
CSE 306 Operating Systems
Operating System Overview

YoungMin Kwon

OS Objectives and Functions

 Operating System
 Controls the execution of application programs
 Acts as an interface between application programs

and computer hardware

OS Objectives and Functions

 Objectives
 Convenience: makes computer easier to use

 Efficiency: makes the use of computer resources
more efficient

 Ability to evolve: allows effective development,
testing, and introduction of new system functions
without interfering with service.

As a User/Computer Interface
 Operating Systems

 The most important collection of system programs
comprises the OS
 Provided as utility or library programs

 Hide the details of hardware from the programmers

 Provide convenient interfaces to application
programmers

A User/Computer Interface

 Computer Hardware and Software Structure

As a User/Computer Interface
Operating System Services

 Program development: provides a variety of facilities
and services to programmers
 E.g. editors, debuggers

 Program execution: steps to execute a program
 Loading, linking, initializing I/O devices and files

 Access to I/O devices: OS hides device specific details
from the programmers

 Controlled access to files: data structures stored in
files, protection from other users

As a User/Computer Interface
Operating System Services

 System access: protection of resources and data from
unauthorized users and resolve conflicts for resource
contention

 Error detection and response: ability to detect errors
and to make response to clear the error with the
minimal impact
 memory error, device failure, division by zero, illegal access

to memory

 Accounting: collect usage statistics for various
resources and monitor parameters

As a User/Computer Interface
3 Key Interfaces

 Instruction Set Architecture
(ISA): the set of machine language
instructions that a computer can follow
 User ISA, system ISA

 Application Binary Interface (ABI): standard for binary
portability across programs
 System call interfaces

 Application Programming Interface (API): through recompiling,
enables application software to be ported easily to other
systems
 Library functions wrapping system calls

As a Resource Manager

 OS is responsible for controlling the computer’s
resources
 I/O, main and secondary memory, CPU time

 Control mechanism: OS is not external to what is
being controlled
 OS functions in the same way as ordinary computer

software
 OS frequently relinquishes control and depends on

CPU to regain control

As a Resource Manager

 Multiplexing resources

y: a resource; x0, x1: processes

 By time: e.g. CPU
 By space: e.g. memory

As a Resource Manager

 Main memory
 Controlled by OS and MMU
 User program and data
 Kernel and other portions of OS currently in use

 I/O devices
 OS controls when and which program can access a device

and file

 Processor
 OS controls how much processor time is used by a process

Evolution of an OS

 OS will evolve over time
 Hardware upgrades and new types of hardware

 Paging mechanism, Graphics terminal

 New services
 In response to user demands or system managers’ needs
 E.g. a new set of performance tools

 Fixes
 Bug fixes for OS

Serial Processing (Evolution of OS)

 Serial Processing
 No OS support : programmers interact directly

with the computer H/W

 Programs are loaded via input devices (card
reader)

 Output is printed on a printer or a bulb is lit to
indicate an error

Serial Processing (Evolution of OS)

 Two main problems
 Scheduling: users signed up for a block of time (e.g. 45

min)
 Time can be wasted if the computation is terminated early
 Users can be expelled if the computation is not finished in

time

 Setup time: a single program (called job) involves
 Loading the compiler and source program into memory
 Save the compiled program (object program)
 Loading and linking the object program and common

functions

Simple Batch Systems (Evolution of OS)

IBM 7094 IBM 1401

Simple Batch Systems (Evolution of OS)

 Batch OS
 Improve processor utilization

 Remove wasted time on scheduling and setup

 Use of software called monitor
 Users submit jobs (on card, tape) to a computer

operator
 The computer operator batches the jobs together

sequentially and places the batch on an input device
 Each program returns back to the monitor when

finished
 Monitor will load the next program

Simple Batch Systems (Evolution of OS)

 Monitor
 Most of the monitor always remain in

main memory

 The rest, utilities and common functions,
is loaded at the beginning of the job
when necessary

 Monitor reads in jobs one at a time and
replace the current job

 When a job is completed it returns
control to the monitor

Simple Batch Systems (Evolution of OS)

 Processor’s point of view
 At a certain point of time, the CPU is executing an

instruction from the monitor

 Once the next job is read into memory, a branch
instruction makes the CPU start executing the user
program

 The control goes back to the monitor when the user
program is terminated either normally or
erroneously

Simple Batch Systems (Evolution of OS)

 Example Job Control Language (JCL)
 $FORTRAN: loads the compiler
 The compiler translates the user’s program

into object code
 $LOAD: loads the object program into

memory
 $RUN: transfers the control to the user

program
 $END: returns the control to the monitor

Simple Batch Systems (Evolution of OS)

 Desirable features
 Memory protection: monitor area should not be

altered by user programs
 Privileged instructions: e.g. I/O instructions to prevent

reading next instructions from card reader
 Timer: to prevent a single job from monopolizing the

system
 Interrupts: gives OS more flexibility in control transfer

 Solution: mode of operation
 User mode: certain restrictions are enforced
 Kernel mode: privileged instructions can be executed

Multiprogrammed Batch Systems (Evolution of OS)

 Processor is still idle in a simple batch system
 I/O devices are slower than processors

 System utilization example

Multiprogrammed Batch Systems (Evolution of OS)

 Multiprogramming (multitasking)
 When one job needs to wait for I/O,

the processor can switch to another job

Multiprogrammed Batch Systems (Evolution of OS)

 Example:
 Consider a computer with 250MB of available

memory, a disk, a terminal, and a printer

3 Jobs

Multiprogrammed Batch Systems (Evolution of OS)

Multiprogrammed Batch Systems (Evolution of OS)

 Example:
 Resource Utilization

Resource Utilization

Time-Sharing Systems (Evolution of OS)

 Multiprogrammed batch system
 Resource utilization is improved
 User interaction still suffers

 Time-sharing
 Multiprogramming: processor time is shared among

multiple users
 Multiple users simultaneously access the system

through terminals
 OS interleaves the execution of user programs in a

short burst or quantum of computation

Time-Sharing Systems (Evolution of OS)

 Time-slicing
 System clock generates an interrupt at a short

interval
 On each clock interrupt, OS regains control

and assigns the processor to another user

 Batch Multiprogramming vs Time Sharing

Time-Sharing Systems (Evolution of OS)

 Compatible Time-Sharing System
(CTSS)
 Clock interrupts at every 0.2 sec

a) JOB1 is loaded
b) JOB2 is loaded
c) JOB3 is loaded (part of JOB2

remains in mem)
d) JOB1 is loaded (part of JOB2

remains in mem)
e) JOB4 is loaded (parts of JOB1 and

JOB2 are in mem)
f) JOB2 is loaded (only the first 20000

bytes are loaded)

Time-Sharing Systems (Evolution of OS)

 New issues raised by time-sharing and
multiprogramming
 Memory protection

 Prevent other programs from modifying others’ data

 File system protection
 Only authorized users have access to a particular file

 Contention for resources
 Printers, storage devices,…

