
CSE 306 Operating Systems
Deadlock

YoungMin Kwon

Deadlock

 A set of processes are deadlocked if
 Each process in the set is blocked and
 Waiting for an event that can be triggered only

from another process in the set

Deadlock
 Illustration of deadlock

 a, b, c, d are resources and 1, 2, 3, 4 are processes

Joint Progress Diagram

 Illustrates the progress of two processes
competing for resources
 The progress-path moves only from left to right or

from bottom to top

 Each process needs exclusive use of both
resources
 Exclusive use forms prohibited regions in the

diagram

 Deadlock occurs if the progress-path cannot
move

Joint Progress Diagram

 An example of deadlock
 Two processes P and Q acquire

and release resources A and B
in the following order

Joint Progress Diagram

 An example of NO deadlock
 Two processes P and Q acquire and release

resources A and B in the following order

Resources

 Reusable resources
 Resources that can be used by a process at a time and

not depleted by that use

 Processor, I/O channels, memory, device, and data
structures (files, DB, semaphores)

 Deadlock example (200 KB of available memory)

Resources
 Consumable resources

 Resources that can be created and destroyed

 Interrupts, signals, messages, data in I/O buffers

 Deadlock example
 Each process tries to receive a message from the other

Resource Allocation Graph
 Resource allocation graph

 Directed graph that depicts the state of the resources
and processes
 Nodes are processes and resources

 Resource request: the directed edge from the requesting
process to the resource

 Granted resource: the directed edge from the resource
to the process

Resource Allocation Graph

Circular wait: deadlock No deadlock:
Ra and Rb are available

Resource Allocation Graph

Circular wait: deadlock

Resource Allocation Graph

Deadlock sequence

Resource Allocation Graph

Deadlock free
sequence

4 Conditions for Deadlock

 Mutual exclusion
 Only one process may use a resource at a time

 Hold and wait
 Processes make requests while holding resources

 No preemption
 Granted resources cannot be forcefully removed

 Circular wait
 A closed chain exists in the resource allocation graph

4 Strategies for Deadlock

 Ignore the problem
 If you ignore it, it will ignore you

 Deadlock prevention

 Deadlock avoidance

 Deadlock detection and recovery

The Ostrich Algorithm

 The simplest approach
 Stick your head in the sand and pretend

there is no problem

 Mathematicians’ reaction to this
problem
 Unacceptable and deadlock must be

prevented at all costs

 Engineers’ reaction to this problem
 How often the problem is expected?
 How often the system crashes?
 How serious the deadlock is?

Deadlock Prevention

 Design a system such that the possibility of
deadlock is statically excluded
 Preventing one of the 4 deadlock conditions

 Mutual exclusion
 In general, this condition cannot be disallowed

Deadlock Prevention

 Hold and wait
 Require processes to make request for all

necessary resources together

 Inefficiency of hold and wait
 Processes may need to wait long when it can make

progresses with some of the resources
 Resources may be held for a long time without being

used

Deadlock Prevention

 No preemption
 Make processes release all resources held if a

further request is denied

 Alternatively, resources held by a process are
released if they are requested by other processes
 Works when no two processes have the same priority

 Need to save and restore process states

Deadlock Prevention

 Circular wait
 Define a linear order (≻) of resources
 If a process has a resource of order R, it can make

requests only for resources of order R’ such that
R’ ≻ R

 Like the hold and wait prevention, circular-wait-
prevention strategy can be inefficient
 Unnecessarily slowing down processes and denying

resource access

Deadlock Avoidance

 More concurrency than the prevention strategies
 Allows the first three conditions
 Dynamically decide whether the current resource

request, if granted, will potentially lead to a deadlock

 Two approaches
 Do not start a process if its demand may lead to a

deadlock
 Do not grant a resource request if it may lead to a

deadlock (Banker’s algorithm)

Process Initiation Denial
 Consider a system of n processes and m types of resources

 Two vectors Resource, aVailable, and two matrices Claim, and
Allocation

Process Initiation Denial

 Relations among Resource, aVailable, Claim,
and Allocation

 Deadlock avoidance policy

Banker’s Algorithm
 A system state comprises

 Resource, aVailable, Claim, and Allocation

 Safe state
 There is a sequence of resource allocations that can

make all processes run to complete (without
deadlock)

 A process i can run to completion if

 Unsafe state
 A state that is not safe

Banker’s Algorithm (Safe State?)

 Decide whether this initial state is safe
 P2 can run to complete

Banker’s Algorithm (Safe State?)

 P2 is complete; fill the 2nd row of C and A with 0
 Update V with the resources held by P2
 Now, P1 can run to complete

Banker’s Algorithm (Safe State?)

 P1 is complete; fill the 1st row of C and A with 0
 Update V with the resources held by P1
 P3 can run to complete

Banker’s Algorithm (Safe State?)

 P3 is complete; fill the 3rd row of C and A with 0
 Update V with the resources held by P3
 P4 can run to complete
 As all processes can run to complete the initial state is safe

Banker’s Algorithm

 Banker’s algorithm
 Grant resources only when the resulting state will

be safe

Banker’s Algorithm Example 1

 Given the state, if P2 requests for 1 R1 and 1 R3

Banker’s Algorithm Example 1

 Above is the resulting state if the request is granted
 The resulting state is the same as the initial state of the

previous example
 Grant the resources because the resulting state is safe

Banker’s Algorithm Example 2

 Given the state, if P1 requests for 1 R1 and 1 R3

Banker’s Algorithm Example 2

 Above is the resulting state if the request is
granted
 This state is unsafe as no process can run to complete
 Thus, the request should not be granted

Deadlock Detection

 Deadlock detection strategy
 Do not limit resource requests

 Periodically check if there is a deadlock
 Assuming that the current requests are all that are

needed for processes to complete
 Check if the current requests can be satisfied by the

available resources

 If a deadlock is detected recover from it

Deadlock Detection Algorithm

 Mark each process that has zero row vector in A
 A process not holding a resource cannot be a part of deadlocked

processes

 Initialize a temporary vector W (copy V to W)
 Find an unmarked process i such that the ith row of a request

matrix Q is less than or equal to W
 reQest matrix: Qij is the amount of resources of type j requested

by process i
 Terminate the algorithm if no such process is found

 If such a row is found
 Mark process i
 Add ith row of A to W and go to the 3rd step

 Any unmarked processes are deadlocked processes

Deadlock Detection Example
 Mark P4 because P4 has no allocated

resources

 Copy V = [0 0 0 0 1] to W

 Because the 3rd row of Q is less than or
equal to W
 Mark P3 and update W as
 W = W + [0 0 0 1 0]

= [0 0 0 1 1]

 Terminate because no other unmarked
process has a row in Q that is less than
or equal to W

 P1 and P2 are unmarked and they are
deadlocked

Recovery
 Abort all deadlocked processes

 One of the most common approaches

 Rollback all deadlocked processes to some
previously defined checkpoint and restart

 Successively abort deadlocked processes until
deadlock is removed

 Successively rollback processes to a checkpoint
and restart until deadlock is removed

// Dining Philosophers Problem
#define N 5
typedef struct {

int id;
sem_t *left;
sem_t *right;

} Philosopher;

void *thread_func(void *vargp) {
Philosopher *p = (Philosopher*)vargp;
int i;
for(i = 0; i < 100; i++) {

fprintf(stderr, "%d: thinking\n", p->id);
fprintf(stderr, "%d: getting left\n", p->id);
sem_wait(p->left);
fprintf(stderr, "%d: getting right\n", p->id);
sem_wait(p->right);
fprintf(stderr, "%d: eating\n", p->id);
fprintf(stderr, "%d: putting left\n", p->id);
sem_post(p->left);
fprintf(stderr, "%d: putting right\n", p->id);
sem_post(p->right);

}
}

int main() {
pthread_t tid[N];
sem_t stick[N];
Philosopher p[N];
int i;
for(i = 0; i < N; i++) {

sem_init(stick+i, 0/*pshared*/, 1/*value*/);
p[i].id = i;
p[i].left = &stick[i % N];
p[i].right = &stick[(i+1) % N];

}

for(i = 0; i < N; i++)
pthread_create(&tid[i], NULL, thread_func, &p[i]);

for(i = 0; i < N; i++)
pthread_join(tid[i], NULL);

for(i = 0; i < N; i++)
sem_destroy (stick+i);

return 0;
}

//in gdb, try info threads, thread #, bt

