
CSE 306 Operating Systems
Operating System Overview 2

YoungMin Kwon



Major Achievements

 Four major theoretical advances in the 
development of operating systems
 Processes
 Memory management
 Information protection and security
 Scheduling and resource management



Process

 Many definitions
 A program in execution

 An instance of a program running on a computer

 The entity that can be assigned to and executed on a 
processor

 A unit of activity characterized by a single sequential 
thread of execution, a current state, and an associated 
set of system resources.



Process: Multiprogramming

 Three major developments related to the 
concept of process

 1. Multiprogramming
 Keep processors and I/O devices simultaneously 

busy to improve resource utilization
 In response to signals for I/O completion, the 

processor is switched to a program in main 
memory



Process: Time Sharing

 2. Time sharing
 Be responsive to the needs of individual user
 Able to support many users simultaneously (for 

cost reasons) 

 Example
 In general, users’ reactions are relatively slow
 If each user needs 2 sec of processing time per minute, 

about 30 users can share the system without noticing 
the interference

 OS overhead must be factored



Process: Real-time Transaction Processing

 3. Real-time transaction processing system
 Exclusive access to resources with commit or 

abort operations
 Many users are entering queries or updates 

against a database



Process: Interrupt

 Interrupt:
 A key tool for multiprogramming and timesharing

systems

 On an interrupt (periodic timer, I/O completion) 
the activity of a process can be suspended
 The processor save a context (PC, registers, …) and 

branch to the interrupt handler (in the kernel mode)
 After processing the interrupt, resume the interrupted 

process or other processes



Process: Program Coordination 

 Errors in program coordination
 Context switch can occur at any time  difficult to 

analyze concurrent execution of multiple processes

 Coordination errors are subtle
 May occur relatively rarely (can be once in million 

executions)
 Hard to reproduce  difficult to determine the cause



Process: Program Coordination 

 Four main causes of errors
 Improper synchronization

 A process waits for an I/O to complete
 Signals from an I/O completion can be lost or duplicated

 Failed mutual exclusion
 Shared resources are accessed by more than one processes

 Nondeterministic execution
 Depending on the memory footprint from other programs, the 

execution of a program differs

 Deadlocks
 Two or more programs are waiting for the resources held by others 

indefinitely



Process
 To tackle such errors  Process

 Systematic way to monitor and control various 
programs running on a processor

 A process is composed of
 An executable program
 Associated data needed by the program

 Variables, workspace, buffers, …
 The execution context (process state) of the 

program
 Registers, process priority, I/O waiting state, …



Process
 OS maintains a list of processes

 Locations of the blocks of 
memory

 Locations of the contexts

 A process has
 Program, Data, Context

 A processor has
 Base and limit registers: where 

the data/code begins and their 
size



Memory Management

 OS’s main storage management responsibilities
 Process isolation:

 Prevent processes from interfering with other’s memory

 Automatic allocation and management: 
 Memory hierarchy should be used dynamically
 Hide the allocation details from the programmer

 Support of modular programming:
 Programmers can define modules that can be 

dynamically created, destroyed, …



Memory Management

 OS’s main storage management responsibilities 
(cont’d)

 Protection and access control:
 Sharing of memory enables one process to access the 

address space of another
 OS must allow portions of memory to be accessible in 

various ways by various users

 Long-term storage:
 Storing information for extended period of time after the 

computer has been powered down



Memory Management

 File system
 A long term store
 Information is stored in named objects called files
 Convenient concept for programmers
 Useful unit of access control and protection for 

the OS



Memory Management
 Virtual memory

 Allows programs to address memory from a 
logical point of view without considering the 
physical amount of main memory

 Allows multiple user-processes concurrently 
reside in main memory



Memory Management

 Virtual memory
 Paging 

 Allows processes to be comprised of a number of fixed-size 
blocks (called page)

 Reduces fragmentation in virtual memory
 Virtual address (page number & page offset)

 Process isolation
 Give each process a unique, non-overlapping memory

 Memory sharing
 Overlap portions of two virtual memory space



Memory Management
 Virtual memory

 Page
 Processes are divided into a number of fixed-size blocks 

(called page)
 Reduces fragmentation in virtual memory

 Page Table
 Dynamic mapping from virtual address to physical 

address
 Virtual address (page number & page offset) 

Physical address (frame number & offset)



 Paging

 All pages of a process are 
maintained on a disk

 When a process is accessing 
memory, it’s containing page 
might be in main memory

 If not, MMU signals OS so that 
the page is loaded from a disk 
to main memory



Virtual Memory: Paging

 If valid bit is set, MMU uses the physical address in PTE 
(page table element) to construct the physical address of 
the word

 If not, OS loads the page from disk



Virtual Memory: Paging

 Process isolation: giving each process a unique 
non-overlapping virtual memory

 Memory sharing: overlapping portions of two 
virtual memory spaces



Virtual Memory: Paging

 Memory protection
 Control the access to the contents of a virtual page by 

additional permission bits
 SUP: can be accessed in kernel mode
 READ, WRITE: read/write control



Virtual Memory System: Linux



Virtual Memory: Addressing

 VM scheme
 Storage consists of

 Main memory (directly accessible)
 Disk (indirectly accessible)

 Processes reference locations using VA
 MMU translates VA to PA using a page table
 If its corresponding PA is in main memory, it is read
 If not, a trap event is generated and the page is loaded 

from disk, possibly after swapping out a page
 The process that generated the address is suspended



Information Protection and Security

 Controlling the access to computer systems and 
the information stored in them

 Four categories:
 Availability: protecting the system against interruption
 Confidentiality: prevent unauthorized reading
 Data integrity: prevent unauthorized writing
 Authenticity: verification of the identity of the user

and the validity of message or data



Scheduling and Resource Management

 Three factors to consider in resource allocation
 Fairness

 Give equal and fair access to resources to all processes in the 
same class

 Differential responsiveness
 Discriminate among different classes of jobs

 Efficiency
 Maximize throughput
 Minimize response time
 Accommodate as many users as possible



Process Scheduling

 Short-term queue
 Processes in main memory and

ready to run
 Round-robin or priority order

 Long-term queue
 New processes waiting
 Moved to the short-term queue to be executed

 I/O queue
 All processes waiting for use each device is lined up in the 

device’s queue



Process Scheduling

 OS can receive control of
the processor
 At the interrupt handler

if an interrupt occurs

 At the service call handler if a process invokes a 
service call (system call)

 After handling the interrupt or the service call, a 
short-term scheduler is invoked to pick the next 
process to run



Developments Leading to
Modern Operating Systems

 Microkernel architecture
 Monolithic kernel: 

 A large kernel provides
most of the OS functionality

 A single process with all
elements sharing the same address space

 Microkernel architecture: kernel has only few 
essential functionalities
 Address space management, inter-process communication, 

basic scheduling
 Other OS services are provided by user mode processes.



Developments Leading to
Modern Operating Systems

 Multithreading
 Thread: a logical flow that runs in 

the context of a process

 Process: a collection of one or 
more threads and associated 
system resources



Developments Leading to
Modern Operating Systems

 Symmetric Multiprocessing (SMP)
 OS schedules processes and threads across all 

processors
 Benefits

 Performance: more than one processes can run 
simultaneously

 Availability: a failure of a single processor does not halt the 
system

 Incremental growth: a user can enhance the performance of 
a system by adding additional processors

 Scaling: vendors can offer a range of products with 
difference prices and performances



 Distributed operating systems
 Provides an illusion that a cluster of machines is 

running as a single computer

 Object-oriented design
 Adding modular extension to a small kernel
 At the OS level, an object-based structure enables 

programmers to customize OS without disrupting 
system integrity

Developments Leading to 
Modern Operating Systems



Fault Tolerance
 Fault tolerance

 The ability of a system to continue normal operation
despite the presence of hardware or software error

 Reliability
 R(t): the probability that a system operates correctly up to 

time t

 Mean time to failure (MTTF)



 Mean time to repair (MTTR)
 The average time it takes to repair a faulty element



Fault Tolerance
 Availability

 Fraction of time the system is available to serve 
users’ requests

Up

Down

B2B1 B3

A3A2A1



Fault Tolerance
 Solutions: adding redundancy

 Spatial (physical) redundancy: use multiple 
components performing the same function 
or backup
 Backup name server on the Internet

 Temporal redundancy: repeating a function 
or operation when an error is detected
 Data retransmission

 Information redundancy: replicating or 
coding data such that an error can be 
detected and corrected
 RAID disks



Fault Tolerance
 Operating System Mechanisms

 Process isolation: main memory, file 
access, flow of execution

 Virtual machines: application isolation
and redundancy

 Concurrency controls: recover from fault 
conditions like deadlock

 Checkpoints and rollback: 
 Checkpoint: a copy of application’s state
 Rollback: restart the execution from a 

checkpoint


