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Deadlock

 A set of processes are deadlocked if
 Each process in the set is blocked and
 Waiting for an event that can be triggered only 

from another process in the set



Deadlock
 Illustration of deadlock

 a, b, c, d are resources and 1, 2, 3, 4 are processes



Joint Progress Diagram

 Illustrates the progress of two processes 
competing for resources
 The progress-path moves only from left to right or 

from bottom to top

 Each process needs exclusive use of both 
resources
 Exclusive use forms prohibited regions in the 

diagram

 Deadlock occurs if the progress-path cannot 
move



Joint Progress Diagram

 An example of deadlock
 Two processes P and Q acquire 

and release resources A and B
in the following order





Joint Progress Diagram

 An example of NO deadlock
 Two processes P and Q acquire and release 

resources A and B in the following order





Resources

 Reusable resources
 Resources that can be used by a process at a time and 

not depleted by that use

 Processor, I/O channels, memory, device, and data 
structures (files, DB, semaphores)

 Deadlock example (200 KB of available memory)



Resources
 Consumable resources

 Resources that can be created and destroyed

 Interrupts, signals, messages, data in I/O buffers

 Deadlock example
 Each process tries to receive a message from the other



Resource Allocation Graph
 Resource allocation graph

 Directed graph that depicts the state of the resources 
and processes
 Nodes are processes and resources

 Resource request: the directed edge from the requesting 
process to the resource

 Granted resource: the directed edge from the resource
to the process



Resource Allocation Graph

Circular wait: deadlock No deadlock:
Ra and Rb are available



Resource Allocation Graph

Circular wait: deadlock



Resource Allocation Graph

Deadlock sequence



Resource Allocation Graph

Deadlock free
sequence



4 Conditions for Deadlock

 Mutual exclusion
 Only one process may use a resource at a time

 Hold and wait
 Processes make requests while holding resources

 No preemption
 Granted resources cannot be forcefully removed

 Circular wait
 A closed chain exists in the resource allocation graph



4 Strategies for Deadlock

 Ignore the problem
 If you ignore it, it will ignore you

 Deadlock prevention

 Deadlock avoidance

 Deadlock detection and recovery



The Ostrich Algorithm

 The simplest approach
 Stick your head in the sand and pretend 

there is no problem

 Mathematicians’ reaction to this 
problem
 Unacceptable and deadlock must be 

prevented at all costs

 Engineers’ reaction to this problem
 How often the problem is expected?
 How often the system crashes?
 How serious the deadlock is?



Deadlock Prevention

 Design a system such that the possibility of 
deadlock is statically excluded
 Preventing one of the 4 deadlock conditions

 Mutual exclusion
 In general, this condition cannot be disallowed



Deadlock Prevention

 Hold and wait
 Require processes to make request for all 

necessary resources together

 Inefficiency of hold and wait
 Processes may need to wait long when it can make 

progresses with some of the resources
 Resources may be held for a long time without being 

used



Deadlock Prevention

 No preemption
 Make processes release all resources held if a 

further request is denied

 Alternatively, resources held by a process are 
released if they are requested by other processes
 Works when no two processes have the same priority

 Need to save and restore process states



Deadlock Prevention

 Circular wait
 Define a linear order (≻) of resources
 If a process has a resource of order R, it can make 

requests only for resources of order R’ such that 
R’ ≻ R

 Like the hold and wait prevention, circular-wait-
prevention strategy can be inefficient
 Unnecessarily slowing down processes and denying 

resource access



Deadlock Avoidance

 More concurrency than the prevention strategies
 Allows the first three conditions
 Dynamically decide whether the current resource 

request, if granted, will potentially lead to a deadlock

 Two approaches
 Do not start a process if its demand may lead to a 

deadlock
 Do not grant a resource request if it may lead to a 

deadlock (Banker’s algorithm)



Process Initiation Denial
 Consider a system of n processes and m types of resources

 Two vectors Resource, aVailable, and two matrices Claim, and 
Allocation



Process Initiation Denial

 Relations among Resource, aVailable, Claim, 
and Allocation

 Deadlock avoidance policy



Banker’s Algorithm
 A system state comprises

 Resource, aVailable, Claim, and Allocation

 Safe state
 There is a sequence of resource allocations that can 

make all processes run to complete (without 
deadlock)

 A process i can run to completion if

 Unsafe state
 A state that is not safe



Banker’s Algorithm (Safe State?)

 Decide whether this initial state is safe
 P2 can run to complete



Banker’s Algorithm (Safe State?)

 P2 is complete; fill the 2nd row of C and A with 0
 Update V with the resources held by P2
 Now, P1 can run to complete



Banker’s Algorithm (Safe State?)

 P1 is complete; fill the 1st row of C and A with 0
 Update V with the resources held by P1
 P3 can run to complete



Banker’s Algorithm (Safe State?)

 P3 is complete; fill the 3rd row of C and A with 0
 Update V with the resources held by P3
 P4 can run to complete
 As all processes can run to complete the initial state is safe



Banker’s Algorithm

 Banker’s algorithm
 Grant resources only when the resulting state will 

be safe



Banker’s Algorithm Example 1

 Given the state, if P2 requests for 1 R1 and 1 R3



Banker’s Algorithm Example 1

 Above is the resulting state if the request is granted
 The resulting state is the same as the initial state of the 

previous example
 Grant the resources because the resulting state is safe



Banker’s Algorithm Example 2

 Given the state, if P1 requests for 1 R1 and 1 R3



Banker’s Algorithm Example 2

 Above is the resulting state if the request is 
granted
 This state is unsafe as no process can run to complete
 Thus, the request should not be granted



Deadlock Detection

 Deadlock detection strategy
 Do not limit resource requests

 Periodically check if there is a deadlock
 Assuming that the current requests are all that are 

needed for processes to complete
 Check if the current requests can be satisfied by the 

available resources

 If a deadlock is detected recover from it



Deadlock Detection Algorithm

 Mark each process that has zero row vector in A
 A process not holding a resource cannot be a part of deadlocked 

processes

 Initialize a temporary vector W (copy V to W)
 Find an unmarked process i such that the ith row of a request 

matrix Q is less than or equal to W
 reQest matrix: Qij is the amount of resources of type j requested 

by process i
 Terminate the algorithm if no such process is found

 If such a row is found
 Mark process i
 Add ith row of A to W and go to the 3rd step

 Any unmarked processes are deadlocked processes



Deadlock Detection Example
 Mark P4 because P4 has no allocated 

resources

 Copy V = [0 0 0 0 1] to W

 Because the 3rd row of Q is less than or 
equal to W
 Mark P3 and update W as
 W = W + [0 0 0 1 0]

= [0 0 0 1 1]

 Terminate because no other unmarked 
process has a row in Q that is less than 
or equal to W

 P1 and P2 are unmarked and they are 
deadlocked



Recovery
 Abort all deadlocked processes

 One of the most common approaches

 Rollback all deadlocked processes to some 
previously defined checkpoint and restart

 Successively abort deadlocked processes until 
deadlock is removed

 Successively rollback processes to a checkpoint 
and restart until deadlock is removed



// Dining Philosophers Problem
#define N 5
typedef struct {

int id;
sem_t *left;
sem_t *right;

} Philosopher;

void *thread_func(void *vargp) {
Philosopher *p = (Philosopher*)vargp;
int i;
for(i = 0; i < 100; i++) {

fprintf(stderr, "%d: thinking\n", p->id);
fprintf(stderr, "%d: getting left\n", p->id);
sem_wait(p->left);
fprintf(stderr, "%d: getting right\n", p->id);
sem_wait(p->right);
fprintf(stderr, "%d: eating\n", p->id);
fprintf(stderr, "%d: putting left\n", p->id);
sem_post(p->left);
fprintf(stderr, "%d: putting right\n", p->id);
sem_post(p->right);

}
}



int main() {
pthread_t tid[N];
sem_t stick[N];
Philosopher p[N];
int i;
for(i = 0; i < N; i++) {

sem_init(stick+i, 0/*pshared*/, 1/*value*/);
p[i].id = i;
p[i].left  = &stick[i % N];
p[i].right = &stick[(i+1) % N];

}

for(i = 0; i < N; i++)
pthread_create(&tid[i], NULL, thread_func, &p[i]);

for(i = 0; i < N; i++)
pthread_join(tid[i], NULL);

for(i = 0; i < N; i++)
sem_destroy (stick+i);

return 0;
}

//in gdb, try info threads, thread #, bt


