CSE 306 Operating Systems
Interrupts and Interrupt Handlers

Interrupts

= |nterrupts

= An event that alters the sequence of instructions
executed by a processor

= Two kinds of interrupts

= Exceptions: synchronous events
= Interrupts are produced by the CPU control unit
= Generated after terminating the instruction

- Interrupts: asynchronous events
= Interrupts are produced by other hardware devices
= Generated at arbitrary time

Exceptions

" Processor detected exceptions

= Faults

= Can be corrected (e.g. page faults)

= Return to the instruction that caused the fault
= Traps

= Mainly used for debugging

= Reported immediately following the

execution of the instruction it gy
= Aborts . -
= Caused by serious errors e T | |
= Hardware failure fp'p,)

@Koreah)

Exceptions

" Programmed exception
= Software interrupts (handled as traps)
" Triggered by int or int3 instructions

= Mainly used to implement system calls or to notify
a debugger of a specific event

Interrupts

= An issue in managing hardware

= Processors can be orders of
magnitudes faster than hardware

= Working with hardware

= Polling: periodically check the
status of hardware

" |nterrupt: make hardware signal
the processor when attentions are
needed

Hardware

generates an interrupt

| M processor interrupts
the kernel

T T
interrupt controller|

T T
Processor

@Koream ‘

Interrupt Handlers

" |Interrupt handler

" The function that the kernel runs in response to a
specific interrupt

= A normal C function that matches a specific
prototype

= Handlers should run quickly and resume the
interrupted code ASAP

Interrupt Handlers

= Two goals of an interrupt handler
= Execute quickly
= Perform a large amount of work
= Top half and bottom half design

" Top half

= Run immediately on receipt of the interrupt
= Perform only the time-critical work (e.g. Ack of Int)

= Bottom half

= Runin the future, at a more convenient time, with all
interrupts enabled

* Do what can be performed later

@Koream

Top Halves

= Registering an interrupt handler

int request _irq(unsigned int irq,
irq_handler_t handler,
unsigned long flags,
const char *name,
void *dev);
typedef irgreturn t (*irg handler t)(int, void *);

" irg: interrupt number
= handler: interrupt handler function
= flags: options

= |[RQF_SHARED: the irq can be shared by multiple handlers
" name: string representation of the device
= dev: identifies the handler, like a cookie

@Koreah)

Top Halves

" Freeing an interrupt handler

const void *free_irq(unsigned int irqg, void *dev);

" Example: registering an interrupt handler

if (request_irq(irgn,
my interrupt,
IRQF SHARED,
"my device",
my_dev)) {
printk("error: request _irg\n");
return -EIO;

@Koreah)

Top Halves (handler example)

" Handler example

static DEFINE_SPINLOCK(rtc_lock);

static irgreturn t my interrupt(int irqg, void *dev)

{
spin_lock(&rtc_lock);
rtc_irqg_data += 0x100;
spin_unlock(&rtc_lock);
return IRQ HANDLED; //or IRQ _NONE
}

@ Korea '

Interrupt Context

" |nterrupt context
= While the kernel is executing an interrupt handler
= No backing process
" current macro is not valid
" |nterrupt context cannot sleep

Handling Interrupts

Hardware handle_IRQ_event()

generates an interrupt /
yes
. processor interrupts Is there an interrupt run all interrupt
7 the kernel handler on this line? handlers on this line
1
interrupt controller \
no
do_IRQ() \ return to the
ret_from_intr() == kernel code
that was
interrupted
|
Processor

@ Rores

—

Handling Interrupts

= do IRQ()
= arch/x86/kernel/irq.c

= Acknowledges the interrupt
= Disables the interrupt on the line

= handle _irg_event()
" kernel/irqg/handle.c

= Run all registered interrupt handlers for the line
= TRQF SHARED: possibly more than one handlers

@ Ko;’ea '

Handling Interrupts

" ret_from _intr()
" arch/x86/entry/entry 64.S,
= kernel/sched/core.c :preempt schedule irq(void)

= When returning to user space

= schedule() if reschedule is pending (need resched is
set)

= When returning to kernel space

= schedule() onlyif preempt count is zero

/proc/interrupts

= Statistics related to interrupts

$ cat /proc/interrupts

CPUO
128
9
3032
1

%)
130
125
7016
112

11862

I0-APIC 2-edge timer
I0-APIC 1-edge 18042
I0O-APIC 4-edge ttySo

I0-APIC 8-edge rtcO™———

I0-APIC 9-fasteoi acpi : .
we will use irq 8

IO-APIC 11-fasteoi enp@s3
I0-APIC 12-edge 18042
I0O-APIC 14-edge ata piix
I0-APIC 15-edge ata piix

Non-maskable interrupts
Local timer interrupts

Bottom Halves

= Deferring work
= Softirgs

= Statically defined (at compile time) bottom halves

= Running the same softirgs is blocked on the same
processor

= Other processor can run the same softirq (handler must
be reentrant)
= Within a softirq accessing a global data needs a critical section

= Cannot sleep

@Koream

Bottom Halves

= Deferring work (cont’d)
= Tasklets

= Dynamically created (at run time) bottom halves
= Built on top of softirgs

= Running the same tasklets is blocked on any processor
(handler does not need to be reentrant)

= Cannot sleep

= Work queues

" Queuing work to be performed later in a process
context

= Can sleep

@Koreah)

Synchronization

" Blocking preemption (preempt_count > 0)
= Per CPU data is safe (not SMP safe)

= |nterrupt is still enabled
= Potential synchronization issues with interrupt handlers

= Disabling interrupts
= Per CPU data is safe (not SMP safe)
= No concurrency with interrupt handlers

= Sleeping lock (semaphore)
= Data is safe across multiple CPUs (SMP safe)
= Should run in a process context

Implementing Softirgs

" softirg vec: handlers are statically allocated at
compile time

//in include/linux/interrupt.h

enum {
HI SOFTIRQ=0, TIMER_SOFTIRQ, NET_TX SOFTIRQ,
NET_RX_SOFTIRQ, BLOCK_SOFTIRQ, IRQ POLL_SOFTIRQ,
TASKLET SOFTIRQ, SCHED SOFTIRQ, HRTIMER_SOFTIRQ,
RCU_SOFTIRQ, NR_SOFTIRQS

s

struct softirqg action {
void(*action)(struct softirqg action *);

s

//in kernel/softirqg.c
static struct softirqg action softirqg _vec[NR_SOFTIRQS];

@ Korea '

Implementing Softirgs

" Executing softirqgs

= Usually, an interrupt handler marks its softirq before
returning

= At a suitable time, the softirg runs

" Pending softirgs are checked and executed

" |n the return from hardware interrupt code path
= Runs in the interrupt context
= May also be handled in ksoftirqd about 2 msec later

" |n the ksoftirqd kernel thread
= Runs in a process context

= do softirg explicitly checks and executes pending

softirgs
@K?feam

Implementing Softirg

" do softirg: invokes the handlers

void _ do_softirq() {
u32 pending;

pending = local softirq_pending();
if (pending) {
struct softirqg action *h;
set _softirqg pending(®); //reset the pending bitmask

h = softirqg vec;

do {
if (pending & 1)

h->action(h); //invoking the handler

h++;
pending >>= 1;

} while (pending);

}

//hand over to ksoftirqd after 2+ msec

@ Korea '

Using Softirgs

Assigning an index

Softirq Types
Tasklet

HI SOFTIRQ
TIMER SOFTIRQ
NET TX SOFTIRQ
NET RX SOFTIRQ
BLOCK SOFTIRQ
TASKLET SOFTIRQ
SCHED SOFTIRQ
HRTIMER SOFTIRQ

RCU SOFTIRQ

Priority

~N o o A~ w N =~ O

(00

Softirq Description
High-priority tasklets
Timers

Send network packets
Receive network packets
Block devices

Normal priority tasklets
Scheduler
High-resolution timers

RCU locking

Using Softirgs

= Registering handler

//e.g. 1in net/core/dev.c
static int net dev_init(void) {

open_softirq(NET _TX SOFTIRQ, net _tx action);
open_softirq(NET _RX SOFTIRQ, net _rx action);

" Raising softirq
raise_softirg(NET _TX SOFTIRQ); //mark it as pending

Tasklets

= Tasklets
= Built on top of softirgs
= HI_SOFTIRQ and TASKLET_SOFTIRQ,

= Similar to softirgs, but with simpler interface and
relaxed locking rules

= Tasklets do not need to be reentrant

= Have nothing to do with tasks

Implementing Tasklets

= Tasklet structure

struct tasklet struct {
struct tasklet struct *next; /* next tasklet in the list */

unsigned long state; /* state of the tasklet */

atomic t count; /* reference counter */

void (*func)(unsigned long); /* tasklet handler function */

unsigned long data; /* argument to the tasklet function */
}s
next: scheduled tasks are stored in tasket vec and tasklet hi vec 1lists
func: tasklet handler
data: argument to func
state: one of @, TASKLET_STATE SCHED, TASKLET_STATE_RUN
count: nonzero: disabled,

zero: enabled

.

Implementing Tasklets

= Scheduling Tasklets

void tasklet schedule(struct tasklet struct *t);
void tasklet hi schedule(struct tasklet struct *t);

= Simply return if the state is TASKLET STATE SCHED
(already scheduled case)

= Call _ tasklet schedule()
= See tasklet_schedule_common in kernel/softirqg.c

= Save the state of the interrupt system and disable local
interrupts (nothing on this processor will interfere)

= Add tasklet to tasklet vec or tasklet hi vec
= Raise TASKLET SOFTIRQ or HI SOFTIRQ
= Restore the interrupts to their previous state

.

Using Tasklets

struct tasklet_struct {
struct tasklet_struct *next;
unsigned long state;
atomic_t count;

" Declaring/initializing a tasklet = vois (func)unsienea 10me);

unsigned long data;
}s
#define DECLARE_TASKLET(name, func, data) \

struct tasklet struct name = { NULL, ©, ATOMIC INIT(®), func, data }

#define DECLARE_TASKLET DISABLED(name, func, data) \
struct tasklet struct name = { NULL, ©, ATOMIC INIT(1), func, data }

void tasklet init(struct tasklet struct *t,

void (*func)(unsigned long),
unsigned long data);

" Writing a tasklet

void tasklet handler(unsigned long data) {

}

@Koreah)

Using Tasklets

" Scheduling a tasklet
/* mark my tasklet as pending */
tasklet schedule(&my_ tasklet);

/* disable tasklet */
tasklet disable(&my tasklet);

/* enable tasklet */
tasklet enable(&my tasklet);

@ Korea)

Using Work Queues

= \Work Queues
= Defer work into a kernel thread

" Runs in a process context
= Schedulable (can sleep)

= Softirgs/tasklets vs work queues

= Deferred work needs to sleep — use work
gueues

= Deferred work need not sleep — use
softirqs/tasklets

Implementing Work Queues

= \Worker threads

= Create kernel threads to handle work queued

= Worker threads are called event/n, where n is the
processor number

Implementing Work Queues

= Data structures

struct workqueue_ struct { /* one per type of worker thread */
struct cpu workqueue struct[NR_CPUS];
struct list head list; /* 1list of all workqueues */

}s

struct cpu workqueue struct { /* one per cpu */
spinlock t lock; /* lock protecting this structure */

struct list head worklist; /* list of work struct */

wait queue head t more_work; /* when blocked, task will be moved to */
struct work struct *current_struct;

struct workqueue struct *wqg; /* associated workqueue struct */

task t *thread; /* associated thread */

}s

struct work struct { /* one per deferrable function */
atomic long t data;
struct list head entry; /* linked list */

work func t func;

; @
L

Implementing Work Queues

= worker_ thread() function

__cancel_work_timer() in kernel/workqueue.c

for (55) {
//add current to wait and add wait to more_work
prepare_to wait(&cwqg->more_work, &wait, TASK INTERRUPTIBLE);

if (list empty(&cwg->worklist))
schedule(); //context switch

//remove wait from more_work and
//add current to run queue
finish wait(&cwg->more work, &wait);

run_workqueue(cwq);

Implementing Work Queues

" run_workqueue() function

while (!list empty(&cwg->worklist)) {
struct work struct *work;
work func t f;
void *data;

work = list entry(cwg->worklist.next,
struct work struct, entry);
f = work->func;
list del init(cwg->worklist.next);
work clear pending(work);

f(work) ;

@ Korea)

Using Work Queues

" Creating work

#include <linux/workqueue.h>

//to create a structure
DECLARE_WORK(name, void(*func)(void *));

//to create work via a pointer
INIT WORK(struct work struct *work, void(*func)(void *));

= Work queue handler

void work handler(struct work struct *work)

= Handler runs in a process context

@ Ko;’ea '

Using Work Queues

= Scheduling work

//to schedule immediately
schedule work(&work);

//to schedule after delay
schedule delayed work(&work, delay);

" Flushing work

//to wait until all entries in the queue are executed
void flush_scheduled work(void);

//to cancel the delayed work
int cancel delayed work(struct work struct *work);

@ Korea '

Using Work Queues

" Creating a new work queue

struct workqueue struct *create workqueue(const char *name);

//example
struct workqueue struct *keventd wq;
keventd_wq = create_workqueue("events");

= Scheduling on the created work queue

int queue_work(struct workqueue struct *wqg, struct work struct *work);
int queue_delayed work(struct workqueue struct *wq,

struct work struct *work,

unsigned long delay);
void flush_workqueue(struct workqueue struct *wq);

@ Korea)

Assignment 3

= Using this assignment, we will practice top-
half and bottom-half interrupt handlers

= Due date 4/11/2024

" Create a work_struct rtc_work with a handler

static int wqg_count;

static void work queue rtc _handler(struct work struct *dummy);
//TODO: increase wqg_count in a critical section

// use a semaphore for the critical section

//TODO: printk("rtc: work _queue_rtc_handler: %d\n", wg count);

@Koreah)

Assignment 3

= Create a tasklet_struct rtc_tasklet with a handler

static int tl count;

static void tasklet rtc_handler(unsigned long dummy);
//TODO: increase tl count in a critical section

// use a spinlock for the critical section

//TODO: printk("rtc: tasket rtc_handler: %d\n", tl count);
//TODO: schedule rtc_work

= Write an irq handler for RTC

static irgreturn t irqg_rtc_handler(int irqg, void *dev);
//TODO: increase rtc_count in a critical section

// use a spinlock for the critical section

//TODO: printk("rtc: irqg_rtc_handler: %d\n", rtc _count);
//TODO: schedule rtc_tasklet

//TODO: return IRQ _HANDLED

@ Ko;’ea '

Assignment 3

= Correct errors in threadfn

#define DELAY {\
long 1i;\
for(i = 0; i < 10L*1000*1000/*10 million*/; i++)\
/*do nothing*/;\

}
static int thr_done = ©; It disables interrupt: otherwise,

static int threadfn(void *unused) { deadlock from the interrupt handler
thr_done = 0;

while (!thr_done) {
rtc_count++; //use spin_lock irqgsave for the critical section

DELAY;
rtc_count--;

tl count++; //use spin _lock irqgsave for the critical section
DELAY;
tl count--;

wqg_count++; //use semaphore for the critical section
DELAY;
wqg_count--;

schedule();
}

return 9; (::>
} Korea

Assignment 3

= Write a system call that registers (if on is true) or
unregisters (if on is false) irg_rtc_handler

SYSCALL DEFINEl(handle_rtc, int, on)
if (on) {
//register irqg_rtc_handler
//- irq: 8,
//- flag: IRQF_SHARED,
//- name: "my rtc",
//- dev: (void*) 1
if (thr_done)
//run threadfn
}
else {
//unregister irqg_rtc_handler
if (!thr_done)
//stop threadfn by setting thr _done = 1
}

return 0;

} @Kmm.,.,..

Assignment 3

" To register rtc interrupt handler, change the
following param in drivers/rtc/rtc-cmos.c

retval = request_irg(rtc_irqg, rtc_cmos_int_handler,
0, dev_name(&cmos_rtc.rtc->dev),
cmos_rtc.rtc);

to

retval = request_irg(rtc_irqg, rtc_cmos_int handler,
IRQF SHARED, dev_name(&cmos_rtc.rtc->dev),
cmos_rtc.rtc);

@Koreah)

Assignment 3

= User space program

= Write rtc_on.c that registers the rtc handler

> rtc_on
> cat /proc/interrupts
CPU@
4: 15372 I0-APIC 4-edge ttySe
8: 149 I0-APIC 8-edge rtco, my_rtc

= Write rtc_off.c that unregisters the rtc handler

> rtc_off
> cat /proc/interrupts
CPUO
4: 15372 IO-APIC 4-edge ttySo
8: 149 IO-APIC 8-edge rtco

@Koream

Assignment 3

* To generate rtc interrupts

> sudo chmod ugo+w /sys/class/rtc/rtc@/wakealarm

> echo +1 > /sys/class/rtc/rtco/wakealarm

> dmesg

I_II_II_II_II_II_II_II_II_IE

31.
31.
31.
31.
31.
31.
31.
31.
31.

701752]
701754]
701757]
717374]
717375]
717378]
733025]
733026]
733084]

rtc:
rtc:
rtc:
rtc:
rtc:
rtc:
rtc:
rtc:
rtc:

irg_rtc_handler: 1

tasket _rtc_handler: 1
work queue_rtc_handler: 1
irq_rtc_handler: 2

tasket _rtc_handler: 2
work queue rtc_handler: 2
irg_rtc_handler: 3

tasket _rtc_handler: 3
work queue_rtc_handler: 3

@Koream ‘

