
CSE 306 Operating Systems
Scheduling

YoungMin Kwon



Types of Scheduling
 Long-term scheduling

 Decide whether to add new processes 
to the pool of processes to be executed

 Medium-term scheduling
 Decide the number of processes that 

are partially or fully in memory 
(swapping function)

 Short-term scheduling
 Which available process will be 

executed by the processor



Queueing Diagram for Scheduling



Long-Term Scheduling
 Decides the degree of multiprogramming

 Batch system
 When to take one or more additional processes based on

 Percentage of time each process is executing
 Fraction of time the processor is idle

 Which job to admit next
 Simple FCFS (First Come First Served)
 Based on Priority, Execution time, or I/O requirements

 Interactive programs
 Accept tasks from authorized users until the system is 

saturated



Medium-Term Scheduling

 Swapping function
 Medium-term scheduling is a part of swapping 

function

 Depends on the degree of multiprogramming

 Depends on memory requirements



Short-Term Scheduling

 Dispatcher
 Fine grained decision on which process runs next

 Short-term schedulers are invoked by
 Clock interrupts
 I/O interrupts
 System calls
 Signals (semaphores)



Short-term Scheduling Criteria
 User-oriented criteria

 Turnaround time: submission ~ completion,
 Response time: submission ~ response begins to show, 
 Deadline: meeting the deadline
 Predictability: same job  same amount of time, same 

cost

 System oriented criteria
 Throughput: number of processes completed per time,
 Processor utilization: % of time the processor is busy,
 Fairness: processes should be treated the same, no 

starvation,
 Enforcing priorities: favor the higher priority processes,
 Balancing resources: keep the resources busy



Use of Priorities

 Instead of a single ready queue, a set of queues 
with different priorities is used

 Lower-priority processes may suffer starvation



Scheduling Policies

 First Come First Served (FCFS)

 Round Robin (RR)

 Shortest Process Next (SPN)

 Shortest Remaining Time (SRT)

 Highest Response Ratio Next (HRRN)

 Feedback (FB)



Scheduling Policies
 Selection function

 Which process in the ready queue is selected next
 Based on priority, resource requirements, 

execution characteristics

 Execution characteristics
 w: time spent in system so far, waiting
 e: time spent in execution so far
 s: total service time required by the process (estimated 

by the user)



Scheduling Policies
 Decision mode: how the selection function is 

exercised
 Non-preemptive: once a process is in the Running 

state, it continues to execute
 It terminates or 
 It blocks itself for I/O or some OS service

 Preemptive: the current running process may be 
interrupted and moved to the Ready state by OS
 When a new process arrives
 When an interrupt occurs
 Periodically by a clock interrupt



First Come First Served

 The process that has been in the ready queue 
the longest is selected next

 Non-preemptive
 Favors long processes over short ones



 FCFS favors processor-bound processes over
I/O bound processes
 When a processor-bound process is running, all 

I/O bound processes must wait

 When the currently running process leaves the 
Running state, an I/O bound process runs quickly 
and becomes blocked again

First Come First Served



Round Robin
 Time slicing

 On a periodic clock interrupt, tasks in the ready queue 
are selected in FIFO manner

 Preemptive
 Unlike FCFS, short tasks do not suffer
 Scheduling overhead is large for a short quantum

 Favors processor-bound processes over I/O-bound 
processes
 I/O-bound processes may not fully use a time quantum
 Processor-bound processes will fully use a time 

quantum



Round Robin

 Time quantum should be slightly larger than 
the time required for a typical interaction
 Left: time quantum > typical interaction
 Right: time quantum < typical interaction



Virtual Round Robin

 Auxiliary queue
 Has higher priority than Ready 

queue

 When unblocked from an I/O 
operation, processes are moved 
to Auxiliary queue

 After dispatched from the 
Auxiliary queue, a process runs 
for its remaining time quantum
 time quantum – time ran before 

being blocked

 Solves the unfairness between processor-bound and I/O 
bound processes



Shortest Process Next

 The process with the shortest expected 
processing time is selected next

 Non-preemptive

 Reduce the bias in favor of long processes in FCFS

 Possibility of starvation
 If there is a steady supply of short processes, long 

processes will starve



Shortest Process Next
 Estimating the processing time (average)

 Ti: processor execution time for the ith instance of this process
 Si: predicted value for the ith instance

 To avoid the remembering all Ti’s

 To give greater weight to more recent instances 
(exponential averaging)



Shortest Remaining Time
 When a new process, with shorter remaining 

time, becomes ready, the scheduler preempt 
the current process
 Preemptive version of SPN

 SRT does not have the bias in favor of long 
processes found in FCFS

 Unlike RR, no additional interrupts are generated

 Elapsed service times must be recorded



Highest Response Ratio Next

 Ratio to use

 R: response ratio
 w: time spent waiting for the processor
 s: expected service time

 Shorter jobs are favored

 Aging without service increases the ratio and 
longer jobs will eventually be competitive

 Non-preemptive

s: service time

w + s: turn around time



Feedback

 Another way to establish a preference for 
shorter jobs

 Use time spent instead of time remaining

 Works when no information about relative length 
of processes can be handled

 Preemptive



Feedback

 Multilevel feedback
 When a process is first admitted, it is placed in 

RQ0
 After its first preemption, it goes to R1
 On each subsequent preemption, it moves to a 

lower-priority queue



Feedback

 Starvation can occur if new jobs are frequently 
entering the system

 Reduce the preemption time for higher-priority 
queues

 Promote a process to a higher-priority queue after
it waits for a service for a certain duration





Process Scheduling Example





Fair-Share Scheduling

 In a multiuser system
 individual jobs can be multi-processes or multi-

threaded
 From the user’s perspective, the concern is 

 not how a particular process performs,
 but how the set of processes perform

 Fair-share scheduling
 Make schedule decisions based on process sets
 The concept can be extended to group of users
 Give fewer resources who have had more than their 

fair share, and more to those who had less than their 
fair share



Fair-Share Scheduling
 For a process j in group k at epoch i

 CPUj(i): measure of processor utilization by process j 
through interval i

 GCPUk(i): measure of processor utilization of group k 
through interval i

 Pj(i): priority of process j (lower value means higher 
priority)

 Basej: base priority of process j
 Wk: weight of group k:



Fair-Share Scheduling

 Example
 Process A is in one group,

Process B and C are in a second group
 Weights Wk are 0.5 for each group
 Base priority is 60
 Processor utilization

 The processor is interrupted 60 times per sec
 The processor usage fields of the current process and 

the corresponding group are incremented
 Once per a second, priorities are recalculated



Base = 60, W = 0.5


