
CSE504 Compiler Design
Run-Time Environments

YoungMin Kwon

Overview

• Learn the relationship between names and
data objects

Storage Organization
• Typical Run-time memory
• Stack Storage

– Variables local to a procedure
are usually allocated on a stack.

• Heap Storage
– Data that may outlive a

procedure are usually allocated
on a heap.

Storage Allocation Strategies

• Static allocation
– Names are bound to storage as the program is

compiled.
• E.g. Our simple compiler.

– Recursive procedures are restricted
– No dynamic data structure

• Heap allocation
– When the values of local variables must be retained.

main()
{

int *p;
p = dangle();

}

int *dangle ()
{

int i = 23;
return &i;

}

Stack Allocation (Activation Trees)

A possible execution of a quicksort

An activation tree for the execution
• Activation: execution of a procedure

Stack Allocation (Activation Records)

• Control stack keeps track of
live procedure activations.

• Temporaries: temporary results
of expressions

• Local data: local data belonging
to the procedure

• Saved machine status: return
address, registers used in the
procedure

Stack Allocation (Activation Records)

• Access link: nonlocal data held in
other activation records (nested
procedure)

• Control link: activation record of
the caller

• Return value: space for the return
value (registers are often used
instead for the efficiency).

• Actual parameters: space for the
actual parameters

Stack Allocation (Activation Records)

Calling Sequence

• Caller: eval actuals, allocate return address,
temporaries, and local data, move top_sp

• Callee: save register values, initialize local
variables

Return Sequence

• Callee: place a return value, restore top_sp and
other registers, jump back to caller’s code.

• Caller: copy to returned value to its activation
record.

Variable Length Data

• When data size is
unknown at the compile
time
– E.g. Array size is passed

by the parameter

• Activation record has
pointers to actual arrays

Nested Procedures
(Quicksort in ML)

Access Links

Procedure Parameters

• Caller needs to pass the access link
along with the procedure parameter

Displays

When a new activation record for a procedure at nesting
depth i is set up

1. Save the value of d[i] in the new activation
record

2. Set d[i] to point to the new activation record
When the activation ends, d[i] is reset to the saved value

Parameter Passing

• Call-by-value
– Formal parameters are treated like a local variable
– Caller evaluates the actual parameters and places

their r-values in the formal parameters.
• Call-by Reference

– If an actual parameter is a name or an expression
having an l-value, the l-value is passed

– If an actual parameter does not have l-value (like
1+2), then the parameter is evaluated in a new
location and the address of the location is passed.

Parameter Passing

• Copy-Restore
– During the calling sequence, the r-values of actual

parameters are passed like call-by-value.
– During the return sequence, for the actual parameters

with l-values, the updated values are copied.

Parameter Passing

• Call-by-Name
– Procedure is treated as if it were a macro
– Local variables of called procedure are

systematically renamed into a distinct new name.
– Actual parameters are surrounded by parenthesis

if necessary.

