
CSE 306 Operating Systems
Processes

YoungMin Kwon



What is a Process

 A process consists of
 Program code
 Set of data associated with the code
 Process Control Block (PCB)

 Process Id
 State (running, ready, blocked…)
 Program counter
 Memory pointers
 Context data (registers)
 I/O status (I/O devices assigned to, files in use…)
 Accounting info. (processor time, time limits…)



Some Entries of PCB



Execution of Programs

 Processor’s view
 Executions of instructions from multiple programs

 Process’s view
 Executions of a sequence of instructions within that 

program



Execution of Programs



A Two-State Process Model



A Two-State Process Model

 Process Creation
 OS builds the data structures to manage the process
 Allocates address space for the process

 Reasons for Process Creation
 New Batch job
 Interactive log-on
 Created by OS to provide service
 Spawned by existing process



A Two-State Process Model

 Process Termination
 Halt instruction generates an interrupt to alert the 

OS
 Action of a user

 log off, turn off a terminal, quit an application
 Result in a service request to OS to terminate the 

process

 Errors or Faults



A Five-State Model
 A problem with the two-state model

 Some processes in Not-running sate are blocked, 
waiting for an I/O to complete

 The dispatcher has to scan the queue looking for 
the process that is
 Not blocked
 Has been in the queue the longest



A Five-State Model
 Solution

 Split the Not-Running state into Ready and Blocked states

 Five states
 Running: the process is currently being executed
 Ready: the process can execute, given the opportunity
 Blocked/Waiting: the process cannot execute until some 

event occurs (I/O completion)
 New: the PCB is created, but the process is not yet loaded 

into memory
 Exit: the process has been released from the pool of 

executable processes



A Five-State Model



A Five-State Model

 New processes are placed in the ready queue

 The next process to run are chosen from the ready queue

 A running process can exit or be moved to either the ready 
queue or the blocked queue

 An event can move processes in the blocked queue waiting 
for the event to the ready queue



A Five-State Model

 Multiple blocked queues
 Single blocked queue: OS has to scan the blocked queue 

for every event
 The processes in a certain event queue are moved to the 

ready queue



Process Description

 OS manages the use of system resources by 
processes
 What information does the OS need to control 

processes and manage resources?
 Tables for memory, I/O, file, and process

Blocked



Operating System Control Structures



Typical Functions of an OS Kernel
 Process management

 Process creation and termination
 Process scheduling and dispatching
 Process switching
 Process synchronization and inter-process 

communication
 PCB management

 Memory management
 Allocating address space to processes
 Swapping
 Page and segment management



Typical Functions of an OS Kernel
 I/O management

 Buffer management
 Allocation of I/O channels and devices to 

processes

 Support functions
 Interrupt handling
 Accounting
 Monitoring



Process Control Structures

 Typical elements of a process image
 User Data

 The modifiable part of the user space: program data, user 
stack, and programs that may be modified

 User Program
 Instructions to be executed

 Stack
 Store parameters, return addresses for function calls

 Process Control Block
 Data needed by the OS to control process



Process Control Structures
Typical Elements of a PCB

 Process identification
 IDs: PID of this and the parent process, User ID

 Processor status information
 General purpose registers
 Program Counter,
 Program Status Word (PSW)

 Condition flags: CF, ZF, OF…
 Status information: interrupt enabled, current privilege 

level (CPL)…



Process Control Structures
Typical Elements of a PCB

 Process control information
 Scheduling and State information

 Process state (running, ready, blocked…)
 Priority
 Scheduler dependent information (processor time…)
 Event (ID of the event the process is waiting)

 Data structuring (e.g. link to other process in a queue)
 Processor privilege

 Memory access, types of instructions that can execute
 Memory management (e.g. pointers to page tables)
 Resource ownership and utilization
 Interprocess communication



Process Control

 Modes of execution
 User mode and Kernel mode (aka system mode, 

control mode)

 Bits in the PSW indicates the mode of execution
 CPL (Current Privilege Level): 0 for kernel mode, others 

for user mode
 On interrupt, CPL is set to 0
 On IRT (interrupt return), CPL is restored



Process Control: Process Creation
 Assign a unique PID to the new process

 Allocate space for the process 
 Process Image (text, data, stack, …) and PCB

 Initialize the PCB
 PID, registers, PC, stack pointers, status (Ready), priority, 

inherited resources, …

 Set the appropriate linkage
 Ready queue

 Create or expand other data structures
 Accounting for billing, performance assessment, …



Process Control: Process Switching

 When to switch process
 A process switch may occur any time when the OS has 

gained the control

 Mechanisms for interrupting the execution of a 
process
 Interrupt: external to the current instruction
 Trap: associated with the execution of the current 

instruction
 Supervisor call: explicit request



Process Control: Process Switching
 Mode switching on an interrupt

 Sets the PC to the interrupt handler

 Switches from user mode to kernel mode if necessary
 Compare the CPL (Current Privilege Level) with DPL

(Descriptor Privilege Level) of interrupt code
 If CPL != DPL, load ss and esp from TSS and save the previous 

ss and esp to the new stack

 Saves the PC, flags, and other registers

 Mode switch does not necessarily mean process 
switch



Side Note: Address Translation



Process Control: Change of Process State
 If the currently running process is to be moved to 

another state (Ready, Blocked)

 Save the context of the processor (PC, other registers)
 Update the PCB (state, accounting info…)
 Move the PCB of this process to the appropriate 

queue
 Select another process to execute
 Update the PCB of the process (state to running)
 Update the memory management data structure
 Restore the context of the processor



Execution of the Operating System

 Nonprocess Kernel
 Execute the kernel outside of any process
 OS has its own memory to use and its own stack 

for procedure calls



Execution of the Operating System

 Execution within User Processes
 Execute virtually all OS software in the context of 

a user process
 Program data and stack for kernel are included in 

each process image



Execution of the Operating System

 Execution within User Processes
 A separate kernel stack is used in the kernel 

mode
 OS code and data are in the shared address 

space

 To pass control to OS
 Mode switch occurs
 Process switch is not performed: execution 

continues within the current user process



Execution of the Operating System

 Process-based Operating System
 Implement the OS as a collection of system 

processes
 Modular OS
 Noncritical OS functions are implemented as 

separate processes


