
CSE 306 Operating Systems
Operating System Overview

YoungMin Kwon

OS Objectives and Functions

 Operating System
 Controls the execution of application programs
 Acts as an interface between application programs

and computer hardware

OS Objectives and Functions

 Objectives
 Convenience: makes computer easier to use

 Efficiency: makes the use of computer resources
more efficient

 Ability to evolve: allows effective development,
testing, and introduction of new system functions
without interfering with service.

As a User/Computer Interface
 Operating Systems

 The most important collection of system programs
comprises the OS
 Provided as utility or library programs

 Hide the details of hardware from the programmers

 Provide convenient interfaces to application
programmers

A User/Computer Interface

 Computer Hardware and Software Structure

As a User/Computer Interface
Operating System Services

 Program development: provides a variety of facilities
and services to programmers
 E.g. editors, debuggers

 Program execution: steps to execute a program
 Loading, linking, initializing I/O devices and files

 Access to I/O devices: OS hides device specific details
from the programmers

 Controlled access to files: data structures stored in
files, protection from other users

As a User/Computer Interface
Operating System Services

 System access: protection of resources and data from
unauthorized users and resolve conflicts for resource
contention

 Error detection and response: ability to detect errors
and to make response to clear the error with the
minimal impact
 memory error, device failure, division by zero, illegal access

to memory

 Accounting: collect usage statistics for various
resources and monitor parameters

As a User/Computer Interface
3 Key Interfaces

 Instruction Set Architecture
(ISA): the set of machine language
instructions that a computer can follow
 User ISA, system ISA

 Application Binary Interface (ABI): standard for binary
portability across programs
 System call interfaces

 Application Programming Interface (API): through recompiling,
enables application software to be ported easily to other
systems
 Library functions wrapping system calls

As a Resource Manager

 OS is responsible for controlling the computer’s
resources
 I/O, main and secondary memory, CPU time

 Control mechanism: OS is not external to what is
being controlled
 OS functions in the same way as ordinary computer

software
 OS frequently relinquishes control and depends on

CPU to regain control

As a Resource Manager

 Multiplexing resources

y: a resource; x0, x1: processes

 By time: e.g. CPU
 By space: e.g. memory

As a Resource Manager

 Main memory
 Controlled by OS and MMU
 User program and data
 Kernel and other portions of OS currently in use

 I/O devices
 OS controls when and which program can access a device

and file

 Processor
 OS controls how much processor time is used by a process

Evolution of an OS

 OS will evolve over time
 Hardware upgrades and new types of hardware

 Paging mechanism, Graphics terminal

 New services
 In response to user demands or system managers’ needs
 E.g. a new set of performance tools

 Fixes
 Bug fixes for OS

Serial Processing (Evolution of OS)

 Serial Processing
 No OS support : programmers interact directly

with the computer H/W

 Programs are loaded via input devices (card
reader)

 Output is printed on a printer or a bulb is lit to
indicate an error

Serial Processing (Evolution of OS)

 Two main problems
 Scheduling: users signed up for a block of time (e.g. 45

min)
 Time can be wasted if the computation is terminated early
 Users can be expelled if the computation is not finished in

time

 Setup time: a single program (called job) involves
 Loading the compiler and source program into memory
 Save the compiled program (object program)
 Loading and linking the object program and common

functions

Simple Batch Systems (Evolution of OS)

IBM 7094 IBM 1401

Simple Batch Systems (Evolution of OS)

 Batch OS
 Improve processor utilization

 Remove wasted time on scheduling and setup

 Use of software called monitor
 Users submit jobs (on card, tape) to a computer

operator
 The computer operator batches the jobs together

sequentially and places the batch on an input device
 Each program returns back to the monitor when

finished
 Monitor will load the next program

Simple Batch Systems (Evolution of OS)

 Monitor
 Most of the monitor always remain in

main memory

 The rest, utilities and common functions,
is loaded at the beginning of the job
when necessary

 Monitor reads in jobs one at a time and
replace the current job

 When a job is completed it returns
control to the monitor

Simple Batch Systems (Evolution of OS)

 Processor’s point of view
 At a certain point of time, the CPU is executing an

instruction from the monitor

 Once the next job is read into memory, a branch
instruction makes the CPU start executing the user
program

 The control goes back to the monitor when the user
program is terminated either normally or
erroneously

Simple Batch Systems (Evolution of OS)

 Example Job Control Language (JCL)
 $FORTRAN: loads the compiler
 The compiler translates the user’s program

into object code
 $LOAD: loads the object program into

memory
 $RUN: transfers the control to the user

program
 $END: returns the control to the monitor

Simple Batch Systems (Evolution of OS)

 Desirable features
 Memory protection: monitor area should not be

altered by user programs
 Privileged instructions: e.g. I/O instructions to prevent

reading next instructions from card reader
 Timer: to prevent a single job from monopolizing the

system
 Interrupts: gives OS more flexibility in control transfer

 Solution: mode of operation
 User mode: certain restrictions are enforced
 Kernel mode: privileged instructions can be executed

Multiprogrammed Batch Systems (Evolution of OS)

 Processor is still idle in a simple batch system
 I/O devices are slower than processors

 System utilization example

Multiprogrammed Batch Systems (Evolution of OS)

 Multiprogramming (multitasking)
 When one job needs to wait for I/O,

the processor can switch to another job

Multiprogrammed Batch Systems (Evolution of OS)

 Example:
 Consider a computer with 250MB of available

memory, a disk, a terminal, and a printer

3 Jobs

Multiprogrammed Batch Systems (Evolution of OS)

Multiprogrammed Batch Systems (Evolution of OS)

 Example:
 Resource Utilization

Resource Utilization

Time-Sharing Systems (Evolution of OS)

 Multiprogrammed batch system
 Resource utilization is improved
 User interaction still suffers

 Time-sharing
 Multiprogramming: processor time is shared among

multiple users
 Multiple users simultaneously access the system

through terminals
 OS interleaves the execution of user programs in a

short burst or quantum of computation

Time-Sharing Systems (Evolution of OS)

 Time-slicing
 System clock generates an interrupt at a short

interval
 On each clock interrupt, OS regains control

and assigns the processor to another user

 Batch Multiprogramming vs Time Sharing

Time-Sharing Systems (Evolution of OS)

 Compatible Time-Sharing System
(CTSS)
 Clock interrupts at every 0.2 sec

a) JOB1 is loaded
b) JOB2 is loaded
c) JOB3 is loaded (part of JOB2

remains in mem)
d) JOB1 is loaded (part of JOB2

remains in mem)
e) JOB4 is loaded (parts of JOB1 and

JOB2 are in mem)
f) JOB2 is loaded (only the first 20000

bytes are loaded)

Time-Sharing Systems (Evolution of OS)

 New issues raised by time-sharing and
multiprogramming
 Memory protection

 Prevent other programs from modifying others’ data

 File system protection
 Only authorized users have access to a particular file

 Contention for resources
 Printers, storage devices,…

