CSE 306 Operating Systems
Computer System Overview

CPU

MEFHDFY Output

Input and

Basic Elements

L * & t oA A

H L

Control bus

L1 Y

Address bus
¥

= A computer consists of

r
Data bus

3 i
J -

- System bus

" Processor: controls the operation of the computer and

performs its data processing functions

= Memory: stores data and program

= |/O modules: move data between the computer and

external environments

= System bus: provides communication among
processors, main memory and I/O modules

»»»»»»»»

Computer Components: Top-Level View

R Main memory
0
System . 1
bus » 2
PC MAR ‘ o
Instruction &
Instruction ®
Instruction
IR MBR .
LJ
[/0 AR 2
y \/ Data
Execution
unit 1/0 BR Data
Data
Data
.
L]
[/0 module . n=2
n=1
= PC = Program counter
. IR = Instruction register
B ' MAR = Memory address register
GAIcLS MBR = Memory buffer register

I/O AR = Input/output address register
I/0 BR = Input/output buffer register

@K_orea

Instruction Execution

Fetch stage

Lixecute stage

|/ START = Fetch next
g instruction

Execute
instruction

-

Basic Instruction Cycle

= 2 Steps of Instruction Processing

HALT

e

" Read instructions (fetches) from memory

= PC holds the address of the next instruction

= PC will increase automatically unless instructed otherwise

= Execute each instruction

" |R (Instruction Register) holds the fetched instruction

»»»»»»»

Categories of Instructions

Data transfer: processor <> memory

= Data may be transferred between a processor and memory

Data transfer: processor <> 1/0

= Data may be transferred between a processor and an I/O

module

Data processing

= Processor may perform some arithmetic or logical
operations on data

Control
= Change the sequence of instructions to execute

@ Korea)

Program Execution Example

Program counter (PC) = Address of instruction

0 3 4 1 Instruction register (IR) = Instruction being executed
Opcode Address Accumulator (AC) = Temporary storage
(a) Instruction format (¢) Internal CPU registers
0 1 15 £
S Magnitude 0001 = Load AC from memory

0010 = Store AC to memory

(b) Integer format 0101 = Add to AC from memory

(d) Partial list of opcodes

= A Hypothetical Machine

"= Has 1 data register AC: accumulator

" |nstructions (16 bit)

= 4 bits for the opcode (16 different opcodes)
= 12 bits for the memory address

= Data (16 bit)

.

Program Execution Example

Fetch stage

Execute stage

Memory CPU registers Memory CPU registers
30001940 3 0 0]PC 30001 940 30 1]PC
3(’)[59&111> AC[301|5 9 4 1 000 3| AC
302(2 9 41 1 94 0|IR |302(2 9 4 1 1 940/IR
940[0 0 0 3 940[0 0 0 3
041(0 0 0 2 94110 0 0 2
Step 1 Step 2

Memory CPU registers Memory CPU registers
30001 940 30 1]|PC 3001 940 3 0 2]PC
3015941 000 3[AC|301|59 41 000 5|AC
3[)22941_\55941111 3()22941(594311(
940[0 0 0 3 940[00 03] “3+2=5
941[0 0 0 2 941[0 0 0 2}—"

Step 3 Step 4

Memory CPU registers Memory CPU registers
30001 940 3 0 2|PC 30011 9 40 3 0 3|PC
301(59 41 000 S5[AC|301]5 941 0 00 5|AC
30212 9 4 Jpi2 9 4 I[IR|302]12 9 4 1 294 1|IR
940(0 0 0 3 9400 0 0 3
94110 0 0 2 %1000 5
Step 5 Step 6

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

@ Korea

Interrupts

" |nterrupts

= A mechanism by which other modules (I/O, memory)
may interrupt the normal sequence of the processor

= Commonly generated by

= Program: division by 0, illegal memory access, illegal
instruction

= Timer: at a regular interval

= |/0: to signal a completion of an operation, to signal a
detection of an event

= Hardware failure: power failure, parity error

@Koream_

Interrupts

" |nterrupt mechanisms can improve processor utilization

= Example

= A PCoperating at 1 GHz would execute about 10° instructions
per second

= For atypical HDD with 7200 RPM, it takes about 4 ms to write

= Without interrupts
= A processor has to wait 4 ms for every write operation

= With interrupts,

= A process makes a write request and proceed with the next
instructions.

= When the write is done an interrupt handler will be invoked

@Koreah)

Flow of Control Without Interrupts

-
E
OIS 1ol
=l g I&
g g
llllll R
J/r \\
‘"r’ lllllll L:I—
\ 7 S~ 2
\ / - b
\ S
||||||| ..I|||||||||l..ll.7n:f||||||||||l'

Flow of Control With Interrupts

@ Rores

VO

operation
VO
operation

o|oje|o|s|e|e|e|e

-
E B~
SiF e MR
g S E
em— “ =
/ s
l.f.r........l—ﬁ....:... _\h N »
\d- fffff / \\ l...r If
b T -N..IHH-.I _fl._ N

Flow of Control With Interrupts (long /0 wait)

-2,
—
© joje

¥ 4'-' ==" 1O
WRITE l..--"""; / Command
e — ,
: ,1' ;’ (18]
| / ff operation
I 1y Processor
b1y wait
V[
Wi Interrupt ‘
: ,' ’! handler @
1 e
WRITE ¢¥__ /) | O
I y=d —
I !y END
vy ®
/A
@ 1 ’l / Vo
I g ’f operation
: !y Processor
!y wait
i
Y
WRITE »

©

@ Rores

Ve
|

Instruction Cycle with Interrupts

User program

Interrupt handler

'

Fetch stage Execute stage Interrupt stage
1
Interrupts 2
disabled
Check for
START N , S Fetch next - Execute " interrupt;
== instruction instruction Interrupts | initiate interrupt
enabled handler
(1175 o1]] Q—
SO I t gt .]
A
HALI |
M

" |nterrupt stage

= For interrupts, an interrupt stage is added to the
instruction cycle

= Processor checks if there are any pending interrupts

= No pending interrupt: fetches the next instruction
= Otherwise: executes an interrupt-handler routine

@Koreah)

Interrupt Processing

Hardware Software
AL A
' o s] o= T
Device controller or
other system hardware l
issues an interrupt
Save remainder of
process state
information
Processor finishes
execution of current ‘
instruction
l Process interrupt
Processor signals
acknowledgment l
of interrupt
Restore process state
information
Processor pushes PSW
and PC onto control l
stack
Restore old PSW
and PC
Processor loads new
PC value based on
interrupt

@ Rores

Interrupt: Memory and Register Changes

T—-M
Control Y
stack |
' :I-J
N+1
Program
counter
Yy | Start
Interrupt G!-‘I.‘Cfal
service registers
routine
Y + L |Return
Stack
pointer
Processor
T—M
N+ '\; User's
program
Main
memory

(a) Interrupt occurs after instruction at location N

=M

N+ 1
Control 1
stack
r =1
>y +L+1]
Program
counter
Y | Stant
Interrupt General
service registers
routine
Y + L |Return
Stack
pointer
Processor
r
N *_NI User's
program
Main
memory

(b) Return from interrupt @K?fﬁ?w

Multiple Interrupts (15t approach)

" Disable interrupts while processing one

" Interrupts occurred during the process remains
pending

= After served the current interrupt, re-enable the
Interrupt.

" |[f there is a pending interrupt, handle it

Multiple Interrupts (15t approach)

User program

Interrupt
handler X

/

\

Interrupt
handler Y

.

ARRERERRRRE

Multiple Interrupts (2" approach)

= Define priorities for interrupts and allow an
interrupt of higher priority

= Lower priority interrupts occurred during this
process remains pending

= Higher priority interrupts will be handled

= After processed the current interrupt, if there is a
pending one handle it

@Koream

Multiple Interrupts (2"? approach)

Printer Communication

User program . . : . . :
Prog interrupt service routine interrupt service routine

I
=

[I B I

Disk
interrupt service routine

/

I\
[IIII7§IIIII
l

AL T N N I O 6 DO I O 1 K I

trrrererred

/

Designing Memory System

= 3 questions to consider

= How much
= |f the capacity is there, apps will likely be developed to use it

= How fast
= Fast enough not to block processors

= How expensive
= Reasonable in relation to other components

= Memory technology
= Faster access memory — greater cost
= Larger memory — smaller cost, slower access speed

@Koream

Storage Technology

= Access Time (to read 512 bytes, year 2015)
= SRAM: 256 ns
= DRAM: 4000 ns

= HDD: 10 ms (40,000 times greater than SRAM, 2,500
times greater than DRAM)

= Cost (year 2015)
= SRAM: 25 S/MB
= DRAM: 0.02 S/MB
= HDD: 0.03 S/GB

Storage Technology Trend

= 2015 technology compared to 1985
| mB/$ | Acesstime

SRAM
DRAM
HDD
CPU

116
44,000
3,333,333

115

10

25

2,075 (effective cycle time)

Memory Hierarchy

= Asone goes down the hierarchy
= Decreasing cost per bit

= |ncreasing capacity
= |ncreasing access time

= Decreasing frequency of access by
the processor

Locality

char a[N][M];
int sum = 0O;
for (i = 0; 1 < N; i++)
for (j =0; j < M; j 4= K) //stride K
sum += al[i][Jj];

= Temporal Locality

= A memory referenced once is likely to be referenced again in the
near future

= Spatial Locality

= |f a memory location is referenced, its nearby locations are likely
to be referenced in the near future

@Koream ‘

Cache Memory

= Processors access memory frequently
= To fetch instructions on every instruction cycle
= To read/write data

= Processor speed is increased more rapidly than memory
access speed

= Need to trade-off among: speed, cost, and size

= Cache

= Provides a small, fast memory between processor and main
memory

= Exploits the principle of locality

@Koream ‘

Cache Memory

Word transfer

Block transfer

—N—

CPU

/_M
pr—
[~ —

Cache

= Single cache

= CPU reads a byte or a word

FFast

Slow

Main memory

= A block of memory is transferred from memory to

cache

= To exploit the spatial locality

@Koreah)

Cache Memory

> Level | = Level2 [Level3 || Main

CPU e (L1) cache | == (L2) cache | |e==f (L3) cache | |e={ memory

Fastest Fast Less Slow
fast

= Multi-level cache

= Cost-effective way of utilizing the locality

@ Korea '

Cache Hierarchy

Intel Core i7 cache hierarchy

Core 0 Core 3
Regs Regs
L1 L1 L1 L1
d-cache i-cache d-cache i-cache

L2 unified cache

L2 unified cache

L3 unified cache
(shared by all cores)

Processor package

Main memory

® -cache: for instructions

= d-cache: for data

= unified-cache: for both instructions and data

Direct Memory Access

= 3 techniques for I/O operations
= Programmed |/O

= |/O module performs the requested action, but no more
= Processor has to check whether |/O operation is done

" Interrupt driven /O
= |/O module interrupts processor when the data is ready

" Direct Memory Access (DMA)

= Large volume of data is directly transferred between |I/O
module and memory

@Koream

DMA Example: reading a disk sector

CPU chip
Register file
ALU
T |-
. Main
Bus interface I memory
I/0O bus
USB Graphics Disk
controller adapter controller
1 t ' ‘

y
Mouse Keyboard Monitor i

(a) The CPU initiates a disk read by writing a command, logical block number, and
destination memory address to the memory-mapped address associated with the disk.

@ Rores

DMA Example: reading a disk sector

CPU chip
Register file

%

Bus interface i

Main
memory

I/O bus

USB Graphics Disk
controller adapter controller
) 1

Mouse Keyboard Monitor

(b) The disk controller reads the sector and performs a DMA transfer into main memory.

@ Rores

DMA Example: reading a disk sector

CPU chip
Register file
Interrupt
Bl
. Main
Bus interface J e DW\
1/O bus
USB Graphics Disk
controller adapter controller
1 1 | ‘
Mouse Keyboard Monitor

(c) When the DMA transfer is complete, the disk controller notifies the CPU with an interrupt.

@ Rores

Multi-Processor and Multi-Core

" Traditional computers

= Computers have been seen as a
sequential machine

= Parallelism in computers
"= The cost of computer HW has dropped
= To improve performance
= To improve reliability

= Examples: multicore computers,
symmetric multiprocessors (SMP), and
clusters

Symmetric Multiprocessors (SMP)

1 o
memory i1[e) adapter

/O
adapter

= Definition
= Two or more comparable processors

= All processors share the same memory and 1/0O
facilities; interconnected by a bus

= All processors share access to I/O devices
= All processors can perform the same functions

" The system is controlled by an integrated operating
system (differentiates SMP from clusters)

Multicore Computers

Core () Core | Core 2 Core 3
32 kB I&D 32 kB I&D 32kB I&D 32 kB I&D
L.1 caches L.1 caches L1 caches .1 caches

256 kB 256 kB 256 kB 256 kB

L2 cache L.2 cache .2 cache L2 cache
8 MB
L3 cache
DDR3 memory Quickpath
controllers interconnect

I TR A |

Ix8B @ 1.33 GT/s 4x20b @ 6.4 GT/s

Intel core i7 block diagram

@ Rores

