
CSE504 Compiler Design
Code Generation

YoungMin Kwon

Code Generation

• Takes an intermediate representation of the source.
– Postfix, Three-address code, Stack machine code, Syntax

Tree, Dags

• Produces an equivalent target program.
– Absolute machine code, Relocatable machine code,

Assembly code

Issues to Consider
• Memory management

– Type (width) and Offset info are in the Symbol Tables.
– Conversion from labels to addresses is analogous to the

backpatching technique
• Instruction Selection

– Remove redundancy
– Consider special instructions (inc for add 1)

a := b + c
d := a + e

mov b, r0
add c, r0
mov r0, a
mov a, r0
add e, r0
mov r0, d

mov a, r0
add 1, r0
mov r0, a

inc a

Issues to Consider

• Register Allocation
– Register allocation: select the set of variables that

will reside in registers.
– Register assignment: pick the specific register for a

variable.
– Register usage conventions, Register pairs

• E.g. mul (rax, rdx), div (rax, rdx), loop (rcx register)

• Evaluation Order
– Some orders require fewer registers than others

Runtime Storage Management
• Static Allocation (e.g. call, return)

mov #here+20, callee.static_area
goto callee.code_area
...
goto *callee.satic_area

• Stack Allocation (e.g. call, return)
add #caller.recordsize, sp
mov #here+16, *sp
goto callee.code_area
...
goto *sp
sub #caller.recordsize, sp

Flow Graphs

• Basic Blocks
– Determine the set of leaders

• The first statement is a leader
• Any target of a goto (conditional or unconditional) is a

leader
• Any statement immediately following goto (conditional

or unconditional) is a leader

– For each leader, its basic block consists of the
leader and all statements up to but not including
the next leader.

Flow Graphs

• Flow graphs are a directed graph
– Nodes: basic blocks
– Edges: there is an edge from B1 to B2 if

• There is a jump from the last statement of B1 to the
first statement of B2

• B2 immediately follows B1 and B1 does not end with an
unconditional jump

Flow Graphs

• Loop: a collection of nodes such that
– All nodes in the collection is strongly connected
– Has a unique entry (nodes outside of the loop has

to go through the entry to reach any inside nodes)

• Inner loop
– A loop that contains no other loop.

Next-Use Information

• Next-Use: Where will the computed variable be used
• Computing Next-Use:

For each i: x := y op z found during the backward scan
– Attach the next-use and liveness info about x, y, z to

statement i.
– In the symbol table set x to “not live”, “no next use”
– In the symbol table set y and z to “live”, and i for the next

use.
• Pack two temporaries into the same location if they are

not live simultaneously.

Simple Code Generator

• Register descriptor for each register
– Keeps track of the variable names whose value is

in that register.

• Address descriptor for each variable
– Keeps track of the locations (register, memory,

stack, …) where the variable can be found.

Code-Generation Algorithm
• For three-address instructions x = y + z

– Use getReg(x=y+z) to select registers for x, y, z. Call them
Rx, Ry, and Rz.

– If y is not in Ry (by the register descriptor for Ry), then
issue LD Ry, y’, where y’ is one of the memory location for
y (by the address descriptor for y)

– Action for z is analogous to y
– Issue the instruction Add Rx, Ry, Rz

• For copy statements x = y
– Assume getReg(x = y) will choose the same register for x

and y.
– If y is not in Ry, issue Ld Ry, y
– If y was already in Ry, do nothing
– Adjust the descriptors such that Ry has x

Register and Address Descriptors
• For the instruction Ld R, x

– Make the register descriptor for R hold only x
– Add R to the address descriptor for x

• For the instruction ST x, R
– Add the memory location for x to the address descriptor

for x
• For the instructions ADD Rx, Ry, Rz

– Make the register descriptor for Rx hold only x
– Make the address descriptor for x hold only Rx
– Remove Rx from address descriptors of any variables other

than x
• For the copy statement x = y

– Add x to the register descriptor for Ry
– Make the address descriptor for x hold only Ry

getReg(x=y+z)
• If y is in a register, pick the register as Ry
• Else if there is an empty register, pick the register as Ry
• Else

– Let R be a candidate register and v be a variable in its
register descriptor: (we need to store the value of R to the
memory for each v)

– If the address descriptor of v has other location than R, we
are OK

– If v is x and x is not an operand, we are OK
– If v is not used later, we are OK
– If we are not OK, we need to issue ST v, R
– For each v in R’s register descriptor, find how many store

operation is necessary and choose R that requires the least
number of store operations.

getReg(x=y+z)
• If x is in a register that holds only x, pick the register as Rx
• Else if y is not used later and Ry holds only y, use Ry as Rx
• Else if there is an empty register, pick the register as Rx
• Else

– Let R be a candidate register and v be a variable in its register
descriptor: (we need to store the value of R to the memory for
each v)

– If the address descriptor of v has other location than R, we are
OK

– If v is x and x is not an operand, we are OK
– If v is not used later, we are OK
– If we are not OK, we will need to issue ST v, R
– For each v in R’s register descriptor, find how many store

operation is necessary and choose R that requires the least
number of store operations.

• For getReg(x=y), always choose Ry as Rx

Peephole Optimization

• Eliminating redundant Loads and Stores

• Eliminating Unreachable Code
– Unreachable code: unlabeled code immediately

following unconditional jump

LD R0, a
ST a, R0

If debug != 1 goto L2
;print debug information
L2:

Peephole Optimization
• Flow of Control optimizations

– Jump to jump

– Jump to conditional jump

– Conditional jump to jump

goto L1
...

L1: goto L2

goto L2
...

L1: goto L2

if a < b goto L1
...

L1: goto L2

if a < b goto L2
...

L1: goto L2

goto L1
...

L1: if a < b goto L2
L3:

L1: if a < b goto L2
goto L3
...

L3:

