
CSE 306 Operating Systems
Process Management in Linux

YoungMin Kwon

The Process

 A process includes
 Code in text section
 Global variables in data section
 Resources like open files, pending signals
 Internal kernel data
 Processor state
 Memory address space with memory mappings
 One or more thread of execution

The Processes

 Processes provide
 A virtualized processor

 Gives a process the illusion that it is monopolizing the
system

 A virtual memory
 Let a process allocate and manage memory as if it

alone owned all memory in the system

The Processes

 In Linux
 fork() creates a process

 exec() family creates new address space and loads
a new program

 exit() terminates the process and frees its
resources

 wait() inquires the status of a terminated child

Process Descriptor

 Task list
 List of process descriptors

stored in a circular doubly
linked list

 Process descriptor
 task_struct defined in linux-

5.4.49/include/linux/sched.h
 Contains all the information

about a process

Process Descriptor

 Locating process descriptors
 thread_info structure is at the

bottom of the kernel stack
 task variable of thread_info

points to task_struct

Process Descriptor

 current_thread_info()
movl $-8192 %eax
andl %esp, %eax

 current macro is equivalent to
current_thread_info()->task

-8192 in binary
1…1 1110 0000 0000 0000

union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE / sizeof(long)];

};

Process State
 The state field of task_struct

 TASK_RUNNING: currently running or on a run-queue

 TASK_INTERRUPTABLE: blocked and waiting for some condition to exist
 On receiving a signal, can wake up prematurely

 TASK_UNINTERRUPTABLE: blocked and waiting for some condition to
exist
 Does not wake up when it receives a signal

 __TASK_TRACED: the process is being traced by another process
(debugger)

 __TASK_STOPPED: the process is not running and is not eligible to run

set_current_state(state) //changes the state of the current task

Process State

Process Context

 Process context
 Program execution in kernel space on behalf of

the process
 Through a system call or an exception
 current macro is valid

 Interrupt context
 Interrupt handler handling an interrupt

Process Family Tree

 init process
 Kernel starts init in the last step of the boot process
 init reads initscripts and execute more programs

 Family tree
 Each process has exactly one parent
 A process has zero, one, or more children
 Child processes whose parent are the same are called

siblings

Process Family Tree
 Related links in task_truct

 To iterate over child process descriptors

struct task_struct {
...

struct task_struct __rcu *real_parent; //real parent process
struct task_struct __rcu *parent;//recipient of SIGCHLD, wait4() reports

struct list_head children; //list of my children
struct list_head sibling; //linkage in my parent's children list

...
};

struct task_struct *task;
struct list_head *list;
list_for_each(list, ¤t->children) {

task = list_entry(list, struct task_struct, sibling);
/*task now points to one of current's children */

}

Process Creation
 copy_process() within fork() (kernel/fork.c)

 dup_task_struct()
 Create kernel stack, thread_info, task_struct

 Variables of task_struct are cleared or initialized

 Child’s state is set to TASK_UNINTERRUPTABLE

 Update flags member
 PF_SUPERPRIV is cleared, PF_FORKNOEXEC is set

 Assign a new PID to the child

 Duplicate or share
 Open files, filesystem information, signal handlers, process

address space, and namespace

Process Creation

 Copy-on-Write (COW)
 A technique to delay or prevent copying of data
 Rather than duplicate the process address space,

parent and child share a single copy
 When data is actually written, each process receives a

unique copy

 Overhead of fork()
 Duplication of page table, creation of a process

descriptor (task_struct)

Process Termination
 do_exit() in kernel/exit.c

 Sets PF_EXITING in the flags of task_struct
 Calls del_timer_sync() to remove any kernel timers
 Calls acct_update_integrals() to write out accounting

info
 Calls exit_mm(), exit_files(), and exit_fs() to release

the objects
 Sets the exit_code member of task_struct
 Calls exit_notify() to send signals to the task’s parent
 Calls schedule() to switch to new process

Process Termination

 After do_exit
 The process descriptor for the terminated process

still exists
 The process is a zombie and is unable to run
 wait() family of functions get the exit code and

destroy the process descriptor

Kernel Threads

 Kernel threads
 For the kernel to perform operations in the

background

 Kernel threads are a process
 Schedulable and preemptable

 Kernel threads don’t have a user address space
 mm pointer of task_struct is NULL
 Operates only in kernel-space

Kernel Threads

 Some interfaces in include/linux/kthread.h
struct task_struct *kthread_create_on_node(int(*threadfn)(void *data),

void *data,
int node,
const char namefmt[], ...);

#define kthread_run(threadfn, data, namefmt, ...) \
({ \

struct task_struct *__k \
= kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \

if (!IS_ERR(__k)) \
wake_up_process(__k); /*start the task*/ \

__k; \
})

int kthread_stop(struct task_struct *k);

Example: exploring task_structs
#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/fs_struct.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>

static void print_task(struct task_struct *task, int depth)
{

char buf[100];

printk("%*c%5d:%s\n",
depth*4, '+',
task->pid,
d_path(&task->fs->pwd, buf, sizeof(buf)));

}

static void print_family(struct task_struct *task, int depth)
{

struct list_head *pos;
print_task(task, depth); //self

list_for_each(pos, &task->children) {
struct task_struct *t;
//t = list_entry(pos, struct task_struct, sibling);
t = container_of(pos, struct task_struct, sibling);
print_task(t, depth + 1); //child

}
}

static int threadfn(void *data) {
int pid = (long)data;
struct list_head *head = &init_task.tasks;
struct list_head *pos;
for (pos = head; pos->next != head; pos = pos->next) {

struct task_struct *task = container_of(
pos->next, struct task_struct, tasks);

if (task->pid == pid) {
print_family(task, 0);
return 0;

}
}
printk("pid %d not found\n", pid);
return -1;

}

SYSCALL_DEFINE1(print_family, int, pid) {
kthread_run(threadfn, (void*)(long)pid, "printfamily_%d", 0);
return 0;

}

User-Space Program

//wrapper.c
…
#define __NR_print_family 453
…
long print_family(int pid)
{

return syscall(__NR_print_family, pid);
}

//print_family.c
…
int main()
{

long res = print_family(1);
printf("%ld\n", res);

}

ykwon4@youngbox2:~/ home$dmesg
...
[162.737252] + 1:/
[162.737257] + 982:/
[162.737259] + 1000:/
[162.737262] + 1602:/
...
[162.737270] + 1837:/
[162.737273] + 1843:/var/spool/cron
[162.737275] + 1848:/
...
[162.737291] + 1979:/
[162.737293] + 2102:/etc/avahi
[162.737295] + 2122:/
[162.737297] + 2180:/
[162.737299] + 2199:/var/lib/lightdm
[162.737301] + 2203:/
[162.737303] + 2213:/var/lib/lightdm
[162.737304] + 2222:/
[162.737306] + 2230:/var/lib/lightdm
[162.737308] + 2232:/var/lib/lightdm
[162.737310] + 2234:/var/lib/lightdm
[162.737313] + 2289:/proc
[162.737315] + 2288:/
[162.737317] + 2312:/
[162.737319] + 2319:/

Processes and Threads

 Two characteristics of a process
 Resource ownership

 Virtual address space (program, data, stack, PCB…)
 Main memory, I/O devices, files

 Scheduling/execution
 Execution of a process follows an execution path
 Execution may be interleaved with that of other

processes

Processes and Threads

 Resource ownership and Scheduling/execution
can be treated independently by the OS

 Thread (lightweight process): the unit of
dispatching

 Process (task): the unit of resource ownership

Why Threads

 Parallel execution
 Without relying on interrupts, timers, context switches
 Parallel entities sharing an address space and data

 Easier and faster to create and destroy than processes
 10 ~ 100 times faster

 Performance gain
 Not much for CPU bounded applications
 Substantial for I/O bounded applications

 Real parallelism with multiple CPUs

Multithreading

 Threads within a process have
 Thread execution state (Running, Ready, …)
 Saved thread context (PC, registers, …)
 Execution stack
 Per-thread static storage for local variables
 Access to resources shared with other threads in

the process

Multithreading
 All threads of a process share the states and

resources of the process
 If a thread alters data, other threads will see the

change
 If a thread opens a file with a read privilege, others

can also read the file

POSIX Threads (Pthreads)
 A standard interface for manipulating threads from C

programs

 Defines about 60 functions that allow programs
 to create, kill, and reap threads
 to share data safely with peer threads
 to notify peers about changes in the system state

Threads in Linux

 Threads of a process
 Share memory address space
 Share open files and other resources

 Thread in Linux
 Threads are a process that share certain resources

with other processes
 Each thread has a unique task_struct and appears

to the kernel as a normal process

Thread in Linux

 Creating a thread
clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

#define CLONE_VM 0x00000100 //set if VM shared between processes
#define CLONE_FS 0x00000200 //set if fs info shared between processes
#define CLONE_FILES 0x00000400 //set if open files shared between processes
#define CLONE_SIGHAND 0x00000800 //set if signal handlers and blocked signals shared
...

Assignment 2

 In this assignment, we will practice
 Using and navigating task_struct
 Making a kernel thread
 Thread synchronization using semaphore

 Submit the files you changed or added
 Implement the system call in print_tree.c
 Mark your change with //CSE306 tag
 Due date: 4/4/2024

Assignment 2
 Write a system call that returns the whole

family tree from the init process

SYSCALL_DEFINE2(print_tree, char*, buf, int, buflen);

 System call number for print_tree is 454
 The output is returned in buf as a string
 Prepare an internal buffer of buflen using kmalloc

Assignment 2
 For each process, the corresponding line in the

output string should include
 PID (task->pid)
 tty name (task->signal->tty->name)
 total elapsed time in sec.msec format

task_cputime(task, &utime, &stime);
msec = (utime+stime) / 1000000;

 process name (task->comm)
 Each line should be indented by the depth of the node

in the tree

 Use sprintf

Assignment 2
 A pointer to the init task descriptor is &init_task
 Visit the child tasks in the depth-first traversal

order
 Recursion is not recommended due to the limited

kernel stack size

static void print_tree(struct task_struct *task, int depth)
{

struct list_head *pos;
printk("%*d\n", depth*4, task->pid)

list_for_each(pos, &task->children) {
struct task_struct *child;
child = list_entry(pos, struct task_struct, sibling);

print_tree(child, depth + 1);
}

}

Assignment 2

 To remove recursion, implement a stack
explicitly

struct task_frame {
struct task_struct *task;
int depth;

};
static struct task_frame frame_stack[10000];
static int frame_sp = 0;
static void push_frame(struct task_struct *task, int depth);
static void pop_frame(struct task_struct **task, int *depth);

Assignment 2

 Make print_tree a thread function
 Use list_for_each_prev to visit child processes in

the reverse order
 When done, increase the semaphore to unblock

the system call function

struct ptree_param {
struct task_struct *task;
struct semaphore *sem;
int buflen;
char *buf;

};
static int print_tree(void *data) { //thread function

struct ptree_param *p = (struct ptree_param*) data;
…

Assignment 2

 In sys_print_tree (system call handler),
 Run print_tree in a kernel thread
 Wait for the thread to finish by decreasing the

semaphore

struct semaphore …;

void sema_init(struct semaphore *sem, int val);

void down(struct semaphore *sem);

void up(struct semaphore *sem);

Assignment 2

 Header files to include

#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/sched/cputime.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/uaccess.h>

Assignment 2 (user-space program)

//wrapper.c
#define __NR_print_tree 454

long print_tree (char *buf, int buflen) {
return syscall(__NR_print_tree, buf, buflen);

}

//print_tree.c
int main() {

char buf[4096];
long res = print_tree(buf, sizeof(buf));
if (res)

printf("%ld\n", res);
else

printf("%ld\n%s\n", res, buf);
}

Assignment 2 (sample output)
ykwon4@youngbox2:~/home$./a.out
0
+ 0:.:0.104:swapper/0

+ 1:.:1.244:systemd
+ 987:.:0.110:systemd-journal
+ 1829:.:0.23:avahi-daemon

+ 1842:.:0.0:avahi-daemon
+ 1832:.:0.6:acpid
+ 1961:.:0.21:lightdm

+ 1967:tty7:0.514:Xorg
+ 2053:.:0.10:lightdm

+ 2108:.:0.1:lightdm-greeter
+ 2142:.:0.335:unity-greeter

+ 2194:.:0.3:lightdm
+ 1966:.:0.6:systemd-hostnam
+ 1970:tty1:0.3:agetty
+ 1976:ttyS0:0.23:login

+ 2349:ttyS0:0.67:bash
+ 2366:ttyS0:0.1:a.out

+ 2063:.:0.17:systemd
+ 2077:.:0.0:(sd-pam)

