
CSE 306 Operating Systems
Memory Management

YoungMin Kwon

Memory Management
 In uniprogramming environment

 Main memory is divided into OS and another
program

 In multiprogramming environment
 The user part of memory is further divided for

multiple processes

 Memory management
 The task of dynamically subdividing memory

performed by OS

Memory Management Requirements

 Relocation
 Protection
 Sharing
 Logical organization
 Physical organization

Memory Management Requirements

 Relocation
 We cannot know where a program will be placed

ahead of time
 Programmers cannot know which other programs will

be resident in main memory when their programs are
being executed

 We must allow that programs may be moved in
main memory
 When a program is swapped back in, it may be placed

in a memory region different than when it was
swapped out

Memory Management Requirements

 Relocation
OS needs to manage
 Location of PCB
 Stack
 Program entry point
 Memory references for

branch operations and
data

Memory Management Requirements

 Protection
 Normally, a user process should not access OS’s

program nor data
 Without an agreement, a process should not

access other processes’ memory area

 Memory protection should be provided by HW
rather than OS
 It will be prohibitively time consuming to check each

memory access

Memory Management Requirements

 Sharing
 Allow several processes to access the same

portion of memory

 Processes executing the same program can share
the same code rather than having their own copy

 Collaborating processes can share the same data
structure

Memory Management Requirements

 Logical organization
 Most main memory in a computer system is organized

as a linear (one-dimensional) address space
 Most programs are organized into modules

 Some of which are unmodifiable (read only, execution only)
 Some of which contain modifiable data

 Desirable system capabilities
 Memory references among modules are resolved at

runtime
 Different degrees of protection to different modules

(read only, execution only)
 Modules can be shared among processes

Memory Management Requirements

 Physical organization
 Computer memory is organized into at least two

levels
 Main memory: fast, expensive, volatile
 Secondary memory: slower, cheaper, nonvolatile

 Moving information between the two levels of
memory is a system responsibility

Memory Partitioning

 Fixed partitioning
 OS occupies some fixed portion of

main memory
 The rest of main memory is available

for multiple processes
 One simple scheme is to partition

the available memory into fixed
regions

Fixed Partitioning
 Equal size fixed partitioning

 Any process whose size is less than or equal to the
partition size can be loaded

 Issues
 A process may be too big to fit into a partition

 Overlays: only a portion of a program is loaded in memory
 Modules loaded at runtime need to use the process’

partition (possibly with overlay)
 Memory utilization is low

 Internal fragmentation: no matter how small a process is,
it takes an entire partition

 Unequal size partitioning can lessen the issue

Fixed Partitioning

 Unequal size fixed partitioning
 Assign a process to the smallest partition

that can hold the process
 Minimize internal fragmentation
 Larger partitions may remain unused

 Disadvantages
 # of partitions specified at system generation

time limits the # of active processes in the
system

 Small jobs will not utilize partition space
efficiently

Fixed Partitioning

 Left: processes are assigned to the smallest partition that
can hold the process

 Right: processes can be assigned to the smallest available
partition that can hold the process
 When processes are swapped in, find the smallest available

partition again

Dynamic Partitioning
 The partitions are of variable length and

number
 When a process in loaded, it is allocated exactly as

much memory as it requires

Dynamic Partitioning

 External fragmentation
 Memory that is external to all partitions becomes

increasingly fragmented with time
 Compaction: shift the processes so that they are

contiguous and all free blocks are merged together

Dynamic Partitioning
 Placement algorithm

 Best-fit: choose the block that is closest in size to the
request
 Memory can be easily fragmented

 First-fit: find the first available block from the
beginning
 Leave large free blocks at the end of memory

 Next-fit: find the available block from the last
placement
 Large free block of memory that usually appear at the end of

memory is quickly broken up into small fragments

Dynamic Partitioning

Before and after allocating a 16 MB block

Buddy System

 Buddy system
 Memory blocks are available in 2k words L ≤ K ≤ U,

where
 2L : smallest size of block
 2U: largest size of block (entire memory)

Buddy System

 Allocation algorithm
 If the request size s is 2U-1 < s ≤ 2U,

the entire block is allocated

 Otherwise, split the block into two 2U-1 size blocks. If
the request size s is 2U-2 < s ≤ 2U-1 the request is
allocated to one of the blocks

 Otherwise, split one of the block, and continue until
block size becomes 2L

 Whenever two buddies are unallocated, they are
coalesced into a single block

Buddy System

Buddy System

Tree representation of the buddy system

Relocation

 Relocation
 A process may be swapped in to a partition different

than the one when it was swapped out
 After compaction processes are shifted while they are

in memory

 Addresses
 Logical address: reference to a memory location

independent of the physical memory
 Relative address: a logical address where addresses

are relative to a known place (a register)
 Physical address: absolute location in memory

Relocation

 HW support for relocation
 Value in the base register is added to the relative address
 Resulting address is compared to the value in the bounds

register

Paging
 Paging

 Main memory is divided into small fixed size chunks
 Each process is also divided into the same size chunks
 Chunks of a process, known as pages, could be

assigned to available chunks of memory, known as
frames.

 Page table
 A table of base registers for each page of a process
 Logical address consists of a page number and an

offset within the page
 Address translation: (page number, offset) (frame

number, offset)

Paging
 Address translation example

 16 bit address with the page size of 1KB
 Page number: the first 6 bits
 Offset: the last 10 bits
 0x05DE (0000 0101 1101 1110)

Segmentation

 Segmentation
 Segments are unequal-size block of memory
 Logical addresses consist of two parts

 A segment number and an offset

 A program may occupy more than one partition
and the partitions need not be contiguous
 No internal fragmentation
 Less external fragmentation: a process is broken up into

a number of smaller pieces

Segmentation
 Address translation example

 16 bit logical address with the first 4 bits for the
segment number and the last 12 bits for the offset

 0x12F0 (0001 0010 1111 0000)

Logical Addresses

Linking and Loading

Absolute and Relocatable Load

Linking

 Each object module may contain references to
symbols in other modules
 Such references are expressed symbolically in an

unlinked object module

 Linking
 After combining the same sections, an address is

assigned to the symbols in the modules
 The symbol references in other modules are resolved

Linking

