CSE 306 Operating Systems
Processes

YoungMin Kwon

What is a Process

" A process consists of
" Program code
= Set of data associated with the code
= Process Control Block (PCB)

Process Id

State (running, ready, blocked...)

Program counter

Memory pointers

Context data (registers)

/0 status (I/O devices assigned to, files in use...)
Accounting info. (processor time, time limits...)

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

@Koreah)

Some Entries of PCB

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directory
File descriptors
User ID

Group ID

@ Rores

Execution of Programs

" Processor’s view
= Executions of instructions from multiple programs

" Process’s view
= Executions of a sequence of instructions within that

program

One program counter

s
Process

q

IV LD ¥

Four program counters

7
/ 7\\

AL B Y

°}

Process

> W O O

Execution of Programs

Address Main memory Program counter
0
00 | 8000 ¢ |
Dispatcher
5000
Process A
8000
Process B
12000
Process C
5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

(a) Trace of process A

(b) Trace of process B

(c) Trace of process C

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005
7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
13 8002
16 8003
17 100
18 101
19 102
20 103
21 104
22 105
23 12000
24 12001
25 12002
26 12003

Time-out

I/0O request

27 12004
28 12005
29 100
30 101
3l 102
32 103
33 104
34 105
35 5006
36 5007
37 5008
38 5009
39 5010
40 5011
41 100
42 101
43 102
44 103
45 104
46 105
47 12006
48 12007
49 12008
50 12009
51 12010
52 12011

Time-out

Time-out

Time-out

@K_orea

A Two-State Process Model

Dispatch

Enter
-
Pause
(a) State transition diagram
Queue ;S
Enter Dispatch Exit
Y . > Processor

Pause

(b) Queueing diagram

@ Korea

A Two-State Process Model

= Process Creation
= OS builds the data structures to manage the process

= Allocates address space for the process

= Reasons for Process Creation

New Batch job

Interactive log-on

Created by OS to provide service
Spawned by existing process

A Two-State Process Model

® Process Termination

= Halt instruction generates an interrupt to alert the
OS
= Action of a user

" |og off, turn off a terminal, quit an application

= Result in a service request to OS to terminate the
process

®= Errors or Faults

A Five-State Model

= A problem with the two-state model

= Some processes in Not-running sate are blocked,
waiting for an 1/0 to complete

" The dispatcher has to scan the queue looking for
the process that is
= Not blocked
" Has been in the queue the longest

A Five-State Model

= Solution
= Split the Not-Running state into Ready and Blocked states

= Fjve states

Running: the process is currently being executed
Ready: the process can execute, given the opportunity

Blocked/Waiting: the process cannot execute until some
event occurs (/O completion)

New: the PCB is created, but the process is not yet loaded
into memory

Exit: the process has been released from the pool of
executable processes

@Koreah)

A Five-State Model

Dispatch

Release

Time-out

Event

oceurs Event

wait

A Five-State Model

Ready queue Release
Admit Dispatch

T > -1 Processor

Time-out
-

Blocked queue

Event wait

Event
occurs

New processes are placed in the ready queue
The next process to run are chosen from the ready queue

A running process can exit or be moved to either the ready
gueue or the blocked queue

An event can move processes in the blocked queue waiting
for the event to the ready queue

A Five-State Model

Ready queue Release
Admit Dispatch

»1Processor

A |

Time-out

A

Event | queue

Event 1| P Event | wait
occurs |
Event 2 queue
Event 2 Event 2 wait
R -
occurs
®
®
®
Event n queue
Event n B Event n wait
oceurs h

Multiple blocked queues

= Single blocked queue: OS has to scan the blocked queue
for every event

= The processes in a certain event queue are moved to the
ready queue @
e,

Process Description

"= OS manages the use of system resources by

Processes

= \What information does the OS need to control
processes and manage resources?

= Tables for memory, |/0, file, and process

Virtual
memory

Computer
~resources

Processor

Main
memory

Blocked

@ Korea '

Operating System Control Structures

Memory

Devices

Y

Memory tables

Process
image

Files

Processes

A 4

I/O tables

File tables

Primary process table

-
-

Process |

Process 2

Process 3

Y

Process
|

Process
image

Process n

Y

Process
n

@.K_orea

Typical Functions of an OS Kernel

= Process management
" Process creation and termination
= Process scheduling and dispatching
" Process switching

= Process synchronization and inter-process
communication

= PCB management

= Memory management
= Allocating address space to processes
= Swapping
= Page and segment management

Typical Functions of an OS Kernel

= |/O management
= Buffer management

= Allocation of I/O channels and devices to
processes

" Support functions
" [nterrupt handling
= Accounting
= Monitoring

Process Control Structures

" Typical elements of a process image

= User Data

= The modifiable part of the user space: program data, user
stack, and programs that may be modified

= User Program
= |Instructions to be executed

= Stack
= Store parameters, return addresses for function calls

= Process Control Block
= Data needed by the OS to control process

@Koreah)

Process Control Structures
Typical Elements of a PCB

" Process identification
" |[Ds: PID of this and the parent process, User ID

= Processor status information
= General purpose registers

= Program Counter,

" Program Status Word (PSW)
= Condition flags: CF, ZF, OF...

= Status information: interrupt enabled, current privilege
level (CPL)...

@Koreah)

Process Control Structures
Typical Elements of a PCB

= Process control information

= Scheduling and State information
" Process state (running, ready, blocked...)
= Priority
= Scheduler dependent information (processor time...)
= Event (ID of the event the process is waiting)

= Data structuring (e.g. link to other process in a queue)

= Processor privilege
= Memory access, types of instructions that can execute

= Memory management (e.g. pointers to page tables)
= Resource ownership and utilization
= |Interprocess communication

@Koream

Process Control

= Modes of execution

" User mode and Kernel mode (aka system mode,
control mode)

= Bits in the PSW indicates the mode of execution

* CPL (Current Privilege Level): O for kernel mode, others
for user mode

® On interrupt, CPLissetto O
* On IRT (interrupt return), CPL is restored

Process Control: Process Creation

= Assign a unique PID to the new process

= Allocate space for the process
= Process Image (text, data, stack, ...) and PCB

= |nitialize the PCB

= PID, registers, PC, stack pointers, status (Ready), priority,
inherited resources, ...

= Set the appropriate linkage
= Ready queue

= Create or expand other data structures
= Accounting for billing, performance assessment, ...

@Koreah)

Process Control: Process Switching

= When to switch process

= A process switch may occur any time when the OS has
gained the control

" Mechanisms for interrupting the execution of a
process
" |nterrupt: external to the current instruction

" Trap: associated with the execution of the current
Instruction

= Supervisor call: explicit request

@ Korea)

Process Control: Process Switching

= Mode switching on an interrupt
= Sets the PC to the interrupt handler

= Switches from user mode to kernel mode if necessary

= Compare the CPL (Current Privilege Level) with DPL
(Descriptor Privilege Level) of interrupt code

= |f CPL !=DPL, load ss and esp from TSS and save the previous
ss and esp to the new stack

= Saves the PC, flags, and other registers

= Mode switch does not necessarily mean process
switch

@Koreah)

Side Note: Address Translation

Logical address .‘ SEGMSHR\HON ‘ﬁmradm .‘ Pﬁﬂ#G ‘Physicdadﬁ!s ‘

gdt or Idt

Linear Address

Descriptor

‘ qdtr or ldtr

8

—0

EE—

Code Segment Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

BASE(24-31)

BASE(0-15)

o N
A
‘" A

LIMIT
(16-19)

S
BASE (16-23)

LIMITi(0-15).

3130 29 2827 26 524 23

Selector °ff59t
Index [- | .
Logical Address

222019181716151413121M110 987 6543210

Process Control: Change of Process State

" |f the currently running process is to be moved to
another state (Ready, Blocked)

patch _—
Release
B

= Save the context of the processor (PC, other registers)
= Update the PCB (state, accounting info...)

"= Move the PCB of this process to the appropriate
queue

= Select another process to execute

= Update the PCB of the process (state to running)
= Update the memory management data structure
= Restore the context of the processor s

Execution of the Operating System

" Nonprocess Kernel
= Execute the kernel outside of any process

= OS has its own memory to use and its own stack
for procedure calls

Kernel

Execution of the Operating System

= Execution within User Processes
= Execute virtually all OS software in the context of
a user process

" Program data and stack for kernel are included in
each process image

P, P, P,
OS 0Ss OS
func- func- e & @ func-
tions tions tions

Process-switching functions

Execution of the Operating System

= Execution within User Processes

Process . .
= Aseparate kernel stack is used in the kernel
Processor state , Process control
information block m O d e
Process control
ko | = OS code and data are in the shared address
User stack S p a C e

Private user

" To pass control to OS

(programs, data)
prog

= Mode switch occurs
" Process switch is not performed: execution

Kernel stack

continues within the current user process

@ Korea)

Execution of the Operating System

" Process-based Operating System

" Implement the OS as a collection of system
processes

= Modular OS

= Noncritical OS functions are implemented as
separate processes

P, P, ®e o 0 4 0S| e e o |OS,

Process-switching functions

