CSE 306 Operating Systems
Process Management in Linux

The Process

= A process includes
= Code in text section
= Global variables in data section
= Resources like open files, pending signals
" I[nternal kernel data

= Processor state
" Memory address space with memory mappings
= One or more thread of execution

@ Korea)

The Processes

= Processes provide

= A virtualized processor

= Gives a process the illusion that it is monopolizing the
system

= Avirtual memory

" Let a process allocate and manage memory as if it
alone owned all memory in the system

@Koream ‘

The Processes

" |n Linux
= fork() creates a process

= exec() family creates new address space and loads
a hew program

" exit() terminates the process and frees its
resources

= wait() inquires the status of a terminated child

@Koreah)

Process Descriptor

= Task list

" List of process descriptors
stored in a circular doubly

linked list f

" Process descriptor

" fask struct defined in linux-
5.4.49/include/linux/sched.h

= Contains all the information
about a process

> struct task_struct

-
f-h struct task_struct

\
“struct task_struct

|-
struct task=struct

unsigned long state;

int prio;

unsigned long policy;
struct task_struct *parent;
struct list_head tasks;

pid_t pid: 2

\

v
the task list

@ Korea '

0x015ffff |

0x015f6000 | :

00152878 |

0x015fa034

0x015fa000

Process Descriptor

" | ocating process descriptors

" thread info structure is at the
bottom of the kernel stack

= task variable of thread info
points to task struct

Process
Descriptor
“ | «—esp

]

<— current i
D e]

Process Descriptor

-8192 in binary
» current thread info() 1.1 1110 0oee e0ee 0000

movl $-8192 %eax
andl %esp, %eax

" current macro is equivalent to
current_thread info()->task

union thread union {
struct thread info thread_info;
unsigned long stack[THREAD SIZE / sizeof(long)];

}s

(::::)erea

Process State
"= The state field of task struct

= TASK _RUNNING: currently running or on a run-queue

TASK_INTERRUPTABLE: blocked and waiting for some condition to exist
= On receiving a signal, can wake up prematurely

TASK_UNINTERRUPTABLE: blocked and waiting for some condition to
exist

= Does not wake up when it receives a signal

~ TASK_TRACED: the process is being traced by another process
(debugger)

~_TASK_STOPPED: the process is not running and is not eligible to run

set current state(state) //changes the state of the current task

@ Korea '

Process State

Scheduler dispatches task to run:
schedule() calls context_switch().

Existing task calls
fork() and creates
a new process.

Task is terminated.

Task exits via
do_exit.

Task forks.

TASK_RUNNING
TASK_RUNNING

(ready but
not running)

(running)

Task is preempted
by higher priority task.

Task sleeps on wait queue
for a specific event.
TASK_INTERRUPTIBLE
or
TASK_UNINTERRUPTIBLE J<U
(waiting)

Event occurs and task is woken up
and placed back on the run queue.

Process Context

" Process context

" Program execution in kernel space on behalf of
the process

" Through a system call or an exception

" current macro is valid

" Interrupt context

= [nterrupt handler handling an interrupt

Process Family Tree

= nit process
= Kernel starts init in the last step of the boot process
" init reads initscripts and execute more programs

= Family tree
= Each process has exactly one parent
= A process has zero, one, or more children

= Child processes whose parent are the same are called
siblings

@Koreah)

Process Family Tree

= Related links in task_truct

struct task struct {

struct task struct _ rcu *real parent; //real parent process
struct task struct _ rcu *parent;//recipient of SIGCHLD, wait4() reports

struct list head children; //list of my children
struct list head sibling; //linkage in my parent's children list

b

= To iterate over child process descriptors

struct task struct *task;

struct list head *list;

list for each(list, ¤t->children) {
task = list entry(list, struct task struct, sibling);
/*task now points to one of current's children */

@ Korea '

Process Creation
= copy process() within fork() (kernel/fork.c)

= dup_ task struct()
= Create kernel stack, thread_info, task_struct

= Variables of task struct are cleared or initialized
= Child’s state is set to TASK_UNINTERRUPTABLE

= Update flags member
= PF_SUPERPRIV is cleared, PF_FORKNOEXEC is set

= Assign a new PID to the child

= Duplicate or share

= Open files, filesystem information, signal handlers, process
address space, and namespace

.

Process Creation

= Copy-on-Write (COW)
= A technique to delay or prevent copying of data

= Rather than duplicate the process address space,
parent and child share a single copy

= When data is actually written, each process receives a
unique copy

= Overhead of fork()

= Duplication of page table, creation of a process
descriptor (task struct)

Process Termination

= do exit() in kernel/exit.c
= Sets PF_EXITING in the flags of task struct
= Calls del timer sync() to remove any kernel timers

= Calls acct update integrals() to write out accounting
info

= Calls exit mm(), exit files(), and exit fs() to release
the objects

= Sets the exit code member of task struct
= Calls exit notify() to send signals to the task’s parent
= Calls schedule() to switch to new process

.

Process Termination

" After do exit

" The process descriptor for the terminated process
still exists

" The process is a zombie and is unable to run

= wait() family of functions get the exit code and
destroy the process descriptor

Kernel Threads

= Kernel threads

" For the kernel to perform operations in the
background

= Kernel threads are a process
= Schedulable and preemptable

= Kernel threads don’t have a user address space

= mm pointer of task structis NULL
= Operates only in kernel-space

Kernel Threads

= Some interfaces in include/linux/kthread.h

struct task struct *kthread create on _node(int(*threadfn)(void *data),
void *data,

int node,
const char namefmt[], ...);
#define kthread run(threadfn, data, namefmt, ...) \
({ \
struct task struct *_ k \
= kthread create(threadfn, data, namefmt, ## VA ARGS); \
if (!IS ERR(__k)) \
wake up_process(__k); /*start the task*/ \
_k; \
})

int kthread _stop(struct task struct *k);

.

Example: exploring task structs

#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/fs_struct.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>

static void print_task(struct task struct *task, int depth)

{
char buf[100];

printk("%*c%5d:%s\n",
depth*4, '+',
task->pid,
d path(&task->fs->pwd, buf, sizeof(buf)));

(::::)erea

static void print_family(struct task struct *task, int depth)
{

struct list head *pos;

print_task(task, depth); //self

list for each(pos, &task->children) {
struct task struct *t;
//t = list _entry(pos, struct task struct, sibling);
t = container_of(pos, struct task struct, sibling);
print_task(t, depth + 1); //child

@ Korea '

static int threadfn(void *data) {
int pid = (long)data;
struct list head *head = &init task.tasks;
struct list head *pos;
for (pos = head; pos->next != head; pos = pos->next) {
struct task struct *task = container_ of(
pos->next, struct task struct, tasks);
if (task->pid == pid) {
print_family(task, ©0);
return 0;
}
}
printk("pid %d not found\n", pid);
return -1;

}

SYSCALL DEFINEl(print family, int, pid) {
kthread run(threadfn, (void*)(long)pid, "printfamily %d", 0);
return 9;

@Koreah)

User-Space Program

//wrapper.c
#define _ NR _print family 453

long print_family(int pid)
{

}

return syscall(_NR print family, pid);

//print_family.c

int main()

{
long res = print_family(1);
printf("%1d\n", res);

@ Korea '

ykwon4@youngbox2:~/

e
.

/e
)

162

162

162

| p I e B e B s B ey B s I s B o Y s B e B s B e Y e Y e Y sy R
)

162

162.
162.
162.
162.

162.
162.
162.

162.
162.
162.
.737297]
162.
162.
162.

737252] +

737257]
737259]
737262]

7372701
737273]
737275]

737291]
737293]
737295]

737299]
737301]
737303]

.737304]
162.
162.
162.
.737313]
162.
162.

737306]
737308]
737310]

737315]
737317]

.737319]

+

+ +

+ + + + + +++ A+ + o+

home$dmesg

1:/

982:
1000:
1602:

1837:
1843:
1848:

1979:
2102:

2122
2180

2199:
2203:
2213:

2222

2230:
2232:
2234:

2289

2288:
2312:

2319

/
/
/

/

/var/spool/cron

/
/

/etc/avahi

2/

2/
/var/lib/lightdm
/
/var/lib/lightdm
2/
/var/lib/lightdm
/var/lib/lightdm
/var/lib/lightdm
:/proc

/

/

2/

@Koream_

Processes and Threads

" Two characteristics of a process

= Resource ownership
= Virtual address space (program, data, stack, PCB...)
= Main memory, I/O devices, files

= Scheduling/execution
= Execution of a process follows an execution path

= Execution may be interleaved with that of other
processes

Processes and Threads

= Resource ownership and Scheduling/execution
can be treated independently by the OS

= Thread (lightweight process): the unit of
dispatching

" Process (task): the unit of resource ownership

Why Threads

= Parallel execution
= Without relying on interrupts, timers, context switches
= Parallel entities sharing an address space and data

= Easier and faster to create and destroy than processes
= 10~ 100 times faster

" Performance gain
= Not much for CPU bounded applications
= Substantial for |/O bounded applications

= Real parallelism with multiple CPUs

Multithreading

" Threads within a process have
" Thread execution state (Running, Ready, ...)
= Saved thread context (PC, registers, ...)
= Execution stack
" Per-thread static storage for local variables

= Access to resources shared with other threads in
the process

Multithreading

= All threads of a process share the states and

resources of the process

= |f a thread alters data, other threads will see the

change

= |f a thread opens a file with a read privilege, others

can also read the file

Per-process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per-thread items
Program counter
Registers

Stack

State

@ Korea)

POSIX Threads (Pthreads)

= A standard interface for manipulating threads from C
programs

= Defines about 60 functions that allow programs

to create, kill, and reap threads
to share data safely with peer threads
to notify peers about changes in the system state

Thread call Description

Pthread_create | Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit
Pthread_yield Release the CPU to let another thread run

@ Korea '

Threads in Linux

" Threads of a process
= Share memory address space
= Share open files and other resources

= Thread in Linux

" Threads are a process that share certain resources
with other processes

" Each thread has a unique task struct and appears
to the kernel as a normal process

@Koreah)

Thread in Linux

" Creating a thread
clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE SIGHAND, ©0);

#define CLONE_VM 0x00000100 //setif VIV shared between processes

#define CLONE_FS 0x00000200 //set if fs info shared between processes
#define CLONE_FILES 0x00000400 //setif open files shared between processes
#define CLONE_SIGHAND ©x00000800 //set if signal handlers and blocked signals shared

@ Korea '

Assignment 2

" |n this assighment, we will practice
= Using and navigating task struct
= Making a kernel thread
" Thread synchronization using semaphore

= Submit the files you changed or added
" Implement the system call in print_tree.c
= Mark your change with //CSE306 tag
= Due date: 4/4/2024

Assignment 2

= Write a system call that returns the whole
family tree from the init process

SYSCALL DEFINE2(print_tree, char*, buf, int, buflen);

= System call number for print_tree is 454
" The output is returned in buf as a string
" Prepare an internal buffer of buflen using kmalloc

Assignment 2

" For each process, the corresponding line in the
output string should include
= PID (task->pid)
= tty name (task->signal->tty->name)

= total elapsed time in sec.msec format
task cputime(task, &utime, &stime);
msec = (utime+stime) / 1000000;

" process name (task->comm)

= Each line should be indented by the depth of the node
in the tree

= Use sprintf

Assignment 2

= A pointer to the init task descriptor is &init_task

= Visit the child tasks in the depth-first traversal
order

= Recursion is not recommended due to the limited
kernel stack size

static void print_tree(struct task struct *task, int depth)

{

struct list head *pos;
printk("%*d\n", depth*4, task->pid)

list for each(pos, &task->children) {
struct task struct *child;

child = list entry(pos, struct task struct, sibling);

print tree(child, depth + 1);

Assignment 2

" To remove recursion, implement a stack
explicitly

struct task frame {
struct task struct *task;
int depth;
¥
static struct task frame frame stack[10000];
static int frame_sp = 0;
static void push_frame(struct task struct *task, int depth);
static void pop_frame(struct task struct **task, int *depth);

@Koreah)

Assignment 2

Make print_tree a thread function

= Use list for each prev to visit child processes in
the reverse order

= When done, increase the semaphore to unblock
the system call function

struct ptree param {
struct task struct *task;
struct semaphore *sem;
int buflen;
char *buf;
}s
static int print_tree(void *data) { //thread function
struct ptree param *p = (struct ptree param*) data;

@Koreah)

Assignment 2

" |n sys_print_tree (system call handler),
= Run print_tree in a kernel thread

= Wait for the thread to finish by decreasing the
semaphore

struct semaphore ..;
void sema_init(struct semaphore *sem, int val);
void down(struct semaphore *sem);

void up(struct semaphore *sem);

@Koreah)

Assignment 2

= Header files to include

#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_ task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/sched/cputime.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/uaccess.h>

(::::)erea

Assignment 2 (user-space program)

//wrapper.c
#define _ NR _print tree 454

long print_tree (char *buf, int buflen) {
return syscall(__NR print tree, buf, buflen);

}

//print_tree.c
int main() {
char buf[4096];
long res = print_tree(buf, sizeof(buf));
if (res)
printf("%1d\n", res);
else
printf("%1d\n%s\n", res, buf);

.

Assignment 2 (sample output)

ykwon4@youngbox2:~/home$./a.out
0
+ 0:.:0.104:swapper/0
+ 1:.:1.244:systemd
+ 987:.:0.110:systemd-journal
+ 1829:.:0.23:avahi-daemon
+ 1842:.:0.0:avahi-daemon
+ 1832:.:0.6:acpid
+ 1961:.:0.21:1ightdm
+ 1967:tty7:0.514:Xorg
+ 2053:.:0.10:1ightdm
+ 2108:.:0.1:1lightdm-greeter
+ 2142:.:0.335:unity-greeter
+ 2194:.:0.3:1lightdm
+ 1966:.:0.6:systemd-hostnam
1970:ttyl:0.3:agetty
+ 1976:ttyS0:0.23:1ogin
+ 2349:ttyS0:0.67:bash
+ 2366:ttyS0:0.1:a.out
+ 2063:.:0.17:systemd
+ 2077:.:0.0:(sd-pam)

=+

@Koreah)

