
CSE 306 Operating Systems
System Calls

YoungMin Kwon

System Calls

 A way to communicate with the kernel

 Interfaces, provided by the kernel, through
which user-space processes can interact with
the system
 Controlled access to hardware
 Create new processes
 Communicate with other processes

System Calls
 Provides an abstracted hardware interfaces for

user-space
 Hide hardware specific details from the

programmers

 Provides a security and stability
 Arbitrate accesses to system resources base on

permissions, users, and other criteria

System Calls
 Provides a virtualized system to processes

 A single common layer between user-space and
the rest of the system

 If applications can freely access resources without
the kernel’s knowledge, it’s nearly impossible to
implement:
 Multitasking, virtual memory, stability, security, …

System Calls

 An overview of a control flow

APIs and System Calls

 Usually, each system call has a wrapper
routine that defines an API

 Converse is not true
 An API can be implemented totally in user mode
 An API can call multiple system calls
 Several APIs can make the same system calls

 malloc(), calloc(), and free() can call brk()

APIs and System Calls

 From a programmer’spoint of view
 Distinction between APIs and system calls are

irrelevant
 Only function names, parameters, and return types

are important

 From a kernel designer’s point of view
 APIs and system calls are different
 System calls belong to the kernel
 API belongs to a user mode library

APIs
 C Library

 Applications are programmed against user-space
APIs, not directly to system calls

 Portability: same source code can be complied to
work on various OS with different sets of system
calls

APIs

 POSIX (Portable Operating System Interface)
 A series of IEEE standards
 Referring to APIs, not system calls
 One of the most common APIs in Unix, Linux
 Microsoft Windows offers POSIX-compatible

libraries

Syscalls: System Calls in Linux

 Accessed via function calls defined in the C library
 Take zero, one, or more arguments

 Might result in one or more side effects
 E.g. writing to a file
 getpid() doesn’t have a side effect

 Return a long type value
 Zero usually means a success
 Negative values usually mean an error

 errno is set
 perror() returns a human-readable error message

Syscalls
 Example

 asmlinkage compiler directive
 Tells that compiler that all arguments should be in the

stack
 Required for all syscalls

 sys_ prefix
 A naming convention for Linux syscalls
 getpid() is implemented as sys_getpid() in the kernel

asmlinkage long sys_getpid(void);
in include/linux/syscalls.h

Syscalls

 Syscall number:
 In Linux, each system call is assigned with a unique

syscall number
 User-space processes refer to syscall numbers, not the

syscall names (Application Binary Interface)

 syscall_table
 Kernel keeps a list of all registered system calls in

syscall_table
 Sys_call_table keeps track of the syscall numbers
 arch/x86/entry/syscalls/syscall_64.tbl

Syscalls

 Syscall number should not be changed
 Otherwise, compiled apps will break
 Even after removing a system call, its syscall

number should not be recycled
 Otherwise, existing apps may invoke the incorrect

syscall
 Not Implemented syscall handler (sys_ni_syscall())

should be used for those removed syscalls

System Call Handler
 How to invoke a kernel code from a user-

mode process

 User mode processes cannot execute kernel code
directly
 Function calls do not work
 Needs a way to signal the kernel to switch mode and

execute kernel code

 Linux system calls use a software interrupt
 Incur an exception (int $128)

System Call Handler

 Syscall number
 After int $128, system switches to the kernel mode

and execute the exception handler system_call()

 system_call calls the system call function
 Corresponding to the syscall number stored in %rax

 call *sys_call_table(, %rax, 8)
 call absolute address in sys_call_table + %rax * 8 + 0

 arch/x86/entry/entry_64.S

System Call Handler
 Syscall parameters

 ebx, ecx, edx, esi, and edi registers are used for the
first 5 parameters (x86-32)

 From the 6th onward, a single register is used to point
to the user-space, where all the parameters are stored

System Call Implementation

 A syscall should have exactly one purpose
 Bad example: ioctl multiplexes multiple system calls

int ioctl(int fd, unsigned long request, ...);

 Syscall must carefully verify all parameters
 Pointers should point to user-space
 Pointers should point to the process’s address space
 For reading, the memory should be marked readable;

for writing, the memory should be marked writable

System Call Implementation
 Use copy_to_user() and copy_from_user() to validate

the parameters

 Use capable() to validate the caller’s capabilities
 e.g. capable(CAP_SYS_BOOT);

#include <linux/uaccess.h>
//asmlinkage long sys_silly_copy(
// unsigned long *src, unsigned long *dst, unsigned long len)
SYSCALL_DEFINE3(silly_copy,

unsigned long*, src, unsigned long*, dst, unsigned long, len)
{

unsigned long buf;
// copy *src in user-space into buf
if(copy_from_user(&buf, src, len))

return -EFAULT;
// copy buf to *src in user-space
if (copy_to_user(dst, &buf, len))

return -EFAULT;
return 0;

}

Writing a System Call (Hello World)

 Create a directory you will work on
 mkdir linux-5.4.49/cse306

 Edit linux-5.4.49/Makefile
...
ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ certs/ mm/ fs/ ipc/ security/ crypto/ block/

#cse306
core-y += cse306/

vmlinux-dirs := $(patsubst %/,%,$(filter %/, $(init-y) $(init-m) \
...

Writing a System Call (Hello World)

 Edit linux-5.4.49/arch/x86/entry/syscalls/syscall_64.tbl

 Edit linux-5.4.49/include/linux/syscalls.h

...
435 common clone3 __x64_sys_clone3/ptregs

#cse306
450 64 hello __x64_sys_hello

x32-specific system call numbers start
at 512 to avoid cache impact ...

...
asmlinkage long sys_ni_syscall(void);

/*cse306*/
asmlinkage long sys_hello(void);

#endif

Writing a System Call (Hello World)

 Create linux-5.4.49/cse306/Makefile with

 Create linux-5.4.49/cse306/hello.c

 Run make cse306 from linux-5.4.49/ to
check if your code compiles

 Run make from linux-5.4.49/

obj-y := hello.o

#include <linux/syscalls.h>
#include <linux/kernel.h>
SYSCALL_DEFINE0(hello)
{

printk("Hello world\n");
return 0;

}

Writing a System Call (Hello World)

 Launch the test machine with the compiled kernel
qemu-system-x86_64 -nographic -serial mon:stdio -kernel
linux-5.4.49/arch/x86/boot/bzImage -hda ubuntu.img -
append "root=/dev/sda5 console=ttyS0 init=/sbin/init" -
enable-kvm -m 4096

 Alternatively, you can create a shell script boot.sh

 chmod u+x boot.sh
 Run boot.sh

#!/bin/bash
qemu-system-x86_64 -nographic -serial mon:stdio -kernel
linux-5.4.49/arch/x86/boot/bzImage -hda ubuntu.img -append
"root=/dev/sda5 console=ttyS0 init=/sbin/init" -enable-kvm
-m 4096

Writing a System Call (Hello World)
 In your test machine

 Create wrapper.c

 Create wrapper.h

#include <unistd.h>
#define __NR_hello 450
long hello() {

return syscall(__NR_hello);
}

#ifndef __WRAPPER__
#define __WRAPPER__
extern long hello();
#endif

Writing a System Call (Hello World)
 In your test machine

 Create hello.c

 gcc hello.c wrapper.c
 ./a.out
 dmesg (to check the result)
 sudo shutdown now (to shutdown)

#include <stdio.h>
#include "wrapper.h"
int main() {

printf("result %ld\n",
hello());

return 0;
}

Assignment 1

 Create hello_name.c and add a system call
SYSCALL_DEFINE4(hello_name, char*, name, int, namelen,

char*, msg, int, msglen/*max msg*/)

 It takes a string name and updates msg with Hello name

 Use copy_from_user and copy_to_user for the
parameter check

 Check if namelen and msglen are valid

 You can use sprintf to construct a message like
 "Hello <name>"
 sprintf returns the number of bytes written as well.

Assignment 1

 In your test machine, update wrapper.c, wrapper.h
and write a user-space program that invokes the
system call hello_name

 Submit the files you modified or added in a single zip
file

 Due date 3/21/2024

#define NAME "YoungMin" //use your name
...

char msg[100];
long res = hello_name(NAME, sizeof(NAME), msg, sizeof(msg));

...

Creating a Patch File (Optional)
 git status

 List the modified files
 git diff will show you the changes
 git diff > patch_file will create a patch file
 git apply patch_file will apply the changes in the patch_file
 git checkout file will revert the changes in the file

 git add the_files_you_changed
 Move the files to the staging area (don’t forget the new files)
 git diff --cached will show you the changes
 git diff --cached > patch_file will create a patch file
 git apply patch_file will apply the changes in the patch_file
 git reset HEAD file will unstage the file

Creating a Patch File (Optional)

 git commit -m "description for the
change"
 Commit the changes in the staging area

 git format-patch -1
 Create a patch file from the last committed change

 cat patch_file | colordiff
 To see the difference

