
CSE 306 Operating Systems
Concurrency: Mutual Exclusion and

Synchronization

YoungMin Kwon

Semaphores

 Fundamental Principles
 Two or more processes can cooperate by means of

a simple signal
 A process can be forced to stop at a specific place
 Resume execution on receiving a signal

 Any complex coordination requirement can be
satisfied

Semaphore

 semSignal(s)
 To transmit a signal via semaphore s

 semWait(s)
 To receive a signal via semaphore s
 If no corresponding signal has been sent, the

process will be suspended until the signal is sent

Semaphores

 Semaphore operations
 Initialization: a semaphore may be initialized to a

nonnegative integer value

 semWait: decrements the semaphore value
 If the value becomes negative, the process will be

blocked
 Otherwise, the process continues its execution

 semSignal: increments the semaphore value
 If the resulting value is non-positive, a process blocked

by semWait is unblocked

A Definition of a Counting Semaphore
struct semaphore {

int count;
queueType queue;

};

void semWait(semaphore* s) {
s->count--;
if (s->count < 0) {

// place this process in s->queue
// block this process

}
}

void semSignal(semaphore* s) {
s->count++;
if (s->count <= 0) {

// remove a process P from s->queue
// place process P on ready list

}
}

Examples of Semaphore Mechanism

 Initially s is 1
 A will call semWait(s)

 Process A, B, C call semWait(s)
 Process D calls semSignal(s)

Examples of Semaphore Mechanism

 s is decreased to 0
 A is placed in the Ready queue
 B will call semWait(s)

Examples of Semaphore Mechanism

 s is decreased to -1
 B is placed in the semaphore’s Blocked queue
 D will call semSignal(s)

Examples of Semaphore Mechanism

 s is increased to 0
 B is unblocked and is placed in the Ready queue

Examples of Semaphore Mechanism

 D is placed in the Ready queue
 C, A, B will call semWait(s)

Examples of Semaphore Mechanism

 s is decreased to -3
 C, A, B are placed in the semaphore’s Blocked queue
 D will call semSignal(s)

Examples of Semaphore Mechanism

 s is increased to -2
 C is unblocked and is placed in the Ready queue

Binary Semaphores
 Binary semaphore operations

 Initialization: a binary semaphore may be
initialized to 0 or 1

 semWaitB
 If the value is 0, block the process
 Otherwise, change the value to 0

 semSignalB
 If any processes are blocked on this semaphore, one of

the blocked processes is unblocked
 Otherwise, change the value to 1

A Definition of Binary Semaphore
struct binary_semaphore {

enum {zero, one} value;
queueType queue;

};

void semWaitB(binary_semaphore* s) {
if(s->value == one)

s->value = zero;
else {

// place this process in s->queue
// block this process

}
}

void semSignalB(binary_semaphore* s) {
if(/*s->queue is empty*/)

s->value = one;
else {

// remove a process P from s->queue
// place process P on ready list

}
}

Semaphores

 Some related terms
 Mutual exclusion lock (mutex):

 In some literature, mutexes are a synonym for binary
semaphores

 In others, mutexes are like binary semaphores, but with the
requirement that the process that locks a mutex must unlock it.

 Strong semaphore:
 Processes are blocked and unblocked in FIFO manner

 Weak semaphore:
 Any process blocked on the semaphore can be unblocked

Mutual Exclusion by Semaphores

 Initialize a semaphore s to 1
 On entering a critical section call semWait(s)
 On leaving the critical section call semSignal(s)

 Advantages
 No busy waiting
 Works with multiple processes on multiple

processors

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

sem_t mutex;
volatile long count = 0;

void* acc(void *vargp)
{

long n = *((long*)vargp);
long i;
for(i = 0; i < n; i++)
{

sem_wait(&mutex);
count++;
sem_post(&mutex);

}
return NULL;

}

int main()
{

pthread_t tid1, tid2;
long n = 100000;

sem_init(&mutex, 0, 1);

pthread_create(&tid1, NULL, acc, &n);
pthread_create(&tid2, NULL, acc, &n);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("count = %ld\n", count);
return 0;

}

Mutual Exclusion by Semaphores

Accessing shared data protected by a semaphore

Producer-Consumer Problem

 A producer and a consumer thread share a
bounded buffer with n slots
 The producer creates items and add them to the

buffer
 The consumer removes items from the buffer and

consumes (uses) them

Producer-Consumer Problem

 Need a mutual exclusion to access the shared
buffer

 Need to schedule the access to the buffer
 If the buffer is full, the producer needs to wait
 If the buffer is empty, the consumer needs to wait

#include <pthread.h>
#include <semaphore.h>
#include <stdlib.h>
#include <stdio.h>
typedef struct {

int *buf;
int capacity, head, tail;

sem_t mutex; // to access this buffer exclusively
sem_t slots; // # of empty slots. Block producer if buffer is full
sem_t items; // # of items. Block consumer if buffer is empty

} sbuf_t;
void sbuf_init(sbuf_t* sp, int n) {

sp->buf = (int*) calloc(n, sizeof(int));
sp->capacity = n;
sp->head = sp->tail = 0;
sem_init(&sp->mutex, 0, 1);
sem_init(&sp->slots, 0, n);
sem_init(&sp->items, 0, 0);

}
void sbuf_deinit(sbuf_t *sp) {

free(sp->buf);
sem_destroy(&sp->mutex);
sem_destroy(&sp->slots);
sem_destroy(&sp->items);

}

int sbuf_size(sbuf_t *sp) {
sem_wait(&sp->mutex); // access lock
int n = (sp->head + sp->capacity - sp->tail) % sp->capacity;
sem_post(&sp->mutex);
return n;

}

void sbuf_insert(sbuf_t *sp, int item) {
sem_wait(&sp->slots); // block if the buffer is full
sem_wait(&sp->mutex); // access lock
sp->head = (sp->head + 1) % sp->capacity;
sp->buf[sp->head] = item;
sem_post(&sp->mutex);
sem_post(&sp->items); // unblock consumer if it’s been suspended

}

int sbuf_remove(sbuf_t *sp) {
sem_wait(&sp->items); // block if the buffer is empty
sem_wait(&sp->mutex); // access lock
sp->tail= (sp->tail + 1) % sp->capacity;
int item = sp->buf[sp->tail];
sem_post(&sp->mutex);
sem_post(&sp->slots); // unblock producer if it’s been suspended
return item;

}

void* producer(void* vargp) {
sbuf_t *sp = (sbuf_t*)vargp;
int i, j;
for(i = 0; i < 100; i++) {

long s = 0;
for(j = 0; j < 10000; j++)

sbuf_insert(sp, j),
s += j;

printf("producer: sum: %ld, size: %d\n", s, sbuf_size(sp));
}
pthread_exit(NULL);

}

void* consumer(void* vargp) {
sbuf_t *sp = (sbuf_t*)vargp;
int i, j;
for(i = 0; i < 100; i++) {

long s = 0;
for(j = 0; j < 10000; j++)

s += sbuf_remove(sp);
printf("consumer: sum: %ld, size: %d\n", s, sbuf_size(sp));

}
pthread_exit(NULL);

}

int main() {
pthread_t tid_p, tid_c;
sbuf_t sb;
sbuf_init(&sb, 15000);

pthread_create(&tid_p, NULL, producer, &sb);
pthread_create(&tid_c, NULL, consumer, &sb);

pthread_join(tid_p, NULL);
pthread_join(tid_c, NULL);

sbuf_deinit(&sb);
return 0;

}

Readers-Writers Problem
 A collection of concurrent threads access a shared object

 Reader: threads that only read the data
 Writer: threads that only modify the data

 First readers-writers problem (favors readers)
 No readers keep waiting unless a writer has already been

granted a permission to update the object

 Second readers-writers problem (favors writers)
 Once a writer is ready to write, it performs its operation as soon

as possible.
 A reader that arrives before a writer must wait, if the writer is

waiting

// First Readers-Writers problem
//
#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

typedef struct {
sem_t mutex; // access lock
sem_t wlock; // block reader if a writer is already writing

// block writer if there is any reader
int readercount; // # of readers

} rwlock;

typedef struct {
int data;
rwlock lock;

} object;

void rwlock_init(rwlock *lock)
{

sem_init(&lock->mutex, 0, 1);
sem_init(&lock->wlock, 0, 1);
lock->readercount = 0;

}

void acquire_reader_lock(rwlock *lock) {
sem_wait(&lock->mutex); // access lock
lock->readercount++;
if(lock->readercount == 1) // if I am the first reader,

sem_wait(&lock->wlock); // block myself if a writer is writing
// otherwise, make future writers block

sem_post(&lock->mutex);
}

void release_reader_lock(rwlock *lock) {
sem_wait(&lock->mutex); // access lock
lock->readercount--;
if(lock->readercount == 0) // if I am the last reader,

sem_post(&lock->wlock); // unblock any suspended writer
sem_post(&lock->mutex);

}

void acquire_writer_lock(rwlock *lock) {
sem_wait(&lock->wlock);

}

void release_writer_lock(rwlock *lock) {
sem_post(&lock->wlock);

}

void* reader(void *vargp) {
object* pobj = (object*)vargp;
int i;
for(i = 0; i < 10000; i++) {

acquire_reader_lock(&pobj->lock);
int data = pobj->data;
release_reader_lock(&pobj->lock);

printf("R_%d: data: %d\n", i, data);
}

}

void* writer(void *vargp) {
object* pobj = (object*)vargp;
int i;
for(i = 0; i < 10000; i++) {

acquire_writer_lock(&pobj->lock);
int data = pobj->data = i;
release_writer_lock(&pobj->lock);

printf("W_%d: data: %d\n", i, data);
}

}

int main()
{

pthread_t tid;
object obj;
obj.data = 0;
rwlock_init(&obj.lock);

pthread_create(&tid, 0, reader, &obj);
pthread_create(&tid, 0, reader, &obj);
pthread_create(&tid, 0, writer, &obj);

pthread_exit(NULL);
}

Condition Variables
 Condition variables

 Allow threads to block when some conditions do not met
 Blocking thread is waiting for other threads to do some

work

 Mutexes
 Ensure critical section
 When waiting on a conditional variable, an associated

mutex lock will be released

 pthread_cond_wait
 Condition variables are almost always used with mutexes
 Blocks the calling thread and release the mutex it holds

Condition Variables

 pthread_mutex methods

Condition Variables

 pthread_cond methods

//Producer Consumer Problem (with condition variables)
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

typedef struct {
int *buf;
int capacity, head, tail;
pthread_mutex_t mutex; //to access this buffer exclusively
pthread_cond_t condc; //condition variable for the consumer
pthread_cond_t condp; //condition variable for the producer

} sbuf_t;

void sbuf_init(sbuf_t* sp, int n) {
sp->buf = (int*) calloc(n, sizeof(int));
sp->capacity = n;
sp->head = sp->tail = 0;

pthread_mutexattr_t attr; //to allow locking from the owning thread
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&sp->mutex, &attr);

pthread_cond_init(&sp->condc, NULL/*attr*/);
pthread_cond_init(&sp->condp, NULL/*attr*/);

}

void sbuf_deinit(sbuf_t *sp) {
free(sp->buf);
pthread_cond_destroy(&sp->condp);
pthread_cond_destroy(&sp->condc);
pthread_mutex_destroy(&sp->mutex);

}

int sbuf_size(sbuf_t *sp) {
pthread_mutex_lock(&sp->mutex);

int n = (sp->head - sp->tail + sp->capacity) % sp->capacity;

pthread_mutex_unlock(&sp->mutex);
return n;

}

void sbuf_insert(sbuf_t *sp, int item) {
pthread_mutex_lock(&sp->mutex);

while(sbuf_size(sp) == sp->capacity -1) //wait while the buffer is full
pthread_cond_wait(&sp->condp, &sp->mutex);

sp->head = (sp->head+1)%sp->capacity;
sp->buf[sp->head] = item;
pthread_cond_signal(&sp->condc); //wake up the consumer

pthread_mutex_unlock(&sp->mutex);
}

int sbuf_remove(sbuf_t *sp) {
pthread_mutex_lock(&sp->mutex);

while(sbuf_size(sp) == 0) //wait while the buffer is empty
pthread_cond_wait(&sp->condc, &sp->mutex);

sp->tail= (sp->tail+1)%sp->capacity;
int item = sp->buf[sp->tail];
pthread_cond_signal(&sp->condp); //wake up the producer

pthread_mutex_unlock(&sp->mutex);
return item;

}

Monitors
 Semaphores are difficult to manage

 semWait and semSignal can be scattered
throughout a program

 Monitors
 Provide a synchronization mechanism
 Object-Oriented-Programming-like language

construct
 Consist of

 Local data and condition variables
 Procedures
 Initialization sequence

Monitors

 Characteristics
 Local variables are accessed only by the monitor’s

procedures

 A process enters the monitor by invoking on its
procedures

 Only one process may be executing in the monitor at a
time
 Other processes are blocked until the monitor becomes

available
 Mutual exclusion is provided by this discipline

Monitors
 Condition variables provide synchronization

 cwait(c):
 Suspend the execution of the process and place it in c’s

wait queue
 The monitor is now available for other processes

 csignal(c):
 Resume the execution of a blocked process from c’s wait

queue

 cwait and csignal are different from those of
semaphores: if c’s queue is empty the signal is lost

Structure of a monitor

Producer-Consumer by Monitor

/* PRODUCER CONSUMER */
void producer() {

char x;
while (true) {

produce(x);
append(x);

}
}

void consumer() {
char x;
while (true) {

take(x);
consume(x);

}
}

monitor boundedbuffer;
char buffer[N]; // buffer with N items
int nextin, nextout; // buffer pointers
int count; // # of items in buffer
cond notfull, notempty; // condition variables

void append(char x) {
if(count == N) cwait(notfull); // buffer is full, wait on notfull
buffer[nextin] = x; // insert
nextin = (nextin + 1) % N;
count++;
csignal(notempty); // resume any waiting consumer

}

void take(char x) {
if(count == 0) cwait(notempty); // buffer is empty, wait on notempty
x = buffer[nextout]; // remove
nextout = (nextout + 1) % N;
count--;
csignal(notfull); // resume any waiting producer

}

// initialization code
{

nextin = nextout = count = 0;
}

Monitors

 If csignal is not at the end of a procedure
 The resumed process should run, but there

supposed to be only 1 process executing in the
monitor

 The current process can be placed in the entrance
queue

 Or, the current process can be placed in the urgent
queue that has a higher priority than the entrance
queue

Monitors with Notify and Broadcast

 cnotify(c)
 The current process continues to execute
 A process at the c’s condition queue will be

resumed at a future time when the monitor is
available

 cbroadcast(c)
 The current process continues to execute
 All processes at the c’s condition queue will be

resumed at a future time when the monitor is
available

Monitors with Notify and Broadcast

// Producer-consumer for monitor with cnotify

void append(char x) {
while(count == N) cwait(notfull); // if is replaced by while
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
cnotify(notempty); // cnotify instead of csignal

}

void take(char x) {
while(count == 0) cwait(notempty); // if is replaced by while
x = buffer[nextout];
nextout = (nextout + 1) % N;
count--;
cnotify(notfull); // cnotify instead of csignal

}

Barriers

 Synchronizing a group of processes
 Some applications are divided into phases
 No process may proceed to the next phase until all

processes finish the current phase

 Put barrier at the end of each phase
 When a process reaches the barrier, it is blocked

until all processes have reached the barrier

Barriers

a) Processes approaching a barrier
b) All processes but one blocked at the barrier
c) When the last process arrives the barrier, all of them

are let through

#include <pthread.h>
#include <stdio.h>

#define MAX_THREAD 10
#define USE_BARRIER 1

pthread_barrier_t barrier;

void* thread(void *vargp) {
int id = (int)(long)vargp;

printf("thread %d: enter\n", id);
for(long i = 0; i < 1000000; i++)

/*counting 1 million*/;

printf("thread %d: before barrier\n", id);
#if USE_BARRIER

pthread_barrier_wait(&barrier);
#endif

printf("thread %d: after barrier\n", id);

return NULL;
}

int main() {
pthread_t ids[MAX_THREAD];

pthread_barrier_init(&barrier, NULL, MAX_THREAD);

for(int i = 0; i < MAX_THREAD; i++)
pthread_create(&ids[i], NULL, thread, (void*)(long)i);

for(int i = 0; i < MAX_THREAD; i++)
pthread_join(ids[i], NULL);

pthread_barrier_destroy(&barrier);

return 0;
}

