
CSE 306 Operating Systems
Operating System Overview 2

YoungMin Kwon

Major Achievements

 Four major theoretical advances in the
development of operating systems
 Processes
 Memory management
 Information protection and security
 Scheduling and resource management

Process

 Many definitions
 A program in execution

 An instance of a program running on a computer

 The entity that can be assigned to and executed on a
processor

 A unit of activity characterized by a single sequential
thread of execution, a current state, and an associated
set of system resources.

Process: Multiprogramming

 Three major developments related to the
concept of process

 1. Multiprogramming
 Keep processors and I/O devices simultaneously

busy to improve resource utilization
 In response to signals for I/O completion, the

processor is switched to a program in main
memory

Process: Time Sharing

 2. Time sharing
 Be responsive to the needs of individual user
 Able to support many users simultaneously (for

cost reasons)

 Example
 In general, users’ reactions are relatively slow
 If each user needs 2 sec of processing time per minute,

about 30 users can share the system without noticing
the interference

 OS overhead must be factored

Process: Real-time Transaction Processing

 3. Real-time transaction processing system
 Exclusive access to resources with commit or

abort operations
 Many users are entering queries or updates

against a database

Process: Interrupt

 Interrupt:
 A key tool for multiprogramming and timesharing

systems

 On an interrupt (periodic timer, I/O completion)
the activity of a process can be suspended
 The processor save a context (PC, registers, …) and

branch to the interrupt handler (in the kernel mode)
 After processing the interrupt, resume the interrupted

process or other processes

Process: Program Coordination

 Errors in program coordination
 Context switch can occur at any time difficult to

analyze concurrent execution of multiple processes

 Coordination errors are subtle
 May occur relatively rarely (can be once in million

executions)
 Hard to reproduce difficult to determine the cause

Process: Program Coordination

 Four main causes of errors
 Improper synchronization

 A process waits for an I/O to complete
 Signals from an I/O completion can be lost or duplicated

 Failed mutual exclusion
 Shared resources are accessed by more than one processes

 Nondeterministic execution
 Depending on the memory footprint from other programs, the

execution of a program differs

 Deadlocks
 Two or more programs are waiting for the resources held by others

indefinitely

Process
 To tackle such errors Process

 Systematic way to monitor and control various
programs running on a processor

 A process is composed of
 An executable program
 Associated data needed by the program

 Variables, workspace, buffers, …
 The execution context (process state) of the

program
 Registers, process priority, I/O waiting state, …

Process
 OS maintains a list of processes

 Locations of the blocks of
memory

 Locations of the contexts

 A process has
 Program, Data, Context

 A processor has
 Base and limit registers: where

the data/code begins and their
size

Memory Management

 OS’s main storage management responsibilities
 Process isolation:

 Prevent processes from interfering with other’s memory

 Automatic allocation and management:
 Memory hierarchy should be used dynamically
 Hide the allocation details from the programmer

 Support of modular programming:
 Programmers can define modules that can be

dynamically created, destroyed, …

Memory Management

 OS’s main storage management responsibilities
(cont’d)

 Protection and access control:
 Sharing of memory enables one process to access the

address space of another
 OS must allow portions of memory to be accessible in

various ways by various users

 Long-term storage:
 Storing information for extended period of time after the

computer has been powered down

Memory Management

 File system
 A long term store
 Information is stored in named objects called files
 Convenient concept for programmers
 Useful unit of access control and protection for

the OS

Memory Management
 Virtual memory

 Allows programs to address memory from a
logical point of view without considering the
physical amount of main memory

 Allows multiple user-processes concurrently
reside in main memory

Memory Management

 Virtual memory
 Paging

 Allows processes to be comprised of a number of fixed-size
blocks (called page)

 Reduces fragmentation in virtual memory
 Virtual address (page number & page offset)

 Process isolation
 Give each process a unique, non-overlapping memory

 Memory sharing
 Overlap portions of two virtual memory space

Memory Management
 Virtual memory

 Page
 Processes are divided into a number of fixed-size blocks

(called page)
 Reduces fragmentation in virtual memory

 Page Table
 Dynamic mapping from virtual address to physical

address
 Virtual address (page number & page offset)

Physical address (frame number & offset)

 Paging

 All pages of a process are
maintained on a disk

 When a process is accessing
memory, it’s containing page
might be in main memory

 If not, MMU signals OS so that
the page is loaded from a disk
to main memory

Virtual Memory: Paging

 If valid bit is set, MMU uses the physical address in PTE
(page table element) to construct the physical address of
the word

 If not, OS loads the page from disk

Virtual Memory: Paging

 Process isolation: giving each process a unique
non-overlapping virtual memory

 Memory sharing: overlapping portions of two
virtual memory spaces

Virtual Memory: Paging

 Memory protection
 Control the access to the contents of a virtual page by

additional permission bits
 SUP: can be accessed in kernel mode
 READ, WRITE: read/write control

Virtual Memory System: Linux

Virtual Memory: Addressing

 VM scheme
 Storage consists of

 Main memory (directly accessible)
 Disk (indirectly accessible)

 Processes reference locations using VA
 MMU translates VA to PA using a page table
 If its corresponding PA is in main memory, it is read
 If not, a trap event is generated and the page is loaded

from disk, possibly after swapping out a page
 The process that generated the address is suspended

Information Protection and Security

 Controlling the access to computer systems and
the information stored in them

 Four categories:
 Availability: protecting the system against interruption
 Confidentiality: prevent unauthorized reading
 Data integrity: prevent unauthorized writing
 Authenticity: verification of the identity of the user

and the validity of message or data

Scheduling and Resource Management

 Three factors to consider in resource allocation
 Fairness

 Give equal and fair access to resources to all processes in the
same class

 Differential responsiveness
 Discriminate among different classes of jobs

 Efficiency
 Maximize throughput
 Minimize response time
 Accommodate as many users as possible

Process Scheduling

 Short-term queue
 Processes in main memory and

ready to run
 Round-robin or priority order

 Long-term queue
 New processes waiting
 Moved to the short-term queue to be executed

 I/O queue
 All processes waiting for use each device is lined up in the

device’s queue

Process Scheduling

 OS can receive control of
the processor
 At the interrupt handler

if an interrupt occurs

 At the service call handler if a process invokes a
service call (system call)

 After handling the interrupt or the service call, a
short-term scheduler is invoked to pick the next
process to run

Developments Leading to
Modern Operating Systems

 Microkernel architecture
 Monolithic kernel:

 A large kernel provides
most of the OS functionality

 A single process with all
elements sharing the same address space

 Microkernel architecture: kernel has only few
essential functionalities
 Address space management, inter-process communication,

basic scheduling
 Other OS services are provided by user mode processes.

Developments Leading to
Modern Operating Systems

 Multithreading
 Thread: a logical flow that runs in

the context of a process

 Process: a collection of one or
more threads and associated
system resources

Developments Leading to
Modern Operating Systems

 Symmetric Multiprocessing (SMP)
 OS schedules processes and threads across all

processors
 Benefits

 Performance: more than one processes can run
simultaneously

 Availability: a failure of a single processor does not halt the
system

 Incremental growth: a user can enhance the performance of
a system by adding additional processors

 Scaling: vendors can offer a range of products with
difference prices and performances

 Distributed operating systems
 Provides an illusion that a cluster of machines is

running as a single computer

 Object-oriented design
 Adding modular extension to a small kernel
 At the OS level, an object-based structure enables

programmers to customize OS without disrupting
system integrity

Developments Leading to
Modern Operating Systems

Fault Tolerance
 Fault tolerance

 The ability of a system to continue normal operation
despite the presence of hardware or software error

 Reliability
 R(t): the probability that a system operates correctly up to

time t

 Mean time to failure (MTTF)

 Mean time to repair (MTTR)
 The average time it takes to repair a faulty element

Fault Tolerance
 Availability

 Fraction of time the system is available to serve
users’ requests

Up

Down

B2B1 B3

A3A2A1

Fault Tolerance
 Solutions: adding redundancy

 Spatial (physical) redundancy: use multiple
components performing the same function
or backup
 Backup name server on the Internet

 Temporal redundancy: repeating a function
or operation when an error is detected
 Data retransmission

 Information redundancy: replicating or
coding data such that an error can be
detected and corrected
 RAID disks

Fault Tolerance
 Operating System Mechanisms

 Process isolation: main memory, file
access, flow of execution

 Virtual machines: application isolation
and redundancy

 Concurrency controls: recover from fault
conditions like deadlock

 Checkpoints and rollback:
 Checkpoint: a copy of application’s state
 Rollback: restart the execution from a

checkpoint

