
CSE 306 Operating Systems
Process Management in Linux

YoungMin Kwon

The Process

 A process includes
 Code in text section
 Global variables in data section
 Resources like open files, pending signals
 Internal kernel data
 Processor state
 Memory address space with memory mappings
 One or more thread of execution

The Processes

 Processes provide
 A virtualized processor

 Gives a process the illusion that it is monopolizing the
system

 A virtual memory
 Let a process allocate and manage memory as if it

alone owned all memory in the system

The Processes

 In Linux
 fork() creates a process

 exec() family creates new address space and loads
a new program

 exit() terminates the process and frees its
resources

 wait() inquires the status of a terminated child

Process Descriptor

 Task list
 List of process descriptors

stored in a circular doubly
linked list

 Process descriptor
 task_struct defined in linux-

5.4.49/include/linux/sched.h
 Contains all the information

about a process

Process Descriptor

 Locating process descriptors
 thread_info structure is at the

bottom of the kernel stack
 task variable of thread_info

points to task_struct

Process Descriptor

 current_thread_info()
movl $-8192 %eax
andl %esp, %eax

 current macro is equivalent to
current_thread_info()->task

-8192 in binary
1…1 1110 0000 0000 0000

union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE / sizeof(long)];

};

Process State
 The state field of task_struct

 TASK_RUNNING: currently running or on a run-queue

 TASK_INTERRUPTABLE: blocked and waiting for some condition to exist
 On receiving a signal, can wake up prematurely

 TASK_UNINTERRUPTABLE: blocked and waiting for some condition to
exist
 Does not wake up when it receives a signal

 __TASK_TRACED: the process is being traced by another process
(debugger)

 __TASK_STOPPED: the process is not running and is not eligible to run

set_current_state(state) //changes the state of the current task

Process State

Process Context

 Process context
 Program execution in kernel space on behalf of

the process
 Through a system call or an exception
 current macro is valid

 Interrupt context
 Interrupt handler handling an interrupt

Process Family Tree

 init process
 Kernel starts init in the last step of the boot process
 init reads initscripts and execute more programs

 Family tree
 Each process has exactly one parent
 A process has zero, one, or more children
 Child processes whose parent are the same are called

siblings

Process Family Tree
 Related links in task_truct

 To iterate over child process descriptors

struct task_struct {
...

struct task_struct __rcu *real_parent; //real parent process
struct task_struct __rcu *parent;//recipient of SIGCHLD, wait4() reports

struct list_head children; //list of my children
struct list_head sibling; //linkage in my parent's children list

...
};

struct task_struct *task;
struct list_head *list;
list_for_each(list, ¤t->children) {

task = list_entry(list, struct task_struct, sibling);
/*task now points to one of current's children */

}

Process Creation
 copy_process() within fork() (kernel/fork.c)

 dup_task_struct()
 Create kernel stack, thread_info, task_struct

 Variables of task_struct are cleared or initialized

 Child’s state is set to TASK_UNINTERRUPTABLE

 Update flags member
 PF_SUPERPRIV is cleared, PF_FORKNOEXEC is set

 Assign a new PID to the child

 Duplicate or share
 Open files, filesystem information, signal handlers, process

address space, and namespace

Process Creation

 Copy-on-Write (COW)
 A technique to delay or prevent copying of data
 Rather than duplicate the process address space,

parent and child share a single copy
 When data is actually written, each process receives a

unique copy

 Overhead of fork()
 Duplication of page table, creation of a process

descriptor (task_struct)

Process Termination
 do_exit() in kernel/exit.c

 Sets PF_EXITING in the flags of task_struct
 Calls del_timer_sync() to remove any kernel timers
 Calls acct_update_integrals() to write out accounting

info
 Calls exit_mm(), exit_files(), and exit_fs() to release

the objects
 Sets the exit_code member of task_struct
 Calls exit_notify() to send signals to the task’s parent
 Calls schedule() to switch to new process

Process Termination

 After do_exit
 The process descriptor for the terminated process

still exists
 The process is a zombie and is unable to run
 wait() family of functions get the exit code and

destroy the process descriptor

Kernel Threads

 Kernel threads
 For the kernel to perform operations in the

background

 Kernel threads are a process
 Schedulable and preemptable

 Kernel threads don’t have a user address space
 mm pointer of task_struct is NULL
 Operates only in kernel-space

Kernel Threads

 Some interfaces in include/linux/kthread.h
struct task_struct *kthread_create_on_node(int(*threadfn)(void *data),

void *data,
int node,
const char namefmt[], ...);

#define kthread_run(threadfn, data, namefmt, ...) \
({ \

struct task_struct *__k \
= kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \

if (!IS_ERR(__k)) \
wake_up_process(__k); /*start the task*/ \

__k; \
})

int kthread_stop(struct task_struct *k);

Example: exploring task_structs
#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/fs_struct.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>

static void print_task(struct task_struct *task, int depth)
{

char buf[100];

printk("%*c%5d:%s\n",
depth*4, '+',
task->pid,
d_path(&task->fs->pwd, buf, sizeof(buf)));

}

static void print_family(struct task_struct *task, int depth)
{

struct list_head *pos;
print_task(task, depth); //self

list_for_each(pos, &task->children) {
struct task_struct *t;
//t = list_entry(pos, struct task_struct, sibling);
t = container_of(pos, struct task_struct, sibling);
print_task(t, depth + 1); //child

}
}

static int threadfn(void *data) {
int pid = (long)data;
struct list_head *head = &init_task.tasks;
struct list_head *pos;
for (pos = head; pos->next != head; pos = pos->next) {

struct task_struct *task = container_of(
pos->next, struct task_struct, tasks);

if (task->pid == pid) {
print_family(task, 0);
return 0;

}
}
printk("pid %d not found\n", pid);
return -1;

}

SYSCALL_DEFINE1(print_family, int, pid) {
kthread_run(threadfn, (void*)(long)pid, "printfamily_%d", 0);
return 0;

}

User-Space Program

//wrapper.c
…
#define __NR_print_family 453
…
long print_family(int pid)
{

return syscall(__NR_print_family, pid);
}

//print_family.c
…
int main()
{

long res = print_family(1);
printf("%ld\n", res);

}

ykwon4@youngbox2:~/ home$dmesg
...
[162.737252] + 1:/
[162.737257] + 982:/
[162.737259] + 1000:/
[162.737262] + 1602:/
...
[162.737270] + 1837:/
[162.737273] + 1843:/var/spool/cron
[162.737275] + 1848:/
...
[162.737291] + 1979:/
[162.737293] + 2102:/etc/avahi
[162.737295] + 2122:/
[162.737297] + 2180:/
[162.737299] + 2199:/var/lib/lightdm
[162.737301] + 2203:/
[162.737303] + 2213:/var/lib/lightdm
[162.737304] + 2222:/
[162.737306] + 2230:/var/lib/lightdm
[162.737308] + 2232:/var/lib/lightdm
[162.737310] + 2234:/var/lib/lightdm
[162.737313] + 2289:/proc
[162.737315] + 2288:/
[162.737317] + 2312:/
[162.737319] + 2319:/

Processes and Threads

 Two characteristics of a process
 Resource ownership

 Virtual address space (program, data, stack, PCB…)
 Main memory, I/O devices, files

 Scheduling/execution
 Execution of a process follows an execution path
 Execution may be interleaved with that of other

processes

Processes and Threads

 Resource ownership and Scheduling/execution
can be treated independently by the OS

 Thread (lightweight process): the unit of
dispatching

 Process (task): the unit of resource ownership

Why Threads

 Parallel execution
 Without relying on interrupts, timers, context switches
 Parallel entities sharing an address space and data

 Easier and faster to create and destroy than processes
 10 ~ 100 times faster

 Performance gain
 Not much for CPU bounded applications
 Substantial for I/O bounded applications

 Real parallelism with multiple CPUs

Multithreading

 Threads within a process have
 Thread execution state (Running, Ready, …)
 Saved thread context (PC, registers, …)
 Execution stack
 Per-thread static storage for local variables
 Access to resources shared with other threads in

the process

Multithreading
 All threads of a process share the states and

resources of the process
 If a thread alters data, other threads will see the

change
 If a thread opens a file with a read privilege, others

can also read the file

POSIX Threads (Pthreads)
 A standard interface for manipulating threads from C

programs

 Defines about 60 functions that allow programs
 to create, kill, and reap threads
 to share data safely with peer threads
 to notify peers about changes in the system state

Threads in Linux

 Threads of a process
 Share memory address space
 Share open files and other resources

 Thread in Linux
 Threads are a process that share certain resources

with other processes
 Each thread has a unique task_struct and appears

to the kernel as a normal process

Thread in Linux

 Creating a thread
clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

#define CLONE_VM 0x00000100 //set if VM shared between processes
#define CLONE_FS 0x00000200 //set if fs info shared between processes
#define CLONE_FILES 0x00000400 //set if open files shared between processes
#define CLONE_SIGHAND 0x00000800 //set if signal handlers and blocked signals shared
...

Assignment 2

 In this assignment, we will practice
 Using and navigating task_struct
 Making a kernel thread
 Thread synchronization using semaphore

 Submit the files you changed or added
 Implement the system call in print_tree.c
 Mark your change with //CSE306 tag
 Due date: 4/4/2024

Assignment 2
 Write a system call that returns the whole

family tree from the init process

SYSCALL_DEFINE2(print_tree, char*, buf, int, buflen);

 System call number for print_tree is 454
 The output is returned in buf as a string
 Prepare an internal buffer of buflen using kmalloc

Assignment 2
 For each process, the corresponding line in the

output string should include
 PID (task->pid)
 tty name (task->signal->tty->name)
 total elapsed time in sec.msec format

task_cputime(task, &utime, &stime);
msec = (utime+stime) / 1000000;

 process name (task->comm)
 Each line should be indented by the depth of the node

in the tree

 Use sprintf

Assignment 2
 A pointer to the init task descriptor is &init_task
 Visit the child tasks in the depth-first traversal

order
 Recursion is not recommended due to the limited

kernel stack size

static void print_tree(struct task_struct *task, int depth)
{

struct list_head *pos;
printk("%*d\n", depth*4, task->pid)

list_for_each(pos, &task->children) {
struct task_struct *child;
child = list_entry(pos, struct task_struct, sibling);

print_tree(child, depth + 1);
}

}

Assignment 2

 To remove recursion, implement a stack
explicitly

struct task_frame {
struct task_struct *task;
int depth;

};
static struct task_frame frame_stack[10000];
static int frame_sp = 0;
static void push_frame(struct task_struct *task, int depth);
static void pop_frame(struct task_struct **task, int *depth);

Assignment 2

 Make print_tree a thread function
 Use list_for_each_prev to visit child processes in

the reverse order
 When done, increase the semaphore to unblock

the system call function

struct ptree_param {
struct task_struct *task;
struct semaphore *sem;
int buflen;
char *buf;

};
static int print_tree(void *data) { //thread function

struct ptree_param *p = (struct ptree_param*) data;
…

Assignment 2

 In sys_print_tree (system call handler),
 Run print_tree in a kernel thread
 Wait for the thread to finish by decreasing the

semaphore

struct semaphore …;

void sema_init(struct semaphore *sem, int val);

void down(struct semaphore *sem);

void up(struct semaphore *sem);

Assignment 2

 Header files to include

#include <linux/syscalls.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init_task.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/sched/cputime.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/uaccess.h>

Assignment 2 (user-space program)

//wrapper.c
#define __NR_print_tree 454

long print_tree (char *buf, int buflen) {
return syscall(__NR_print_tree, buf, buflen);

}

//print_tree.c
int main() {

char buf[4096];
long res = print_tree(buf, sizeof(buf));
if (res)

printf("%ld\n", res);
else

printf("%ld\n%s\n", res, buf);
}

Assignment 2 (sample output)
ykwon4@youngbox2:~/home$./a.out
0
+ 0:.:0.104:swapper/0

+ 1:.:1.244:systemd
+ 987:.:0.110:systemd-journal
+ 1829:.:0.23:avahi-daemon

+ 1842:.:0.0:avahi-daemon
+ 1832:.:0.6:acpid
+ 1961:.:0.21:lightdm

+ 1967:tty7:0.514:Xorg
+ 2053:.:0.10:lightdm

+ 2108:.:0.1:lightdm-greeter
+ 2142:.:0.335:unity-greeter

+ 2194:.:0.3:lightdm
+ 1966:.:0.6:systemd-hostnam
+ 1970:tty1:0.3:agetty
+ 1976:ttyS0:0.23:login

+ 2349:ttyS0:0.67:bash
+ 2366:ttyS0:0.1:a.out

+ 2063:.:0.17:systemd
+ 2077:.:0.0:(sd-pam)

