
CSE 306 Operating Systems
Scheduling

YoungMin Kwon

Types of Scheduling
 Long-term scheduling

 Decide whether to add new processes
to the pool of processes to be executed

 Medium-term scheduling
 Decide the number of processes that

are partially or fully in memory
(swapping function)

 Short-term scheduling
 Which available process will be

executed by the processor

Queueing Diagram for Scheduling

Long-Term Scheduling
 Decides the degree of multiprogramming

 Batch system
 When to take one or more additional processes based on

 Percentage of time each process is executing
 Fraction of time the processor is idle

 Which job to admit next
 Simple FCFS (First Come First Served)
 Based on Priority, Execution time, or I/O requirements

 Interactive programs
 Accept tasks from authorized users until the system is

saturated

Medium-Term Scheduling

 Swapping function
 Medium-term scheduling is a part of swapping

function

 Depends on the degree of multiprogramming

 Depends on memory requirements

Short-Term Scheduling

 Dispatcher
 Fine grained decision on which process runs next

 Short-term schedulers are invoked by
 Clock interrupts
 I/O interrupts
 System calls
 Signals (semaphores)

Short-term Scheduling Criteria
 User-oriented criteria

 Turnaround time: submission ~ completion,
 Response time: submission ~ response begins to show,
 Deadline: meeting the deadline
 Predictability: same job same amount of time, same

cost

 System oriented criteria
 Throughput: number of processes completed per time,
 Processor utilization: % of time the processor is busy,
 Fairness: processes should be treated the same, no

starvation,
 Enforcing priorities: favor the higher priority processes,
 Balancing resources: keep the resources busy

Use of Priorities

 Instead of a single ready queue, a set of queues
with different priorities is used

 Lower-priority processes may suffer starvation

Scheduling Policies

 First Come First Served (FCFS)

 Round Robin (RR)

 Shortest Process Next (SPN)

 Shortest Remaining Time (SRT)

 Highest Response Ratio Next (HRRN)

 Feedback (FB)

Scheduling Policies
 Selection function

 Which process in the ready queue is selected next
 Based on priority, resource requirements,

execution characteristics

 Execution characteristics
 w: time spent in system so far, waiting
 e: time spent in execution so far
 s: total service time required by the process (estimated

by the user)

Scheduling Policies
 Decision mode: how the selection function is

exercised
 Non-preemptive: once a process is in the Running

state, it continues to execute
 It terminates or
 It blocks itself for I/O or some OS service

 Preemptive: the current running process may be
interrupted and moved to the Ready state by OS
 When a new process arrives
 When an interrupt occurs
 Periodically by a clock interrupt

First Come First Served

 The process that has been in the ready queue
the longest is selected next

 Non-preemptive
 Favors long processes over short ones

 FCFS favors processor-bound processes over
I/O bound processes
 When a processor-bound process is running, all

I/O bound processes must wait

 When the currently running process leaves the
Running state, an I/O bound process runs quickly
and becomes blocked again

First Come First Served

Round Robin
 Time slicing

 On a periodic clock interrupt, tasks in the ready queue
are selected in FIFO manner

 Preemptive
 Unlike FCFS, short tasks do not suffer
 Scheduling overhead is large for a short quantum

 Favors processor-bound processes over I/O-bound
processes
 I/O-bound processes may not fully use a time quantum
 Processor-bound processes will fully use a time

quantum

Round Robin

 Time quantum should be slightly larger than
the time required for a typical interaction
 Left: time quantum > typical interaction
 Right: time quantum < typical interaction

Virtual Round Robin

 Auxiliary queue
 Has higher priority than Ready

queue

 When unblocked from an I/O
operation, processes are moved
to Auxiliary queue

 After dispatched from the
Auxiliary queue, a process runs
for its remaining time quantum
 time quantum – time ran before

being blocked

 Solves the unfairness between processor-bound and I/O
bound processes

Shortest Process Next

 The process with the shortest expected
processing time is selected next

 Non-preemptive

 Reduce the bias in favor of long processes in FCFS

 Possibility of starvation
 If there is a steady supply of short processes, long

processes will starve

Shortest Process Next
 Estimating the processing time (average)

 Ti: processor execution time for the ith instance of this process
 Si: predicted value for the ith instance

 To avoid the remembering all Ti’s

 To give greater weight to more recent instances
(exponential averaging)

Shortest Remaining Time
 When a new process, with shorter remaining

time, becomes ready, the scheduler preempt
the current process
 Preemptive version of SPN

 SRT does not have the bias in favor of long
processes found in FCFS

 Unlike RR, no additional interrupts are generated

 Elapsed service times must be recorded

Highest Response Ratio Next

 Ratio to use

 R: response ratio
 w: time spent waiting for the processor
 s: expected service time

 Shorter jobs are favored

 Aging without service increases the ratio and
longer jobs will eventually be competitive

 Non-preemptive

s: service time

w + s: turn around time

Feedback

 Another way to establish a preference for
shorter jobs

 Use time spent instead of time remaining

 Works when no information about relative length
of processes can be handled

 Preemptive

Feedback

 Multilevel feedback
 When a process is first admitted, it is placed in

RQ0
 After its first preemption, it goes to R1
 On each subsequent preemption, it moves to a

lower-priority queue

Feedback

 Starvation can occur if new jobs are frequently
entering the system

 Reduce the preemption time for higher-priority
queues

 Promote a process to a higher-priority queue after
it waits for a service for a certain duration

Process Scheduling Example

Fair-Share Scheduling

 In a multiuser system
 individual jobs can be multi-processes or multi-

threaded
 From the user’s perspective, the concern is

 not how a particular process performs,
 but how the set of processes perform

 Fair-share scheduling
 Make schedule decisions based on process sets
 The concept can be extended to group of users
 Give fewer resources who have had more than their

fair share, and more to those who had less than their
fair share

Fair-Share Scheduling
 For a process j in group k at epoch i

 CPUj(i): measure of processor utilization by process j
through interval i

 GCPUk(i): measure of processor utilization of group k
through interval i

 Pj(i): priority of process j (lower value means higher
priority)

 Basej: base priority of process j
 Wk: weight of group k:

Fair-Share Scheduling

 Example
 Process A is in one group,

Process B and C are in a second group
 Weights Wk are 0.5 for each group
 Base priority is 60
 Processor utilization

 The processor is interrupted 60 times per sec
 The processor usage fields of the current process and

the corresponding group are incremented
 Once per a second, priorities are recalculated

Base = 60, W = 0.5

