CSE504 Compiler Design Syntax Analysis (LR, LALR Parsers)

YoungMin Kwon

A Non-SLR(1) Grammar

$$
\begin{array}{lll}
S & \rightarrow & L=R \mid R \\
L & \rightarrow & * R \mid \mathbf{i d} \\
R & \rightarrow & L
\end{array}
$$

- I_{2} has a shift/reduce conflict:
- S->L.=R : action[2,=] shift 6
- R->L. : action[2,=] reduce " $R->L$ "
- (= is in FOLLOW(R): $S=>L=R=>$ *R=R)

$$
\begin{array}{ll}
I_{0}: & S^{\prime} \rightarrow \cdot S \\
& S \rightarrow L=R \\
& S \rightarrow \cdot R \\
& L \rightarrow \cdot * R \\
& L \rightarrow \text { id } \\
& R \rightarrow \cdot L
\end{array}
$$

$I_{5}: \quad L \rightarrow \mathbf{i d}$.
$I_{6}: \quad S \rightarrow L=\cdot R$ $R \rightarrow \cdot L$ $L \rightarrow \cdot * R$ $L \rightarrow$ id

$$
\begin{array}{ll}
I_{1}: & S^{\prime} \rightarrow S . \\
I_{2}: & S \rightarrow L \cdot=R \\
& R \rightarrow L . \\
I_{3}: & S \rightarrow R . \\
I_{4}: & L \rightarrow * \cdot R \\
& R \rightarrow \cdot L \\
& L \rightarrow \cdot * R \\
& L \rightarrow \mathbf{i d}
\end{array}
$$

$$
I_{7}: \quad L \rightarrow * R .
$$

$$
I_{8}: \quad R \rightarrow L .
$$

$$
I_{9}: \quad S \rightarrow L=R .
$$

$-I_{2}$ is for a viable prefix L only and should not reduce R->L.

LR Parsing Table

- Add more information to the states
- Split states to indicate which input symbol can follow the handle.
- LR(1) item
- $[A->\alpha \cdot \beta, a]$, where $A->\alpha \beta$ is a production and a (lookahead of the item) is a terminal or $\$$.
- Lookahead has no effect on the item [A-> $\alpha . \beta$, a] unless β is ϵ.
- For [A-> ., a], call for the reduction only if the next input symbol is a .
- $\operatorname{LR}(1)$ item $[A->\alpha . \beta, a]$ is valid for a viable prefix γ if there is a derivation $S=>^{*} \delta A w=>\delta \alpha \beta w$, where
$-\gamma=\delta \alpha$
- Either a is the first symbol of w or w is ϵ and a is $\$$.

LR Parsing Table

- Changes to CLOSURE
$-L R(0)$ items: add $[B->. \eta]$ to I if $[A->\alpha . B \beta]$ is in I.
$-\operatorname{LR}(1)$ items: add $[B->. \eta, b]$ to I if $[A->\alpha . B \beta, a]$ is in I and b is a terminal in $\operatorname{FIRST}(\beta a)$.
- Why b is a terminal in $\operatorname{FIRST}(\beta a)$
- Suppose that $\mathrm{S}=>^{*} \delta A a x=>\delta \alpha B \beta a x$
- For the same viable prefix ($\delta \alpha$), $\mathrm{S}=$ => $^{*} \delta \alpha \mathrm{Bby}=>\delta \alpha{ }^{2} b y$
- b can be $\operatorname{FIRST}(\beta)$ or a if $\beta=>^{*} \epsilon$. Hence, b can be FIRST(β a)

LR(1) items

```
SetOfItems ClOSURE(I) {
    repeat
        for ( each item [A->\alpha\cdotB\beta,a] in I)
        for ( each production B->\gamma in G}\mp@subsup{G}{}{\prime}\mathrm{ )
        for ( each terminal b in FIRST( }\betaa)\mathrm{ )
        add [B->-\gamma,b] to set I;
    until no more items are added to I;
    return I;
}
SetOfItems GOTO(I,X) {
    initialize }J\mathrm{ to be the empty set;
    for ( each item [A->\alpha\cdotX\beta,a] in I)
        add item [A->\alphaX\cdot\beta,a] to set J;
    return CLOSURE(J);
}
```


LR(1) Items

```
void items(G') {
    initialize C to CLOSURE ({[S'}->\cdotS,$]})
    repeat
        for ( each set of items I in C )
            for ( each grammar symbol }X\mathrm{ )
            if ( GOTO}(I,X) is not empty and not in C 
                        add GOTO}(I,X) to C;
    until no new sets of items are added to C;
}
```


LR(1) Items Example

Constructing LR Parsing Table

1. Construct $C^{\prime}=\left\{I_{0}, I_{1}, \cdots, I_{n}\right\}$, the collection of sets of $\mathrm{LR}(1)$ items for G^{\prime}.
2. State i of the parser is constructed from I_{i}. The parsing action for state i is determined as follows.
(a) If $[A \rightarrow \alpha \cdot a \beta, b]$ is in I_{i} and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then set ACTION $[i, a]$ to "shift j." Here a must be a terminal.
(b) If $[A \rightarrow \alpha \cdot, a]$ is in $I_{i}, A \neq S^{\prime}$, then set ACTION $[i, a]$ to "reduce $A \rightarrow \alpha$."
(c) If $\left[S^{\prime} \rightarrow S \cdot, \$\right]$ is in I_{i}, then set ACTION $[i, \$]$ to "accept."

If any conflicting actions result from the above rules, we say the grammar is not $\operatorname{LR}(1)$. The algorithm fails to produce a parser in this case.
3. The goto transitions for state i are constructed for all nonterminals A using the rule: If $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$, then $\operatorname{GOTO}[i, A]=j$.
4. All entries not defined by rules (2) and (3) are made "error."
5. The initial state of the parser is the one constructed from the set of items containing $\left[S^{\prime} \rightarrow \cdot S, \$\right]$.

Constructing LR Parsing Table

LALR Parsing Table

- Merge LR(1) items with the same core (first component).
- No shift/reduce conflicts are introduced by the merge:
- Suppose there is a conflict in a merged state.
- There are $\left[A->\alpha_{0}, a\right]$ and $[B->\beta . a \gamma, b]$ in the item.
- Because the cores are the same, before the merge there is an item with $[A->\alpha, a]$ and $[B->\beta . a \gamma, c]$.
- Hence, the original item before the merge has a shift/reduce conflict.

LALR Parsing Table

- A reduce/reduce conflict can be introduced by the merge.
- Quiz:
- Find LR(1) items for the grammar below
- Check how the reduce/reduce conflict is introduced by the merge.

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow a A d|b B d| a B e \mid b A e \\
A & \rightarrow c \\
B & \rightarrow c
\end{aligned}
$$

LALR Parsing Table Construction

1. Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$, the collection of sets of $\operatorname{LR}(1)$ items.
2. For each core present among the set of $\operatorname{LR}(1)$ items, find all sets having that core, and replace these sets by their union.
3. Let $C^{\prime}=\left\{J_{0}, J_{1}, \ldots, J_{m}\right\}$ be the resulting sets of $\mathrm{LR}(1)$ items. The parsing actions for state i are constructed from J_{i} in the same manner as in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails to produce a parser, and the grammar is said not to be LALR(1).
4. The GOTO table is constructed as follows. If J is the union of one or more sets of $\mathrm{LR}(1)$ items, that is, $J=I_{1} \cap I_{2} \cap \cdots \cap I_{k}$, then the cores of $\operatorname{GOTO}\left(I_{1}, X\right), \operatorname{GOTO}\left(I_{2}, X\right), \ldots, \operatorname{GOTO}\left(I_{k}, X\right)$ are the same, since $I_{1}, I_{2}, \ldots, I_{k}$ all have the same core. Let K be the union of all sets of items having the same core as $\operatorname{GOTO}\left(I_{1}, X\right)$. Then $\operatorname{GOTO}(J, X)=K$.

LALR Parsing Table Example

LR Parser and LALR Parser

- LR parser and LALR parser mimic each other for the correct input.
- For erroneous input,
- LR parser detects error immediately.
- LALR parser reduces several more steps and detects an error before shifting any symbols.

Quiz:

1. Compare the steps for cdcd.
2. Compare the steps for ccd.

STATE	ACTION			GOTO	
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r 1		
6	s 6	s 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

STATE	ACTION			GOTO	
	c	d	$\$$	S	C
0	s 36	s 47		1	2
1			acc		
2	s 36	s 47			5
36	s 36	s 47			89
47	r 3	r 3	r 3		
5			r 1		
89	r 2	r 2	r 2		

