CSE 306 Operating Systems
System Calls

System Calls

= A way to communicate with the kernel

" |Interfaces, provided by the kernel, through
which user-space processes can interact with
the system

= Controlled access to hardware
" Create new processes

= Communicate with other processes

System Calls

= Provides an abstracted hardware interfaces for
user-space

" Hide hardware specific details from the
programmers

" Provides a security and stability

" Arbitrate accesses to system resources base on
permissions, users, and other criteria

System Calls

" Provides a virtualized system to processes

= Asingle common layer between user-space and
the rest of the system

= |f applications can freely access resources without
the kernel’s knowledge, it’s nearly impossible to
implement:

= Multitasking, virtual memory, stability, security, ...

System Calls

= An overview of a control flow

_____________ UserMode o KemelMode

E _yz() { | 1% system call: wsysxyz() {

|l oxyzO 7 SYSCALL | 1 sys_xyz()

: ces W - 1 -

: -1} | . SYSEXIT U

T T ~— :

Systemall Wrapper routine sysemall Sysemaall
invocation in in libc standard handler service routine
application library

program

APls and System Calls

= Usually, each system call has a wrapper
routine that defines an API

= Converse Is not true
= An API can be implemented totally in user mode
= An API can call multiple system calls

= Several APIs can make the same system calls
= malloc(), calloc(), and free() can call brk()

APls and System Calls

" From a programmer’spoint of view

= Distinction between APIs and system calls are
irrelevant

= Only function names, parameters, and return types
are important

" From a kernel designer’s point of view
= APls and system calls are different
= System calls belong to the kernel
= APl belongs to a user mode library

= C Library

APIls

= Applications are programmed against user-space

APls, not directly to system calls

= Portability: same source code can be complied to
work on various OS with different sets of system

calls

call to printf()”

[printf() in the C library

1™ write() system call

N write() in the C library”

Application -

» Kernel

» C library

@Koreah)

APIls

= POSIX (Portable Operating System Interface)
= A series of IEEE standards
= Referring to APIs, not system calls
= One of the most common APIs in Unix, Linux

= Microsoft Windows offers POSIX-compatible
libraries

Syscalls: System Calls in Linux

= Accessed via function calls defined in the C library
= Take zero, one, or more arguments

= Might result in one or more side effects
= E.g. writing to a file
= getpid() doesn’t have a side effect

= Return a long type value
= Zero usually means a success

= Negative values usually mean an error
= errno is set
= perror() returns a human-readable error message

@Koreah)

Syscalls

= Example

asmlinkage long sys getpid(void);
in include/linux/syscalls.h

* asmlinkage compiler directive

= Tells that compiler that all arguments should be in the
stack

= Required for all syscalls

= sys prefix
= A naming convention for Linux syscalls
= getpid() is implemented as sys getpid() in the kernel

@Koreah)

Syscalls

= Syscall number:

= |n Linux, each system call is assigned with a unique
syscall number

= User-space processes refer to syscall numbers, not the
syscall names (Application Binary Interface)

= syscall table

= Kernel keeps a list of all registered system calls in
syscall _table

= Sys call table keeps track of the syscall numbers
= arch/x86/entry/syscalls/syscall 64.tbl

@Koreah)

Syscalls

= Syscall number should not be changed
= Otherwise, compiled apps will break

= Even after removing a system call, its syscall
number should not be recycled

= Otherwise, existing apps may invoke the incorrect
syscall

= Not Implemented syscall handler (sys ni syscall())
should be used for those removed syscalls

System Call Handler

= How to invoke a kernel code from a user-
mode process

= User mode processes cannot execute kernel code
directly

= Function calls do not work

= Needs a way to signal the kernel to switch mode and
execute kernel code

" Linux system calls use a software interrupt
= |ncur an exception (int $128)

@Koreah)

System Call Handler

= Syscall number

= After int $128, system switches to the kernel mode
and execute the exception handler system call()

= system call calls the system call function

= Corresponding to the syscall number stored in %rax

= call *sys call table(, %rax, 8)
= call absolute address in sys call table + %rax * 8 + 0
= arch/x86/entry/entry_64.S

@ Ko;’ea '

System Call Handler

= Syscall parameters

" ebx, ecx, edx, esi, and edi registers are used for the
first 5 parameters (x86-32)

= From the 6" onward, a single register is used to point
to the user-space, where all the parameters are stored

,/«""/#/‘ “1\%4""*\\ 4T 1 ﬁ‘““-x\ 1T =
< . N R\
call read() read() wrapper system_call() sys_read()
%ﬁ\ - //’ o~ VT\—._‘____ L il _7’_ﬂ,.,.-f" == Tﬁ\"‘\h‘ _ B /_,-*‘/
Application C library Syscall Handler sys_read()

read() wrapper

User Space Kernel Space

Invoking the system call handler and executing a system call.

@Koreah)

System Call Implementation

= A syscall should have exactly one purpose
= Bad example: ioctl multiplexes multiple system calls

int ioctl(int fd, unsigned long request, ...);

= Syscall must carefully verify all parameters
= Pointers should point to user-space
= Pointers should point to the process’s address space

= For reading, the memory should be marked readable;
for writing, the memory should be marked writable

@Koreah)

System Call Implementation

= Usecopy to user() and copy from user() tovalidate
the parameters

= Use capable() tovalidate the caller’s capabilities
* e.g. capable(CAP_SYS BOOT);

#include <linux/uaccess.h>
//asmlinkage long sys silly copy(
// unsigned long *src, unsigned long *dst, unsigned long len)
SYSCALL DEFINE3(silly copy,
unsigned long*, src, unsigned long*, dst, unsigned long, len)

{

unsigned long buf;

// copy *src in user-space into buf

if(copy from user(&buf, src, len))
return -EFAULT;

// copy buf to *src in user-space

if (copy to user(dst, &buf, len))
return -EFAULT;

return 9;

} @Ks'rem

Writing a System Call (Hello World)

" Create a directory you will work on
" mkdir linux-5.4.49/cse306

" Fdit 1inux-5.4.49/Makefile

ifeq ($(KBUILD EXTMOD),)

core-y += kernel/ certs/ mm/ fs/ ipc/ security/ crypto/ block/
#cse306

core-y += cse306/

vmlinux-dirs := $(patsubst %/,%,$(filter %/, $(init-y) $(init-m) \

.

Writing a System Call (Hello World)

= Edit 1inux-5 .4.49/arch/x86/entry/syscalls/syscall 64.tbl

435 common clone3 __X64 sys clone3/ptregs
306 (—\()‘ /’- () —\ ()

C S e call read read() wrapper system_call sys_read

- /
450 64 hello __x64_sys_hello N
Application C library m sys_read()

x32-specific system call numbers start P
at 512 to avoid cache impact ... Joer Space ormel Space

Invoking the system call handler and executing a system call.

" Fdit 1inux-5.4.49/include/linux/syscalls.h

asmlinkage long sys ni syscall(void);

/*cse306*/
asmlinkage long sys hello(void);

#tendif

@K_orea

Writing a System Call (Hello World)

Create linux-5.4.49/cse306/Makefile with

obj-y := hello.o

Create 1inux-5.4.49/cse306/hello.c

#include <linux/syscalls.h>
#include <linux/kernel.h>
SYSCALL_DEFINE®(hello)
{
printk("Hello world\n");
return 0;

}

call read()

L

read() wrapper

e

\/

system_call()

|

sys_read()

___y\‘
L=

Application

Use!

C library
read() wrapper

r Space

Syscall Handler sys_read()

Kernel Space

Invoking the system call handler and executing a system call.

Run make cse306 from linux-5.4.49/ to

check if your code compiles

Run make from Linux-5.4.49/

(::::)erea

Writing a System Call (Hello World)

" Launch the test machine with the compiled kernel

gemu-system-x86 64 -nographic -serial mon:stdio -kernel
1linux-5.4.49/arch/x86/boot/bzImage -hda ubuntu.img -

append "root=/dev/sda5 console=ttyS@O init=/sbin/init" -
enable-kvm -m 4096

= Alternatively, you can create a shell script boot. sh

#!/bin/bash
gemu-system-x86 64 -nographic -serial mon:stdio -kernel
linux-5.4.49/arch/x86/boot/bzImage -hda ubuntu.img -append

"root=/dev/sda5 console=ttyS@ init=/sbin/init" -enable-kvm
-m 4096

= chmod u+x boot.sh
= Run boot.sh

@ Rores

Writing a System Call (Hello World)

" |n your test machine

= Create wrapper.c

#include <unistd.h>

#define _ NR hello 450

long hello() {

return syscall(_ NR hello);

}

" Create wrapper.h

#ifndef _ WRAPPER__
#tdefine _ WRAPPER__
extern long hello();
#endif

call read() read() wrapper system_call() sys read()
k / \ﬁ'_/
Application C library Syscall Handler sys_read()
() wrapp
User Space Kernel Space

Invoking the system call handler and executing a system call.

(::::)erea |

Writing a System Call (Hello World)

" |n your test machine
" Create hello.c

#include <stdio.h>

#include "wr‘apper‘.h" call read() reac()wra;{’—dwr—mado

int main() { E;:t:j et
printf("result %1d\n",

Application C library Syscall Handler sys_read()
h e]_ 1 (@) ()) M read() wrapper
J
return O 3 User Space Kernel Space
} Invoking the system call handler and executing a system call.

" gcc hello.c wrapper.c

= ., /a.out

" dmesg (to check the result)
* sudo shutdown now (to shutdown) 5

Assignment 1

" Create hello name.c and add a system call

SYSCALL DEFINE4(hello name, char*, name, int, namelen,
char*, msg, int, msglen/*max msg*/)

= |t takes a string name and updates msg with Hello name

= Use copy from userand copy to user forthe
parameter check

" Checkif namelenand msglen are valid
" You can use sprintf to construct a message like

= "Hello <name>"
= sprintf returns the number of bytes written as well.

@ Korea '

Assignment 1

" |n your test machine, update wrapper.c, wrapper.h
and write a user-space program that invokes the

system call hello name
#define NAME "YoungMin" //use your name

char msg[100];
long res = hello _name(NAME, sizeof(NAME), msg, sizeof(msg));

= Submit the files you modified or added in a single zip
file

= Due date 3/21/2024

Creating a Patch File (Optional)

" git status
= List the modified files
= git diff will show you the changes
= git diff > patch file will create a patch file
= git apply patch file will apply the changes in the patch_file
= git checkout file will revert the changes in the file

i glt add the files you changed
Move the files to the staging area (don’t forget the new files)
= git diff --cached will show you the changes
= git diff --cached > patch file will create a patch file
= git apply patch file will apply the changes in the patch_file
= git reset HEAD file will unstage the file

Creating a Patch File (Optional)

" git commit -m "description for the
change”

= Commit the changes in the staging area

" git format-patch -1

= Create a patch file from the last committed change

= cat patch file | colordiff

= To see the difference

