of a program is loaded in memory 
 Modules loaded at runtime need to use the process’ 

partition (possibly with overlay)
 Memory utilization is low

 Internal fragmentation: no matter how small a process is, 
it takes an entire partition

 Unequal size partitioning can lessen the issue



Fixed Partitioning

 Unequal size fixed partitioning
 Assign a process to the smallest partition 

that can hold the process
 Minimize internal fragmentation
 Larger partitions may remain unused

 Disadvantages
 # of partitions specified at system generation 

time limits the # of active processes in the 
system

 Small jobs will not utilize partition space 
efficiently



Fixed Partitioning

 Left: processes are assigned to the smallest partition that 
can hold the process

 Right: processes can be assigned to the smallest available 
partition that can hold the process
 When processes are swapped in, find the smallest available 

partition again



Dynamic Partitioning
 The partitions are of variable length and 

number
 When a process in loaded, it is allocated exactly as 

much memory as it requires



Dynamic Partitioning

 External fragmentation
 Memory that is external to all partitions becomes 

increasingly fragmented with time
 Compaction: shift the processes so that they are 

contiguous and all free blocks are merged together



Dynamic Partitioning
 Placement algorithm

 Best-fit: choose the block that is closest in size to the 
request
 Memory can be easily fragmented

 First-fit: find the first available block from the 
beginning
 Leave large free blocks at the end of memory

 Next-fit: find the available block from the last 
placement
 Large free block of memory that usually appear at the end of 

memory is quickly broken up into small fragments



Dynamic Partitioning

Before and after allocating a 16 MB block



Buddy System

 Buddy system
 Memory blocks are available in 2k words L ≤ K ≤ U, 

where
 2L : smallest size of block
 2U: largest size of block (entire memory)



Buddy System

 Allocation algorithm
 If the request size s is 2U-1 < s ≤ 2U,

the entire block is allocated

 Otherwise, split the block into two 2U-1 size blocks. If 
the request size s is 2U-2 < s ≤ 2U-1 the request is 
allocated to one of the blocks

 Otherwise, split one of the block, and continue until 
block size becomes 2L

 Whenever two buddies are unallocated, they are 
coalesced into a single block



Buddy System



Buddy System

Tree representation of the buddy system



Relocation

 Relocation
 A process may be swapped in to a partition different 

than the one when it was swapped out
 After compaction processes are shifted while they are 

in memory

 Addresses
 Logical address: reference to a memory location 

independent of the physical memory
 Relative address: a logical address where addresses 

are relative to a known place (a register)
 Physical address: absolute location in memory



Relocation

 HW support for relocation
 Value in the base register is added to the relative address
 Resulting address is compared to the value in the bounds 

register



Paging
 Paging

 Main memory is divided into small fixed size chunks
 Each process is also divided into the same size chunks
 Chunks of a process, known as pages, could be 

assigned to available chunks of memory, known as 
frames.

 Page table
 A table of base registers for each page of a process
 Logical address consists of a page number and an 

offset within the page
 Address translation: (page number, offset)  (frame 

number, offset)





Paging
 Address translation example

 16 bit address with the page size of 1KB
 Page number: the first 6 bits
 Offset: the last 10 bits
 0x05DE (0000 0101 1101 1110)



Segmentation

 Segmentation
 Segments are unequal-size block of memory
 Logical addresses consist of two parts

 A segment number and an offset

 A program may occupy more than one partition 
and the partitions need not be contiguous
 No internal fragmentation
 Less external fragmentation: a process is broken up into 

a number of smaller pieces



Segmentation
 Address translation example

 16 bit logical address with the first 4 bits for the 
segment number and the last 12 bits for the offset

 0x12F0 (0001 0010 1111 0000)



Logical Addresses



Linking and Loading



Absolute and Relocatable Load



Linking

 Each object module may contain references to 
symbols in other modules
 Such references are expressed symbolically in an 

unlinked object module

 Linking
 After combining the same sections, an address is 

assigned to the symbols in the modules
 The symbol references in other modules are resolved



Linking


