CSE 306 Operating Systems
Deadlock

YoungMin Kwon

Deadlock

" A set of processes are deadlocked if
= Each process in the set is blocked and

= Waiting for an event that can be triggered only
from another process in the set

Deadlock

= |[lustration of deadlock
" 3,b,c,dareresourcesand 1, 2, 3, 4 are processes

Joint Progress Diagram

" ||lustrates the progress of two processes
competing for resources

" The progress-path moves only from left to right or
from bottom to top

" Each process needs exclusive use of both
resources

= Exclusive use forms prohibited regions in the
diagram

" Deadlock occurs if the progress-path cannot
move
e

Joint Progress Diagram

= An example of deadlock

= Two processes P and Q acquire
and release resources A and B

in the following order

Process P
® 0 0

Get A

® ® 0

Get B

® 00
Release A
® @ 0

Release B

Process Q
® 00

Get B

® o0
Get A

® 00
Release B
® 00

Release A

semaphore resource_1;
semaphore resource_2;

void process_A(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

void process_B(void) {
down(&resource_2);
down(&resource_1);
use_both_resources();
up(&resource_1);
up(&resource_2);

@ Korea)

Progress of Q A

3
j! .
) Release
A 7
Pand Q
& want A
Required i . Release <
B \
. Get A
B 3
Required _3._Deadlock Pand Q
inevitable want B \
AN\
~ GetB o
4
6
-
-
) Get A Get B Release A Release B pryoress
/A = Both P and Q want resource A N . p of P
k\ = Both P and Q want resource B A_
Required * v 7
= Deadlock-inevitable region B Required
=P = Possible progress path of P and Q.

Horizontal portion of path indicates P 1s executing and Q 1s waiting.
Vertical portion of path indicates Q is executing and P is waiting.

Joint Progress Diagram

= An example of NO deadlock

= Two processes P and O acquire and release
resources A and B in the following order

Process P
® o0

Get A

e e 0
Release A

Get B
e 00

Release B

Process Q
® 00

Get B

o 00

Get A

Release B
® 00

Release A

@ Korea '

Progress of Q A

Al 2 32
Release
A
4
A
Required j - RLII;"“ / “dllll](lj S \\\
X Get A //// X Pand Q §)
B < N want B 3 N
Required N
" Get B N\ i
6
=
-
GetA Release A GetB Release B Progress
. v J s J of P

A Required B Required

o

Resources

= Reusable resources

= Resources that can be used by a process at a time and
not depleted by that use

= Processor, I/0O channels, memory, device, and data
structures (files, DB, semaphores)

= Deadlock example (200 KB of available memory)

P1 P2
Request 80 Kbytes; Request 70 Kbytes;
Request 60 Kbytes; Request 80 Kbytes:

@Koream

Resources

= Consumable resources
= Resources that can be created and destroyed

= Interrupts, signals, messages, data in /O buffers

= Deadlock example
= Each process tries to receive a message from the other

P1 P2
Receive (P2); Receive (P1);
Send (P2, M1); Send (P1, M2);

@Koreah)

Resource Allocation Graph

= Resource allocation graph

= Directed graph that depicts the state of the resources
and processes
= Nodes are processes and resources

= Resource request: the directed edge from the requesting
process to the resource

‘- ‘ Requests
Plas > @® Ra

" Granted resource: the directed edge from the resource

to the process
| | ’ Held by
Pl = ® Ra

Resource Allocation Graph

Ra Ra

Circular wait: deadlock No deadlock:
Ra and Rb are available

@ Korea

—

Resource Allocation Graph

Circular wait: deadlock

Resource Allocation Graph

Deadlock sequence

1. A requests R
2.Brequests S
3.Crequests T
4. Arequests S
5.Brequests T
6. C requests R
deadlock

A

Request R
Request S
Release R
Release S

B

Request S
Request T
Release S
Release T

C

Request T
Request R
Release T
Release R

Resource Allocation Graph

Deadlock free
sequence

1. A requests R
2.Crequests T
3. Arequests S
4. C requests R
5. A releases R
6. A releases S

no deadlock

A

Request R
Request S
Release R
Release S

PO OO
El @ @

B

Request S
Request T
Release S
Release T

C

Request T
Request R
Release T
Release R

:

@ Korea

4 Conditions for Deadlock

Mutual exclusion
= Only one process may use a resource at a time

Hold and wait
= Processes make requests while holding resources

No preemption
= Granted resources cannot be forcefully removed

Circular wait
= A closed chain exists in the resource allocation graph

@Koream

4 Strategies for Deadlock

lgnore the problem

" |f you ignore it, it will ignore you
Deadlock prevention
Deadlock avoidance

Deadlock detection and recovery

The Ostrich Algorithm

= The simplest approach

= Stick your head in the sand and pretend
there is no problem

= \Vlathematicians’ reaction to this
problem

= Unacceptable and deadlock must be
prevented at all costs

" Engineers’ reaction to this problem
* How often the problem is expected?
* How often the system crashes?
= How serious the deadlock is?

Deadlock Prevention

= Design a system such that the possibility of
deadlock is statically excluded

" Preventing one of the 4 deadlock conditions

= Mutual exclusion

" |[n general, this condition cannot be disallowed

Deadlock Prevention

= Hold and wait

" Require processes to make request for all
necessary resources together

" |nefficiency of hold and wait

" Processes may need to wait long when it can make
progresses with some of the resources

= Resources may be held for a long time without being
used

@Koreah)

Deadlock Prevention

= No preemption

= Make processes release all resources held if a
further request is denied

= Alternatively, resources held by a process are
released if they are requested by other processes

= Works when no two processes have the same priority

"= Need to save and restore process states

Deadlock Prevention

" Circular wait
= Define a linear order () of resources

" |f a process has a resource of order R, it can make

requests only for resources of order R’ such that
R" >R

= Like the hold and wait prevention, circular-wait-
prevention strategy can be inefficient

= Unnecessarily slowing down processes and denying
resource access

@Koream

Deadlock Avoidance

= Vlore concurrency than the prevention strategies
= Allows the first three conditions

= Dynamically decide whether the current resource
request, if granted, will potentially lead to a deadlock

= Two approaches

= Do not start a process if its demand may lead to a
deadlock

"= Do not grant a resource request if it may lead to a
deadlock (Banker’s algorithm)

@Koreah)

Process Initiation Denial

= Consider a system of n processes and m types of resources
= Two vectors Resource, aVailable, and two matrices Claim, and

Allocation
Resource = R = (R|.R,,R,) Total amount of each resource in the system
Available = V = (1,V5, ... V) Total amount of each resource not allocated to any process
CII CIZ 5000 Clm
= C’Jl C')? 5 G o C’)
Clam=C=| -~ e 1 C;; = requirement of process i for resource j
Cul CuZ 3 0 0 Cnm
Ay Ap .. Aj,
. Ay Ayn ... A
Allocation = A = i e - i : :]
; : : . Ajj = current allocation to process i of resource j
Anl AnZ SRele Amn

@ Korea)

Process Initiation Denial

= Relations among Resource, aVailable, Claim,
and Allocation

n
LR, = V. + EA,-J,-. for all j All resources are either available or allocated.
' i=1
2.C;=R;, forallij No process can claim more than the total

amount of resources in the system.

J.A.=C; forallij No process 1s allocated more resources of any
]] ! P i . 5
type than the process originally claimed to need.

= Deadlock avoidance policy

Start a new process P only 1f
n+1)

R}; = C(’H'l))" T EC” for all j
i=1

Banker’s Algorithm

= A system state comprises
= Resource, aVailable, Claim, and Allocation

= Safe state

" There is a sequence of resource allocations that can

make all processes run to complete (without
deadlock)

= A processican run to completion if
C” - A” = V.. f(')l‘ d”/

/

= Unsafe state
= A state that is not safe

@ Korea '

Banker’s Algorithm (Safe State?)

R1 R2 R3 R1 R2 R3 R1 R2 R3
Pl 3 2 2 Pl | 0 0 Pl s 2 2
P21 6 I 3 P2] 6 I 2 P21 0O 0}

P3| 3 I 4 P3] 2 I | o | 0 3
P4l 4 2 2 P4) O 0 2 P4] 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 [3o o [1 T
Resource vector R Available vector V

= Decide whether this initial state is safe
= P2 can run to complete

.

Banker’s Algorithm (Safe State?)

Rl R2 R3 R1 R2 R3 R1 R2 R3
Pl ‘. 2 2 Pl | 0 0 Pl 2 2)
P21 O 0 0 P2l 0O 0 0 P2 B 0 0
P3| 3 1 4 P3] 2 1 l P3 l 0 3
P41 4 2 2 P4l 0O 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9] 3] 6 61 2|3
Resource vector R Available vector V

= P2 is complete; fill the 2" row of C and A with O
= Update V with the resources held by P2
= Now, P1 can run to complete

@ Korea)

Banker’s Algorithm (Safe State?)

R1 R2 R3 R1 R2 R3 R1 R2 R3
Pl 0 0 0 Pl 0 (0 0 Pl 0 0 0
P21 0 0 0 P21 O 0 0 P2 IBu 0 0
P3] 3 1 4 P3| 2 | | P3 | () 3
P4] 4 2 2 P4} O 0 2 P4]| 4 2 0|
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 i 2 3

r

Resource vector R Available vector V

P1 is complete; fill the 15t row of C and A with O
Update V with the resources held by P1
P3 can run to complete

@ Korea)

Banker’s Algorithm (Safe State?)

R1 R2 R3 R1 R2 R3 R1 R2 R3
P1] O 0 0 Pl O 0 0 Pl] O 0 0
Pl o] 0] o P2l 0] 0] o P2 0] 0] 0
31 0O 0 0 P3| O 0 0 P3| O 0 0
P4l 4 2 2 P4) 0O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 RS3 R1 R2 R3
9|l 3| o6 9 1 3| 4

Resource vector R

Available vector V

P3 is complete; fill the 3™ row of C and A with O
Update V with the resources held by P3
P4 can run to complete

As all processes can run to complete the initial state is safe

@ Korea '

Banker’s Algorithm

" Banker’s algorithm

= Grant resources only when the resulting state will
be safe

Banker’s Algorithm Example 1

Rl R2 R3 Rl R2 R3 Rl R2 R3
Pl 2 2 P1] 1 0 0 PI| 2 2 2
P21 6 | 3 P2 e I I P2 () 2
31 3 I - 3 [I I 31 1 0 3
P4| 4 2 2 P41 O 0 4 P4 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
9 3 6 I | 2
Resource vector R Available vector V

" Given the state, if P2 requests for 1 R1 and 1 R3

Banker’s Algorithm Example 1

R1 R2 R3 R1 R2 R3 R1 R2 R3
Pl 3 2 2 Pl | 0 0 Pl 2 2 2
P2| 6 | 3 P2 6 I P P2 B0 0 |
P3] 3 | 4 P3| 2 I | P3 | 0 3
P4| 4 2 2 P4l O 0 2 P4] 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 | 3 | 6 0 | | 1
Resource vector R Available vector V

= Above is the resulting state if the request is granted

= The resulting state is the same as the initial state of the
previous example

= Grant the resources because the resulting state is safe

@ Korea)

Banker’s Algorithm Example 2

R1 R2 R3 R1 R2 R3 R1 R2 R3
Pl 3 2 2 Pl 1 () 0 Pl 2 2 2
P2| 6 1 3 P2 [1 1 P2 1 0 2
P3 | 1 4 P3 = 1 1 P3 1 0 3
P4| 4 2 2 P4l O 0 2 P4] 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 | 3 | 6 | | | [2
Resource vector R Available vector V

" Given the state, if P1 requests for 1 R1 and 1 R3

Banker’s Algorithm Example 2

Pl
P2
P3
P4

= Above is the resulting state if the request is

R1 R2 RS R1 R2 R3
3 2 2 Pl 2 (0 | Pl
6 I 3 P2 [| 1 P2
3 | 4 P3 [| 1 P3
4 2 2 P4l 0O 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
9 3 6 0 | |

granted
= This state is unsafe as no process can run to complete

= Thus, the request should not be granted

Resource vector R

RI

R2

R3

2

|

0

7

0

3

|
I
I
4

5,

0

Available vector V

@ Korea)

Deadlock Detection

" Deadlock detection strategy

= Do not limit resource requests

= Periodically check if there is a deadlock

= Assuming that the current requests are all that are
needed for processes to complete

" Check if the current requests can be satisfied by the
available resources

= |f 3 deadlock is detected recover from it

Deadlock Detection Algorithm

Mark each process that has zero row vector in A

= A process not holding a resource cannot be a part of deadlocked
processes

Initialize a temporary vector W (copy V to W)

Find an unmarked process i such that the it" row of a request
matrix Q is less than or equal to W

= reQest matrix: Q; is the amount of resources of type j requested
by process i

= Terminate the algorithm if no such process is found

If such a row is found

= Mark process i
= Add it row of A to W and go to the 3" step

Any unmarked processes are deadlocked processes

@Koreah)

Pl

P3

P4

R1

R2 R3

R4 RS

0

1 0 0

I

0

0 1 0

1

0

0 0 0

1

I

0 1 0

I

R1

Request matrix Q

R2 R3

R4 RS

0 I l

0

I 0 0

0

0

0 0 l

0

0

0 0 0

0

R1

Allocation matrix A

R2 R3

R4 RS

B

I I 2

R1

Resource vector

R2 R3

R4 RS

0

0 0 0

1

Available vector

Deadlock Detection Example

Mark P4 because P4 has no allocated
resources

CopyV=[00001]toW

Because the 3™ row of Q is less than or
equal to W

= Mark P3 and update W as

= W=W+[00010]
=[0001 1]

Terminate because no other unmarked
process has a row in Q that is less than
or equal to W

P1 and P2 are unmarked and they are
deadlocked @

Recovery

Abort all deadlocked processes
* One of the most common approaches

Rollback all deadlocked processes to some
previously defined checkpoint and restart

Successively abort deadlocked processes until
deadlock is removed

Successively rollback processes to a checkpoint
and restart until deadlock is removed

@Koreah)

// Dining Philosophers Problem

#define N 5
typedef struct {
int id;
sem_t *left;
sem_t *right;
} Philosopher;

void *thread func(void *vargp) {
Philosopher *p = (Philosopher*)vargp;

int i;

for(i = 0; i < 100; i++) {

fprintf(stderr, "%d:
fprintf(stderr, "%d:

sem wait(p->left);

fprintf(stderr, "%d:

sem wait(p->right);

fprintf(stderr, "%d:
fprintf(stderr, "%d:

sem post(p->left);

fprintf(stderr, "%d:

sem_post(p->right);

thinking\n", p->id);
getting left\n", p->id);

getting right\n", p->id);

eating\n", p->id);
putting left\n", p->id);

putting right\n", p->id);

@ Korea '

int main() {

pthread t tid[N];

sem t stick[N];

Philosopher p[N];

int 1i;

for(i = 0; i < N; i++) {
sem_init(stick+i, ©/*pshared*/, 1/*value*/);
p[i].id = 1i;
p[i].left = &stick[1i % N];
p[i].right = &stick[(i+1) % N];

}

for(i = 0; i < N; i++)
pthread create(&tid[i], NULL, thread func, &p[i]);
for(i = 0; 1 < N; i++)
pthread join(tid[i], NULL);
for(i = 0; i < N; i++)
sem_destroy (stick+i);
return 0;

}

//in gdb, try info threads, thread #, bt (:)mNa

