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Deadlock

 A set of processes are deadlocked if
 Each process in the set is blocked and
 Waiting for an event that can be triggered only 

from another process in the set



Deadlock
 Illustration of deadlock

 a, b, c, d are resources and 1, 2, 3, 4 are processes



Joint Progress Diagram

 Illustrates the progress of two processes 
competing for resources
 The progress-path moves only from left to right or 

from bottom to top

 Each process needs exclusive use of both 
resources
 Exclusive use forms prohibited regions in the 

diagram

 Deadlock occurs if the progress-path cannot 
move



Joint Progress Diagram

 An example of deadlock
 Two processes P and Q acquire 

and release resources A and B
in the following order





Joint Progress Diagram

 An example of NO deadlock
 Two processes P and Q acquire and release 

resources A and B in the following order





Resources

 Reusable resources
 Resources that can be used by a process at a time and 

not depleted by that use

 Processor, I/O channels, memory, device, and data 
structures (files, DB, semaphores)

 Deadlock example (200 KB of available memory)



Resources
 Consumable resources

 Resources that can be created and destroyed

 Interrupts, signals, messages, data in I/O buffers

 Deadlock example
 Each process tries to receive a message from the other



Resource Allocation Graph
 Resource allocation graph

 Directed graph that depicts the state of the resources 
and processes
 Nodes are processes and resources

 Resource request: the directed edge from the requesting 
process to the resource

 Granted resource: the directed edge from the resource
to the process



Resource Allocation Graph

Circular wait: deadlock No deadlock:
Ra and Rb are available



Resource Allocation Graph

Circular wait: deadlock



Resource Allocation Graph

Deadlock sequence



Resource Allocation Graph

Deadlock free
sequence



4 Conditions for Deadlock

 Mutual exclusion
 Only one process may use a resource at a time

 Hold and wait
 Processes make requests while holding resources

 No preemption
 Granted resources cannot be forcefully removed

 Circular wait
 A closed chain exists in the resource allocation graph



4 Strategies for Deadlock

 Ignore the problem
 If you ignore it, it will ignore you

 Deadlock prevention

 Deadlock avoidance

 Deadlock detection and recovery



The Ostrich Algorithm

 The simplest approach
 Stick your head in the sand and pretend 

there is no problem

 Mathematicians’ reaction to this 
problem
 Unacceptable and deadlock must be 

prevented at all costs

 Engineers’ reaction to this problem
 How often the problem is expected?
 How often the system crashes?
 How serious the deadlock is?



Deadlock Prevention

 Design a system such that the possibility of 
deadlock is statically excluded
 Preventing one of the 4 deadlock conditions

 Mutual exclusion
 In general, this condition cannot be disallowed



Deadlock Prevention

 Hold and wait
 Require processes to make request for all 

necessary resources together

 Inefficiency of hold and wait
 Processes may need to wait long when it can make 

progresses with some of the resources
 Resources may be held for a long time without being 

used



Deadlock Prevention

 No preemption
 Make processes release all resources held if a 

further request is denied

 Alternatively, resources held by a process are 
released if they are requested by other processes
 Works when no two processes have the same priority

 Need to save and restore process states



Deadlock Prevention

 Circular wait
 Define a linear order (≻) of resources
 If a process has a resource of order R, it can make 

requests only for resources of order R’ such that 
R’ ≻ R

 Like the hold and wait prevention, circular-wait-
prevention strategy can be inefficient
 Unnecessarily slowing down processes and denying 

resource access



Deadlock Avoidance

 More concurrency than the prevention strategies
 Allows the first three conditions
 Dynamically decide whether the current resource 

request, if granted, will potentially lead to a deadlock

 Two approaches
 Do not start a process if its demand may lead to a 

deadlock
 Do not grant a resource request if it may lead to a 

deadlock (Banker’s algorithm)



Process Initiation Denial
 Consider a system of n processes and m types of resources

 Two vectors Resource, aVailable, and two matrices Claim, and 
Allocation



Process Initiation Denial

 Relations among Resource, aVailable, Claim, 
and Allocation

 Deadlock avoidance policy



Banker’s Algorithm
 A system state comprises

 Resource, aVailable, Claim, and Allocation

 Safe state
 There is a sequence of resource allocations that can 

make all processes run to complete (without 
deadlock)

 A process i can run to completion if

 Unsafe state
 A state that is not safe



Banker’s Algorithm (Safe State?)

 Decide whether this initial state is safe
 P2 can run to complete



Banker’s Algorithm (Safe State?)

 P2 is complete; fill the 2nd row of C and A with 0
 Update V with the resources held by P2
 Now, P1 can run to complete



Banker’s Algorithm (Safe State?)

 P1 is complete; fill the 1st row of C and A with 0
 Update V with the resources held by P1
 P3 can run to complete



Banker’s Algorithm (Safe State?)

 P3 is complete; fill the 3rd row of C and A with 0
 Update V with the resources held by P3
 P4 can run to complete
 As all processes can run to complete the initial state is safe



Banker’s Algorithm

 Banker’s algorithm
 Grant resources only when the resulting state will 

be safe



Banker’s Algorithm Example 1

 Given the state, if P2 requests for 1 R1 and 1 R3



Banker’s Algorithm Example 1

 Above is the resulting state if the request is granted
 The resulting state is the same as the initial state of the 

previous example
 Grant the resources because the resulting state is safe



Banker’s Algorithm Example 2

 Given the state, if P1 requests for 1 R1 and 1 R3



Banker’s Algorithm Example 2

 Above is the resulting state if the request is 
granted
 This state is unsafe as no process can run to complete
 Thus, the request should not be granted



Deadlock Detection

 Deadlock detection strategy
 Do not limit resource requests

 Periodically check if there is a deadlock
 Assuming that the current requests are all that are 

needed for processes to complete
 Check if the current requests can be satisfied by the 

available resources

 If a deadlock is detected recover from it



Deadlock Detection Algorithm

 Mark each process that has zero row vector in A
 A process not holding a resource cannot be a part of deadlocked 

processes

 Initialize a temporary vector W (copy V to W)
 Find an unmarked process i such that the ith row of a request 

matrix Q is less than or equal to W
 reQest matrix: Qij is the amount of resources of type j requested 

by process i
 Terminate the algorithm if no such process is found

 If such a row is found
 Mark process i
 Add ith row of A to W and go to the 3rd step

 Any unmarked processes are deadlocked processes



Deadlock Detection Example
 Mark P4 because P4 has no allocated 

resources

 Copy V = [0 0 0 0 1] to W

 Because the 3rd row of Q is less than or 
equal to W
 Mark P3 and update W as
 W = W + [0 0 0 1 0]

= [0 0 0 1 1]

 Terminate because no other unmarked 
process has a row in Q that is less than 
or equal to W

 P1 and P2 are unmarked and they are 
deadlocked



Recovery
 Abort all deadlocked processes

 One of the most common approaches

 Rollback all deadlocked processes to some 
previously defined checkpoint and restart

 Successively abort deadlocked processes until 
deadlock is removed

 Successively rollback processes to a checkpoint 
and restart until deadlock is removed



// Dining Philosophers Problem
#define N 5
typedef struct {

int id;
sem_t *left;
sem_t *right;

} Philosopher;

void *thread_func(void *vargp) {
Philosopher *p = (Philosopher*)vargp;
int i;
for(i = 0; i < 100; i++) {

fprintf(stderr, "%d: thinking\n", p->id);
fprintf(stderr, "%d: getting left\n", p->id);
sem_wait(p->left);
fprintf(stderr, "%d: getting right\n", p->id);
sem_wait(p->right);
fprintf(stderr, "%d: eating\n", p->id);
fprintf(stderr, "%d: putting left\n", p->id);
sem_post(p->left);
fprintf(stderr, "%d: putting right\n", p->id);
sem_post(p->right);

}
}



int main() {
pthread_t tid[N];
sem_t stick[N];
Philosopher p[N];
int i;
for(i = 0; i < N; i++) {

sem_init(stick+i, 0/*pshared*/, 1/*value*/);
p[i].id = i;
p[i].left  = &stick[i % N];
p[i].right = &stick[(i+1) % N];

}

for(i = 0; i < N; i++)
pthread_create(&tid[i], NULL, thread_func, &p[i]);

for(i = 0; i < N; i++)
pthread_join(tid[i], NULL);

for(i = 0; i < N; i++)
sem_destroy (stick+i);

return 0;
}

//in gdb, try info threads, thread #, bt


