CSE 306/506 Operating Systems
Threads

Processes and Threads

" Two characteristics of a process

= Resource ownership
= Virtual address space (program, data, stack, PCB...)
= Main memory, |/O devices, files

= Scheduling/execution
= Execution of a process follows an execution path

= Execution may be interleaved with that of other
processes

@Koream

Processes and Threads

= Resource ownership and Scheduling/execution
= Could be treated independently by the OS

" Thread (lightweight process): the unit of
dispatching

" Process (task): the unit of resource ownership

@Koreaw ‘

Why Threads

Parallel execution

= Without relying on interrupts, timers, context switches

= Parallel entities sharing an address space and data

Easier and faster to create and destroy than processes

= 10~ 100 times faster

Performance gain
= Not much for CPU bounded applications
= Substantial for I/0 bounded applications

Real parallelism with multiple CPUs

@Koreah ‘

A Multithreaded Web Server

Web server process

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Kernel space

Network
connection

Dispatcher thread

while (TRUE) {

Worker thread

while (TRUE) {
wait_for_work(&buf)
look: for_page in_cache(&buf, &page);

get_next_request(&buf);
handoff_work(&buf);

if (page- not_in_cache(&page))
read_page. from_disk(&buf, &page);
return-page(&page);

Multithreading

" Multithreading

= The ability of an OS to support multiple
concurrent paths of execution within a single
process

= Processes in a multithreaded environment
= Unit of resource allocation
= Unit of protection

Multithreading

" Threads within a process have
* Thread execution state (Running, Ready, ...)
= Saved thread context (PC, registers, ...)
= Execution stack
= Per-thread static storage for local variables

= Access to resources shared with other threads in
the process

Multithreading

= All threads of a process share the states and

resources of the process

= |f a thread alters data, other threads will see the

change

= |f a thread opens a file with a read privilege, others

can also read the file

Per-process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per-thread items
Program counter
Registers

Stack

State

@ Korea_‘_m

Multithreading

Single-threaded Multithreaded
process model process model
Thread Thread Thread
e fm——— =
e i |[Thread || I[Thread || 1] Thread |,
b riyi stack : control | } control | I control |
block I|_block || |_block } || block :
|
| | |
|] n |
| | |
Teor Kernel Tep | " | “ gt |
'ldlllhlil‘iﬂ \:’c[‘i]:\‘ Pl'()CeHS : L - I } USEI] : Uhti |
spacéI control | stack : | stack } | stack :
block : | } 1 : |
| || | |
| |
Thread 2 | I || |
User || Kernel : || Kernel } || Kernel :
Thread 1 Thread 3 address I stack | } stack | I stack |
space | o - |
I) []
_— Process

/

Thread 1's B E Thread 3's stack

stack

Kernel

Multithreading

= Performance benefits

= |t takes far less time to create a new thread than to
create a hew process

= Terminating a thread is faster than terminating a
process

= Switch between threads is faster than switch between
processes

= Threads enhance efficiency in communication
between executing programs

= No need for the protection and communication mechanisms

@ Korea_‘_m

Thread Functionality

" Thread states: Running, Ready, Blocked

= Suspend is for processes: if a process is swapped out,
all of its threads are swapped out

= RPC (Remote Procedure Call) example

Time =
RPC RPC

request request

.........................
Process | [KXRXNNRARNANNARY KAHRNKHAANAK

(a) RPC using single thread
KR Blocked, waiting for response to RPC
1 Blocked, waiting for processor, which is in use by Thread B

[Running

@Koreaw

Thread Functionality

= RPC example

Time >

RPC
request

Thread A (Process 1) P6%%6%% %% %% %% %"

Thread B (Process 1)

v v v v evev v e v v v/

(b) RPC using one thread per server (on a uniprocessor)

RPC
request

KR Blocked, waiting for response to RPC
1 Blocked, waiting for processor, which is in use by Thread B
[Running

Thread Functionality

" Four basic thread operations

= Spawn: when a new process is created or when a
thread spawns a new thread

* New thread gets its own register context, stack and
placed on the Ready queue

= Block: waits for an event

= Unblock: when the event occurs, the thread is
moved to the Ready queue

= Finish: completes its operation

POSIX Threads (Pthreads)

= A standard interface for manipulating threads from C
programs

= Defines about 60 functions that allow programs

to create, kill, and reap threads
to share data safely with peer threads
to notify peers about changes in the system state

Thread call Description

Pthread_create | Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit
Pthread_yield Release the CPU to let another thread run

@ Korea_‘_.!.

Pthreads: Creating Threads

#include <pthread.h>
typedef void *(func)(void *);

// To create a new thread

int pthread create(pthread t *tid,
pthread attr t *attr,
func *f,

void *arg);

// To get the thread id of its own
pthread t pthread_self(void);

Pthreads: Terminating Threads

#include <pthread.h>

void pthread exit(void *thread return);

// Terminate explicitly

// If main thread calls pthread exit,

// it will wait for all other peer threads to
// terminate, terminate itself, and terminate
// the process

int pthread_cancel(pthread t tid);
// Terminate the thread with the ID tid

o

Pthreads: Reaping Terminated Threads

#include <pthread.h>
int pthread_join(pthread t tid,
void **thread return);

// - blocks until thread tid terminates,

// - update thread return to point to the return
// value of the thread routine,

// - reap the memory resource

#include <pthread.h>
#include <stdio.h>

void *thread(void *vargp) {
printf("%s\n", (char*)vargp);
pthread_exit("world");
//return "world";
return NULL;

int main() {
pthread _t tid;
pthread_create(&tid, NULL, thread, "hello");

void *ret;

pthread join(tid, &ret);
printf("%s\n", (char*)ret);
return 0;

@ Korea_m

Thread Synchronization

= All threads of a process share the same
address space and resources

= Any alteration of a resource by one thread affects
the environment of the other threads

= Need to synchronize the activities of various
threads

Types of Threads

= Categories of thread implementation
= User-level threads (ULTs)
= Kernel-level threads (KLTs)

SR S A SR EE I

Threads \ / User User Threads User

library space space library space
Kernel Kernel Kernel
space space space

®
(a) Pure user-level (b) Pure kernel-level (¢) Combined

5 User-level thread @ Kernel-level thread @ Process
@Korea)

Types of Threads

Process Thread

_/

-
’
User
space ¢
=]
—
Kernel { e :
space erne
A%
/ N\
Run-time Thread Process
system table table

(a) A user-level threads package.

Thread
table

(b) A threads package managed by the kernel.

User-Level Threads

= Pure ULTs

= Thread management is done by the application
= Kernel is not aware of the existence of threads
= Spawning:

= Create a data structure for the thread

= Pass control to a thread in the Ready state

= Context switch:

= Context comprises user registers, PC, stack pointer
= When control is passed to the library: save the context
= When control is passed from the library: restore the context

@Koreaw ‘

ULT: system call from a thread

" Thread 2 makes a blocking system call

" |t blocks process B
= Thread Lib. thinks that thread 2 is in Running state

@ Korea_‘_.!.

ULT: process’ time slice is expired

" Process B’s time slice is expired and B is moved to the
Ready queue

" Process B is in the Ready state
" Thread Lib. thinks that thread 2 is in Running state

@ Korea_‘_m

ULT: blocked thread

= Thread 2 waits for an event from thread 1
= Thread 2 transitions to the Blocked state
" Thread 1 transitions to the Running state

@ Ko rea

ULT vs KLT

= Advantages of ULT compared to KLT
= Thread switching does not require kernel-mode

privilege

= Saves 2 mode switches: user — kernel, kernel — user
= Scheduling can be application specific
= Portability: ULTs can run on any OS

Thread and Process Operation Latencies (us)

Operation User-Level Threads | Kernel-Level Threads Processes
Null Fork 34 948 11,300
Signal Wait 37 441 1,840

@ Korea_‘_m

ULT vs KLT

= Disadvantages of ULT compared to KLT

= Blocking system calls block not only the thread but all
other threads in the process as well

= Cannot take advantage of multiprocessors

= Jacketing
= Converts blocking system calls into non-blocking ones

= Use jacket routines that check if the device is busy
If it is, make the thread blocked and schedule another thread
Check the device again later

@Koreah ‘

Kernel-Level Threads

" Thread management is done by the kernel

= Process context and thread context are managed
by the kernel

» Scheduling is done by the kernel on a thread

basis
= Kernel can schedule multiple threads of a process
to multiple processors
= |f a thread is blocked, kernel can schedule another
thread of the same process

@Koream

Performance Improvements on
Multicore Systems

= Amdahl’s law

time to execute program on a single processor

Speedup = —
time to execute program on N parallel processors
B 1
- ;
L= 4+ =
(=) % =

= 1 -f: fraction of execution time that is inherently
serial

Performance Improvements on
Multicore Systems

Relative speedup

Number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

= Small amount of serial code has a noticeable impact

Performance Improvements on
Multicore Systems

2.0 //\—\ 5%
20%

1.5 /

1.0

0.5

Relative speedup

0 | | | | | | | |

Number of processors

(b) Speedup with overheads

*= The curves peak when considering the overhead
= Communication, Distribution, Cache coherence, @

Korea

