CSE 306 Operating Systems Operating System Overview 2

YoungMin Kwon

Major Achievements

- Four major theoretical advances in the development of operating systems
 - Processes
 - Memory management
 - Information protection and security
 - Scheduling and resource management

Process

- Many definitions
 - A program in execution
 - An instance of a program running on a computer
 - The entity that can be assigned to and executed on a processor
 - A unit of activity characterized by a single sequential thread of execution, a current state, and an associated set of system resources.

Process: Multiprogramming

- Three major developments related to the concept of process
- 1. Multiprogramming
 - Keep processors and I/O devices simultaneously busy to improve resource utilization
 - In response to signals for I/O completion, the processor is switched to a program in main memory

Process: Time Sharing

- 2. Time sharing
 - Be responsive to the needs of individual user
 - Able to support many users simultaneously (for cost reasons)
 - Example
 - In general, users' reactions are relatively slow
 - If each user needs 2 sec of processing time per minute, about 30 users can share the system without noticing the interference
 - OS overhead must be factored

Process: Real-time Transaction Processing

- 3. Real-time transaction processing system
 - Exclusive access to resources with commit or abort operations
 - Many users are entering queries or updates against a database

Process: Interrupt

- Interrupt:
 - A key tool for multiprogramming and timesharing systems
 - On an interrupt (periodic timer, I/O completion) the activity of a process can be suspended
 - The processor save a context (PC, registers, ...) and branch to the interrupt handler (in the kernel mode)
 - After processing the interrupt, resume the interrupted process or other processes

Process: Program Coordination

- Errors in program coordination
 - Context switch can occur at any time → difficult to analyze concurrent execution of multiple processes
 - Coordination errors are subtle
 - May occur relatively rarely (can be once in million executions)
 - Hard to reproduce \rightarrow difficult to determine the cause

Process: Program Coordination

Four main causes of errors

- Improper synchronization
 - A process waits for an I/O to complete
 - Signals from an I/O completion can be lost or duplicated
- Failed mutual exclusion
 - Shared resources are accessed by more than one processes
- Nondeterministic execution
 - Depending on the memory footprint from other programs, the execution of a program differs
- Deadlocks
 - Two or more programs are waiting for the resources held by others indefinitely

Process

- To tackle such errors \rightarrow **Process**
 - Systematic way to monitor and control various programs running on a processor
- A process is composed of
 - An executable program
 - Associated data needed by the program
 - Variables, workspace, buffers, ...
 - The execution context (process state) of the program
 - Registers, process priority, I/O waiting state, ...

Process

- OS maintains a list of processes
 - Locations of the blocks of memory
 - Locations of the contexts
- A process has
 - Program, Data, Context
- A processor has
 - Base and limit registers: where the data/code begins and their size

- OS's main storage management responsibilities
 - Process isolation:
 - Prevent processes from interfering with other's memory
 - Automatic allocation and management:
 - Memory hierarchy should be used dynamically
 - Hide the allocation details from the programmer
 - Support of modular programming:
 - Programmers can define modules that can be dynamically created, destroyed, ...

- OS's main storage management responsibilities (cont'd)
 - Protection and access control:
 - Sharing of memory enables one process to access the address space of another
 - OS must allow portions of memory to be accessible in various ways by various users
 - Long-term storage:
 - Storing information for extended period of time after the computer has been powered down

File system

- A long term store
- Information is stored in named objects called files
- Convenient concept for programmers
- Useful unit of access control and protection for the OS

- Virtual memory
 - Allows programs to address memory from a logical point of view without considering the physical amount of main memory
 - Allows multiple user-processes concurrently reside in main memory

Virtual memory

- Paging
 - Allows processes to be comprised of a number of fixed-size blocks (called page)
 - Reduces fragmentation in virtual memory
 - Virtual address (page number & page offset)
- Process isolation
 - Give each process a unique, non-overlapping memory
- Memory sharing
 - Overlap portions of two virtual memory space

Virtual memory

- Page
 - Processes are divided into a number of fixed-size blocks (called page)
 - Reduces fragmentation in virtual memory
- Page Table
 - Dynamic mapping from virtual address to physical address
 - Virtual address (page number & page offset) → Physical address (frame number & offset)

- Paging
 - All pages of a process are maintained on a disk
 - When a process is accessing memory, it's containing page might be in main memory
 - If not, MMU signals OS so that the page is loaded from a disk to main memory

Virtual Memory: Paging

- If valid bit is set, MMU uses the physical address in PTE (page table element) to construct the physical address of the word
- If not, OS loads the page from disk

Virtual Memory: Paging

- Process isolation: giving each process a unique non-overlapping virtual memory
- Memory sharing: overlapping portions of two virtual memory spaces

Virtual Memory: Paging

- Memory protection
 - Control the access to the contents of a virtual page by additional permission bits
 - SUP: can be accessed in kernel mode
 - READ, WRITE: read/write control

Virtual Memory System: Linux

Virtual Memory: Addressing

Processor

Virtual

address

- VM scheme
 - Storage consists of
 - Main memory (directly accessible)
 - Disk (indirectly accessible)

- Processes reference locations using VA
 - MMU translates VA to PA using a page table
 - If its corresponding PA is in main memory, it is read
 - If not, a trap event is generated and the page is loaded from disk, possibly after swapping out a page
 - The process that generated the address is suspended

Information Protection and Security

- Controlling the access to computer systems and the information stored in them
- Four categories:
 - Availability: protecting the system against interruption
 - Confidentiality: prevent unauthorized reading
 - Data integrity: prevent unauthorized writing
 - Authenticity: verification of the identity of the user and the validity of message or data

Scheduling and Resource Management

- Three factors to consider in resource allocation
 - Fairness
 - Give equal and fair access to resources to all processes in the same class
 - Differential responsiveness
 - Discriminate among different classes of jobs
 - Efficiency
 - Maximize throughput
 - Minimize response time
 - Accommodate as many users as possible

Process Scheduling

- I/O queue
 - All processes waiting for use each device is lined up in the device's queue

Process Scheduling

- OS can receive control of the processor
 - At the interrupt handler if an interrupt occurs

 After handling the interrupt or the service call, a short-term scheduler is invoked to pick the next process to run

Pass control to process

- Microkernel architecture
 - Monolithic kernel:
 - A large kernel provides most of the OS functionality
 - A single process with all elements sharing the same address space
 - Microkernel architecture: kernel has only few essential functionalities
 - Address space management, inter-process communication, basic scheduling
 - Other OS services are provided by user mode processes.

- Multithreading
 - Thread: a logical flow that runs in the context of a process
 - Process: a collection of one or more threads and associated system resources

- Symmetric Multiprocessing (SMP)
 - OS schedules processes and threads across all processors
 - Benefits
 - Performance: more than one processes can run simultaneously
 - Availability: a failure of a single processor does not halt the system
 - Incremental growth: a user can enhance the performance of a system by adding additional processors
 - Scaling: vendors can offer a range of products with difference prices and performances

- Distributed operating systems
 - Provides an illusion that a cluster of machines is running as a single computer
- Object-oriented design
 - Adding modular extension to a small kernel
 - At the OS level, an object-based structure enables programmers to customize OS without disrupting system integrity

- Fault tolerance
 - The ability of a system to continue normal operation despite the presence of hardware or software error
- Reliability
 - *R(t)*: the probability that a system operates correctly up to time *t*
- Mean time to failure (MTTF)

$$\mathbf{MTTF} = \int_0^\infty R(t)dt$$

- Mean time to repair (MTTR)
 - The average time it takes to repair a faulty element

- Availability
 - Fraction of time the system is available to serve users' requests

 $A = \frac{MTTF}{MTTF + MTTR}$

- Solutions: adding redundancy
 - Spatial (physical) redundancy: use multiple components performing the same function or backup
 - Backup name server on the Internet
 - Temporal redundancy: repeating a function or operation when an error is detected
 - Data retransmission
 - Information redundancy: replicating or coding data such that an error can be detected and corrected
 - RAID disks

- Operating System Mechanisms
 - Process isolation: main memory, file access, flow of execution
 - Virtual machines: application isolation and redundancy
 - Concurrency controls: recover from fault conditions like deadlock
 - Checkpoints and rollback:
 - Checkpoint: a copy of application's state
 - Rollback: restart the execution from a checkpoint

