
CSE 306 Operating Systems
Concurrency: Mutual Exclusion and

Synchronization

YoungMin Kwon

Semaphores

 Fundamental Principles
 Two or more processes can cooperate by means of

a simple signal
 A process can be forced to stop at a specific place
 Resume execution on receiving a signal

 Any complex coordination requirement can be
satisfied

Semaphore

 semSignal(s)
 To transmit a signal via semaphore s

 semWait(s)
 To receive a signal via semaphore s
 If no corresponding signal has been sent, the

process will be suspended until the signal is sent

Semaphores

 Semaphore operations
 Initialization: a semaphore may be initialized to a

nonnegative integer value

 semWait: decrements the semaphore value
 If the value becomes negative, the process will be

blocked
 Otherwise, the process continues its execution

 semSignal: increments the semaphore value
 If the resulting value is non-positive, a process blocked

by semWait is unblocked

A Definition of a Counting Semaphore
struct semaphore {

int count;
queueType queue;

};

void semWait(semaphore* s) {
s->count--;
if (s->count < 0) {

// place this process in s->queue
// block this process

}
}

void semSignal(semaphore* s) {
s->count++;
if (s->count <= 0) {

// remove a process P from s->queue
// place process P on ready list

}
}

Examples of Semaphore Mechanism

 Initially s is 1
 A will call semWait(s)

 Process A, B, C call semWait(s)
 Process D calls semSignal(s)

Examples of Semaphore Mechanism

 s is decreased to 0
 A is placed in the Ready queue
 B will call semWait(s)

Examples of Semaphore Mechanism

 s is decreased to -1
 B is placed in the semaphore’s Blocked queue
 D will call semSignal(s)

Examples of Semaphore Mechanism

 s is increased to 0
 B is unblocked and is placed in the Ready queue

Examples of Semaphore Mechanism

 D is placed in the Ready queue
 C, A, B will call semWait(s)

Examples of Semaphore Mechanism

 s is decreased to -3
 C, A, B are placed in the semaphore’s Blocked queue
 D will call semSignal(s)

Examples of Semaphore Mechanism

 s is increased to -2
 C is unblocked and is placed in the Ready queue

Binary Semaphores
 Binary semaphore operations

 Initialization: a binary semaphore may be
initialized to 0 or 1

 semWaitB
 If the value is 0, block the process
 Otherwise, change the value to 0

 semSignalB
 If any processes are blocked on this semaphore, one of

the blocked processes is unblocked
 Otherwise, change the value to 1

A Definition of Binary Semaphore
struct binary_semaphore {

enum {zero, one} value;
queueType queue;

};

void semWaitB(binary_semaphore* s) {
if(s->value == one)

s->value = zero;
else {

// place this process in s->queue
// block this process

}
}

void semSignalB(binary_semaphore* s) {
if(/*s->queue is empty*/)

s->value = one;
else {

// remove a process P from s->queue
// place process P on ready list

}
}

Semaphores

 Some related terms
 Mutual exclusion lock (mutex):

 In some literature, mutexes are a synonym for binary
semaphores

 In others, mutexes are like binary semaphores, but with the
requirement that the process that locks a mutex must unlock it.

 Strong semaphore:
 Processes are blocked and unblocked in FIFO manner

 Weak semaphore:
 Any process blocked on the semaphore can be unblocked

Mutual Exclusion by Semaphores

 Initialize a semaphore s to 1
 On entering a critical section call semWait(s)
 On leaving the critical section call semSignal(s)

 Advantages
 No busy waiting
 Works with multiple processes on multiple

processors

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

sem_t mutex;
volatile long count = 0;

void* acc(void *vargp)
{

long n = *((long*)vargp);
long i;
for(i = 0; i < n; i++)
{

sem_wait(&mutex);
count++;
sem_post(&mutex);

}
return NULL;

}

int main()
{

pthread_t tid1, tid2;
long n = 100000;

sem_init(&mutex, 0, 1);

pthread_create(&tid1, NULL, acc, &n);
pthread_create(&tid2, NULL, acc, &n);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("count = %ld\n", count);
return 0;

}

Mutual Exclusion by Semaphores

Accessing shared data protected by a semaphore

Producer-Consumer Problem

 A producer and a consumer thread share a
bounded buffer with n slots
 The producer creates items and add them to the

buffer
 The consumer removes items from the buffer and

consumes (uses) them

Producer-Consumer Problem

 Need a mutual exclusion to access the shared
buffer

 Need to schedule the access to the buffer
 If the buffer is full, the producer needs to wait
 If the buffer is empty, the consumer needs to wait

#include <pthread.h>
#include <semaphore.h>
#include <stdlib.h>
#include <stdio.h>
typedef struct {

int *buf;
int capacity, head, tail;

sem_t mutex; // to access this buffer exclusively
sem_t slots; // # of empty slots. Block producer if buffer is full
sem_t items; // # of items. Block consumer if buffer is empty

} sbuf_t;
void sbuf_init(sbuf_t* sp, int n) {

sp->buf = (int*) calloc(n, sizeof(int));
sp->capacity = n;
sp->head = sp->tail = 0;
sem_init(&sp->mutex, 0, 1);
sem_init(&sp->slots, 0, n);
sem_init(&sp->items, 0, 0);

}
void sbuf_deinit(sbuf_t *sp) {

free(sp->buf);
sem_destroy(&sp->mutex);
sem_destroy(&sp->slots);
sem_destroy(&sp->items);

}

int sbuf_size(sbuf_t *sp) {
sem_wait(&sp->mutex); // access lock
int n = (sp->head + sp->capacity - sp->tail) % sp->capacity;
sem_post(&sp->mutex);
return n;

}

void sbuf_insert(sbuf_t *sp, int item) {
sem_wait(&sp->slots); // block if the buffer is full
sem_wait(&sp->mutex); // access lock
sp->head = (sp->head + 1) % sp->capacity;
sp->buf[sp->head] = item;
sem_post(&sp->mutex);
sem_post(&sp->items); // unblock consumer if it’s been suspended

}

int sbuf_remove(sbuf_t *sp) {
sem_wait(&sp->items); // block if the buffer is empty
sem_wait(&sp->mutex); // access lock
sp->tail= (sp->tail + 1) % sp->capacity;
int item = sp->buf[sp->tail];
sem_post(&sp->mutex);
sem_post(&sp->slots); // unblock producer if it’s been suspended
return item;

}

void* producer(void* vargp) {
sbuf_t *sp = (sbuf_t*)vargp;
int i, j;
for(i = 0; i < 100; i++) {

long s = 0;
for(j = 0; j < 10000; j++)

sbuf_insert(sp, j),
s += j;

printf("producer: sum: %ld, size: %d\n", s, sbuf_size(sp));
}
pthread_exit(NULL);

}

void* consumer(void* vargp) {
sbuf_t *sp = (sbuf_t*)vargp;
int i, j;
for(i = 0; i < 100; i++) {

long s = 0;
for(j = 0; j < 10000; j++)

s += sbuf_remove(sp);
printf("consumer: sum: %ld, size: %d\n", s, sbuf_size(sp));

}
pthread_exit(NULL);

}

int main() {
pthread_t tid_p, tid_c;
sbuf_t sb;
sbuf_init(&sb, 15000);

pthread_create(&tid_p, NULL, producer, &sb);
pthread_create(&tid_c, NULL, consumer, &sb);

pthread_join(tid_p, NULL);
pthread_join(tid_c, NULL);

sbuf_deinit(&sb);
return 0;

}

Readers-Writers Problem
 A collection of concurrent threads access a shared object

 Reader: threads that only read the data
 Writer: threads that only modify the data

 First readers-writers problem (favors readers)
 No readers keep waiting unless a writer has already been

granted a permission to update the object

 Second readers-writers problem (favors writers)
 Once a writer is ready to write, it performs its operation as soon

as possible.
 A reader that arrives before a writer must wait, if the writer is

waiting

// First Readers-Writers problem
//
#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

typedef struct {
sem_t mutex; // access lock
sem_t wlock; // block reader if a writer is already writing

// block writer if there is any reader
int readercount; // # of readers

} rwlock;

typedef struct {
int data;
rwlock lock;

} object;

void rwlock_init(rwlock *lock)
{

sem_init(&lock->mutex, 0, 1);
sem_init(&lock->wlock, 0, 1);
lock->readercount = 0;

}

void acquire_reader_lock(rwlock *lock) {
sem_wait(&lock->mutex); // access lock
lock->readercount++;
if(lock->readercount == 1) // if I am the first reader,

sem_wait(&lock->wlock); // block myself if a writer is writing
// otherwise, make future writers block

sem_post(&lock->mutex);
}

void release_reader_lock(rwlock *lock) {
sem_wait(&lock->mutex); // access lock
lock->readercount--;
if(lock->readercount == 0) // if I am the last reader,

sem_post(&lock->wlock); // unblock any suspended writer
sem_post(&lock->mutex);

}

void acquire_writer_lock(rwlock *lock) {
sem_wait(&lock->wlock);

}

void release_writer_lock(rwlock *lock) {
sem_post(&lock->wlock);

}

void* reader(void *vargp) {
object* pobj = (object*)vargp;
int i;
for(i = 0; i < 10000; i++) {

acquire_reader_lock(&pobj->lock);
int data = pobj->data;
release_reader_lock(&pobj->lock);

printf("R_%d: data: %d\n", i, data);
}

}

void* writer(void *vargp) {
object* pobj = (object*)vargp;
int i;
for(i = 0; i < 10000; i++) {

acquire_writer_lock(&pobj->lock);
int data = pobj->data = i;
release_writer_lock(&pobj->lock);

printf("W_%d: data: %d\n", i, data);
}

}

int main()
{

pthread_t tid;
object obj;
obj.data = 0;
rwlock_init(&obj.lock);

pthread_create(&tid, 0, reader, &obj);
pthread_create(&tid, 0, reader, &obj);
pthread_create(&tid, 0, writer, &obj);

pthread_exit(NULL);
}

Condition Variables
 Condition variables

 Allow threads to block when some conditions do not met
 Blocking thread is waiting for other threads to do some

work

 Mutexes
 Ensure critical section
 When waiting on a conditional variable, an associated

mutex lock will be released

 pthread_cond_wait
 Condition variables are almost always used with mutexes
 Blocks the calling thread and release the mutex it holds

Condition Variables

 pthread_mutex methods

Condition Variables

 pthread_cond methods

//Producer Consumer Problem (with condition variables)
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

typedef struct {
int *buf;
int capacity, head, tail;
pthread_mutex_t mutex; //to access this buffer exclusively
pthread_cond_t condc; //condition variable for the consumer
pthread_cond_t condp; //condition variable for the producer

} sbuf_t;

void sbuf_init(sbuf_t* sp, int n) {
sp->buf = (int*) calloc(n, sizeof(int));
sp->capacity = n;
sp->head = sp->tail = 0;

pthread_mutexattr_t attr; //to allow locking from the owning thread
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&sp->mutex, &attr);

pthread_cond_init(&sp->condc, NULL/*attr*/);
pthread_cond_init(&sp->condp, NULL/*attr*/);

}

void sbuf_deinit(sbuf_t *sp) {
free(sp->buf);
pthread_cond_destroy(&sp->condp);
pthread_cond_destroy(&sp->condc);
pthread_mutex_destroy(&sp->mutex);

}

int sbuf_size(sbuf_t *sp) {
pthread_mutex_lock(&sp->mutex);

int n = (sp->head - sp->tail + sp->capacity) % sp->capacity;

pthread_mutex_unlock(&sp->mutex);
return n;

}

void sbuf_insert(sbuf_t *sp, int item) {
pthread_mutex_lock(&sp->mutex);

while(sbuf_size(sp) == sp->capacity -1) //wait while the buffer is full
pthread_cond_wait(&sp->condp, &sp->mutex);

sp->head = (sp->head+1)%sp->capacity;
sp->buf[sp->head] = item;
pthread_cond_signal(&sp->condc); //wake up the consumer

pthread_mutex_unlock(&sp->mutex);
}

int sbuf_remove(sbuf_t *sp) {
pthread_mutex_lock(&sp->mutex);

while(sbuf_size(sp) == 0) //wait while the buffer is empty
pthread_cond_wait(&sp->condc, &sp->mutex);

sp->tail= (sp->tail+1)%sp->capacity;
int item = sp->buf[sp->tail];
pthread_cond_signal(&sp->condp); //wake up the producer

pthread_mutex_unlock(&sp->mutex);
return item;

}

Monitors
 Semaphores are difficult to manage

 semWait and semSignal can be scattered
throughout a program

 Monitors
 Provide a synchronization mechanism
 Object-Oriented-Programming-like language

construct
 Consist of

 Local data and condition variables
 Procedures
 Initialization sequence

Monitors

 Characteristics
 Local variables are accessed only by the monitor’s

procedures

 A process enters the monitor by invoking on its
procedures

 Only one process may be executing in the monitor at a
time
 Other processes are blocked until the monitor becomes

available
 Mutual exclusion is provided by this discipline

Monitors
 Condition variables provide synchronization

 cwait(c):
 Suspend the execution of the process and place it in c’s

wait queue
 The monitor is now available for other processes

 csignal(c):
 Resume the execution of a blocked process from c’s wait

queue

 cwait and csignal are different from those of
semaphores: if c’s queue is empty the signal is lost

Structure of a monitor

Producer-Consumer by Monitor

/* PRODUCER CONSUMER */
void producer() {

char x;
while (true) {

produce(x);
append(x);

}
}

void consumer() {
char x;
while (true) {

take(x);
consume(x);

}
}

monitor boundedbuffer;
char buffer[N]; // buffer with N items
int nextin, nextout; // buffer pointers
int count; // # of items in buffer
cond notfull, notempty; // condition variables

void append(char x) {
if(count == N) cwait(notfull); // buffer is full, wait on notfull
buffer[nextin] = x; // insert
nextin = (nextin + 1) % N;
count++;
csignal(notempty); // resume any waiting consumer

}

void take(char x) {
if(count == 0) cwait(notempty); // buffer is empty, wait on notempty
x = buffer[nextout]; // remove
nextout = (nextout + 1) % N;
count--;
csignal(notfull); // resume any waiting producer

}

// initialization code
{

nextin = nextout = count = 0;
}

Monitors

 If csignal is not at the end of a procedure
 The resumed process should run, but there

supposed to be only 1 process executing in the
monitor

 The current process can be placed in the entrance
queue

 Or, the current process can be placed in the urgent
queue that has a higher priority than the entrance
queue

Monitors with Notify and Broadcast

 cnotify(c)
 The current process continues to execute
 A process at the c’s condition queue will be

resumed at a future time when the monitor is
available

 cbroadcast(c)
 The current process continues to execute
 All processes at the c’s condition queue will be

resumed at a future time when the monitor is
available

Monitors with Notify and Broadcast

// Producer-consumer for monitor with cnotify

void append(char x) {
while(count == N) cwait(notfull); // if is replaced by while
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
cnotify(notempty); // cnotify instead of csignal

}

void take(char x) {
while(count == 0) cwait(notempty); // if is replaced by while
x = buffer[nextout];
nextout = (nextout + 1) % N;
count--;
cnotify(notfull); // cnotify instead of csignal

}

Barriers

 Synchronizing a group of processes
 Some applications are divided into phases
 No process may proceed to the next phase until all

processes finish the current phase

 Put barrier at the end of each phase
 When a process reaches the barrier, it is blocked

until all processes have reached the barrier

Barriers

a) Processes approaching a barrier
b) All processes but one blocked at the barrier
c) When the last process arrives the barrier, all of them

are let through

#include <pthread.h>
#include <stdio.h>

#define MAX_THREAD 10
#define USE_BARRIER 1

pthread_barrier_t barrier;

void* thread(void *vargp) {
int id = (int)(long)vargp;

printf("thread %d: enter\n", id);
for(long i = 0; i < 1000000; i++)

/*counting 1 million*/;

printf("thread %d: before barrier\n", id);
#if USE_BARRIER

pthread_barrier_wait(&barrier);
#endif

printf("thread %d: after barrier\n", id);

return NULL;
}

int main() {
pthread_t ids[MAX_THREAD];

pthread_barrier_init(&barrier, NULL, MAX_THREAD);

for(int i = 0; i < MAX_THREAD; i++)
pthread_create(&ids[i], NULL, thread, (void*)(long)i);

for(int i = 0; i < MAX_THREAD; i++)
pthread_join(ids[i], NULL);

pthread_barrier_destroy(&barrier);

return 0;
}

