Major Achievements

- Four major theoretical advances in the development of operating systems
 - Processes
 - Memory management
 - Information protection and security
 - Scheduling and resource management
Process

- Many definitions
 - A program in execution
 - An instance of a program running on a computer
 - The entity that can be assigned to and executed on a processor
 - A unit of activity characterized by a single sequential thread of execution, a current state, and an associated set of system resources.
Process: Multiprogramming

- Three major developments related to the concept of process

 1. Multiprogramming
 - Keep processors and I/O devices simultaneously busy to improve resource utilization
 - In response to signals for I/O completion, the processor is switched to a program in main memory
Process: Time Sharing

2. Time sharing
 - Be responsive to the needs of individual user
 - Able to support many users simultaneously (for cost reasons)

Example
 - In general, users’ reactions are relatively slow
 - If each user needs 2 sec of processing time per minute, about 30 users can share the system without noticing the interference
 - OS overhead must be factored
Process: Real-time Transaction Processing

3. Real-time transaction processing system
 - Exclusive access to resources with commit or abort operations
 - A number of users are entering queries or updates against a database
Process: Interrupt

- **Interrupt:**
 - A key tool for multiprogramming and timesharing systems
 - On an interrupt (periodic timer, I/O completion) the activity of a process can be suspended
 - The processor save a context (PC, registers, ...) and branch to the interrupt handler (in the kernel mode)
 - After processing the interrupt, resume the interrupted process or other processes
Errors in program coordination

- Context switch can occur at any time → difficult to analyze concurrent execution of multiple processes

Coordination errors are subtle

- May occur relatively rarely (can be once in million executions)
- Hard to reproduce → difficult to determine the cause
Process: Program Coordination

- Four main causes of errors
 - Improper *synchronization*
 - A process waits for an I/O to complete
 - Signals from an I/O completion can be lost or duplicated
 - Failed *mutual exclusion*
 - Shared resources are accessed by more than one processes
 - Nondeterministic execution
 - Depending on the memory footprint from other programs, the execution of a program differs
 - Deadlocks
 - Two or more programs are waiting for the resources held by others indefinitely
Process

- To tackle such errors → Process
 - Systematic way to monitor and control various programs running on a processor

- A process is composed of
 - An executable program
 - Associated data needed by the program
 - Variables, work space, buffers, ...
 - The execution context (process state) of the program
 - Registers, process priority, I/O waiting state, ...
Process

- OS maintains a list of processes
 - Locations of the blocks of memory
 - Locations of the contexts

- A process has
 - Program, Data, Context

- A processor has
 - Base and limit registers: where the data/code begins and their size
Memory Management

- OS’s main storage management responsibilities
 - Process isolation:
 - Prevent processes from interfering with other’s memory
 - Automatic allocation and management:
 - Memory hierarchy should be used dynamically
 - Hide the allocation details from the programmer
 - Support of modular programming:
 - Programmers can define modules that can be dynamically created, destroyed, ...
Memory Management

- OS’s main storage management responsibilities (cont’d)

 - Protection and access control:
 - Sharing of memory enables one process to access the address space of another
 - OS must allow portions of memory to be accessible in various ways by various users

 - Long-term storage:
 - Storing information for extended period of time after the computer has been powered down
Memory Management

- File system
 - A long term store
 - Information is stored in named objects called files
 - Convenient concept for programmers
 - Useful unit of access control and protection for the OS
Memory Management

- Virtual memory
 - Allows programs to address memory from a logical point of view without considering the physical amount of main memory
 - Allows multiple user-processes concurrently reside in main memory
Memory Management

- Virtual memory
 - Paging
 - Allows processes to be comprised of a number of fixed-size blocks (called page)
 - Reduces fragmentation in virtual memory
 - Virtual address (page number & page offset)

- Process isolation
 - Give each process a unique, non-overlapping memory

- Memory sharing
 - Overlap portions of two virtual memory space
Memory Management

- Virtual memory
 - Page
 - Processes are divided into a number of fixed-size blocks (called page)
 - Reduces fragmentation in virtual memory
 - Page Table
 - Dynamic mapping from virtual address to physical address
 - Virtual address (page number & page offset) → Physical address (frame number & offset)
Paging

- All pages of a process are maintained on a disk

- When a process is accessing memory, it’s containing page might be in main memory

- If not, MMU signals OS so that the page is loaded from a disk to main memory
Virtual Memory: Paging

- If **valid bit** is set, MMU uses the physical address in PTE (page table element) to construct the physical address of the word.
- If not, OS loads the page from disk.
Virtual Memory: Paging

- Process isolation: giving each process a unique non-overlapping virtual memory
- Memory sharing: overlapping portions of two virtual memory spaces
Virtual Memory: Paging

- Memory protection
 - Control the access to the contents of a virtual page by additional permission bits
 - SUP: can be accessed in kernel mode
 - READ, WRITE: read/write control
Virtual Memory System: Linux
Virtual Memory: Addressing

- VM scheme
 - Storage consists of
 - Main memory (directly accessible)
 - Disk (indirectly accessible)
 - MMU translates VA to PA using a page table
 - Processes reference locations using VA
 - If its corresponding PA is in main memory, it is read
 - If not, a trap event is generated and the page is loaded from disk, possibly after swapping out a page
 - The process that generated the address is suspended
Information Protection and Security

- Controlling the access to computer systems and the information stored in them

- Four categories:
 - Availability: protecting the system against interruption
 - Confidentiality: prevent unauthorized reading
 - Data integrity: prevent unauthorized writing
 - Authenticity: verification of the identity of the user and the validity of message or data
Scheduling and Resource Management

- Three factors to consider in resource allocation
 - Fairness
 - Give equal and fair access to resources to all processes in the same class
 - Differential responsiveness
 - Discriminate among different classes of jobs
 - Efficiency
 - Maximize throughput
 - Minimize response time
 - Accommodate as many users as possible
Process Scheduling

- **Short-term queue**
 - Processes in main memory and ready to run
 - Round-robin or priority order

- **Long-term queue**
 - New processes waiting
 - Moved to the short-term queue to be executed

- **I/O queue**
 - All processes waiting for use each device is lined up in the device’s queue
Process Scheduling

- OS can receive control of the processor
 - At the interrupt handler if an *interrupt* occurs
 - At the service call handler if a process invokes a *service call* (system call)
 - After handling the interrupt or the service call, a *short-term scheduler* is invoked to pick the next process to run
Developments Leading to Modern Operating Systems

- Microkernel architecture
 - Monolithic kernel:
 - A large kernel provides most of the OS functionality
 - A single process with all elements sharing the same address space

- Microkernel architecture: kernel has only few essential functionalities
 - Address space management, inter-process communication, basic scheduling
 - Other OS services are provided by user mode processes.
Developments Leading to Modern Operating Systems

- Multithreading
 - Thread: a logical flow that runs in the context of a process
 - Process: a collection of one or more threads and associated system resources
Developments Leading to Modern Operating Systems

- Symmetric Multiprocessing (SMP)
 - OS schedules processes and threads across all processors
 - Benefits
 - **Performance**: more than one process can run simultaneously
 - **Availability**: a failure of a single processor does not halt the system
 - **Incremental growth**: a user can enhance the performance of a system by adding additional processors
 - **Scaling**: vendors can offer a range of products with different prices and performances
Developments Leading to Modern Operating Systems

- Distributed operating systems
 - Provides an illusion that a cluster of machines is running as a single computer

- Object-oriented design
 - Adding modular extension to a small kernel
 - At the OS level, an object-based structure enables programmers to customize OS without disrupting system integrity
Fault Tolerance

- Fault tolerance
 - The ability of a system to continue normal operation despite the presence of hardware or software error

- Reliability
 - $R(t)$: the probability that a system operates correctly up to time t

- Mean time to failure (MTTF)
 - $\text{MTTF} = \int_0^\infty R(t) \, dt$

- Mean time to repair (MTTR)
 - The average time it takes to repair a faulty element
Fault Tolerance

- **Availability**
 - Fraction of time the system is available to serve users’ requests

 \[
 A = \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}}
 \]

 MTTF = \(\frac{B_1 + B_2 + B_3}{3} \)

 MTTR = \(\frac{A_1 + A_2 + A_3}{3} \)
Fault Tolerance

- **Solutions:** adding *redundancy*
 - **Spatial** (physical) redundancy: use multiple components performing the same function or backup
 - Backup name server on the Internet
 - **Temporal** redundancy: repeating a function or operation when an error is detected
 - Data retransmission
 - **Information** redundancy: replicating or coding data such that an error can be detected and corrected
 - RAID disks
Fault Tolerance

- Operating System Mechanisms
 - Process isolation: main memory, file access, flow of execution
 - Concurrency controls: recover from fault conditions like deadlock
 - Virtual machines: application isolation and redundancy

- Checkpoints and rollback:
 - Checkpoint: a copy of application’s state
 - Rollback: restart the execution from a checkpoint