CSE504 Compiler Design

 Syntax Analysis (SLR Parser)YoungMin Kwon

Bottom-Up Parsing

- Attempts to construct a parse tree beginning at the leaves and working up towards the root.
id * id

Bottom-up parse for id * id

Reductions

- Bottom-up parsing
- Reducing a string w to the start symbol
- At each reduction step, a particular substring matching the RHS of a production is replaced by the LHS.
- Rightmost derivation is traced out in reverse.
E.g.

S -> aABe
A $->\mathrm{Abc} \mid \mathrm{b}$
B $->\mathrm{d}$

```
a.b.bcde
aAbcde
aAde
aABe
S
```

ab.bcde can be reduced to S

Handle Pruning

- Handle:
- A handle of a right-sentential form γ is a production $A->\beta$ and a position of γ where the β may be found and replaced by A to produce the previous step of rightmost derivation.
- If $S=>^{*} \alpha A w=>\alpha \beta w$, then $A->\beta$ in the position following α is a handle of $\alpha \beta$ w.
- E.g. In the previous example
- aAbcde => abbcde, handle is A->b at position 2.
- aAde => aAbcde, handle is A->Abc at position 2.
- Handle pruning:
- A-> in $\alpha \beta$ w is a handle.
- Reducing β to A can be thought as pruning the handle (removing the children of A from the parse tree).
- A Rightmost derivation in reverse can be obtained by handle pruning

Shift-Reduce Parsing

- Shift-Reduce parsing
- A bottom-up parsing where a stack holds grammar symbols and an input buffer holds the rest of the string to be parsed.
- While scanning the input from left to right, the parser shifts 0+ input symbols onto the stack
- If it is ready to reduce the RHS of a production, pop the RHS from the stack and push the LHS to the stack.
- Handles always appear at the top of the stack
- 4 Actions if Shift-Reduce Parsing
- Shift: push the next input symbol to the stack
- Reduce: pop the RHS of a production and push the LHS.
- Accept: announce the success
- Error: found an error

Shift-Reduce Parsing

- Why the handle is always on top of the stack?
- Two possible cases of two successive steps of rightmost derivation
(1) $S=>^{*} \alpha A z=>\alpha \beta B z=>\alpha \beta y z$
- A is replaced by βB y (has a nonterminal B), then B is replaced.
(2) $S=>^{*} \alpha B \times A z=>\beta \times y z=>\alpha \times y z$
- A is replaced by y (terminals only), then B is replaced.

Shift-Reduce Parsing

- Case 1: $S=>^{*} \alpha A z=>\alpha \beta y z=>\alpha \beta y z$
$-(\$ \alpha \beta \gamma \mid y z \$)$: the parser reached this configuration. γ is the handle and it is reduced to B.
$-(\$ \alpha \beta B \mid y z \$)$: since B is the rightmost nonterminal in $\alpha \beta B y z$, the handle cannot be inside the stack.
$-(\$ \alpha \beta B y \mid z \$)$: the parser shifted $y . \beta B y$ is the handle and it gets reduced to A.
- Case 2: $\mathrm{S}=>^{*} \alpha \mathrm{~B} \times \mathrm{Az}=>\alpha \mathrm{B} \times \mathrm{yz}=>\alpha \gamma \times \mathrm{yz}$
$-(\$ \alpha \gamma \mid x y z \$)$: the parser reached this configuration. γ is the handle and it is reduced to B
$-(\$ \alpha B x y \mid z \$)$: after shifting $x y$, get the next handle y on top of the stack and reduce it to A
$-(\$ \alpha B \times A \mid z \$)$: configuration after the reduction.

Shift-Reduce Parsing

- Viable Prefixes
- The set of prefixes of right-sentential forms that can appear on the stack of shift-reduce parser.
- A prefix of a right-sentential form that does not continue past the right end of the rightmost handle.

LR Parsers

- LR(k) Parsing:
- L: left-to-right scanning of the input.
-R : constructing the rightmost derivation in reverse.
$-k$: number of input symbols of lookahead.
- SLR (Simple LR): easiest to implement, least powerful.
- Canonical LR: most powerful, most expensive.
- LALR (look-ahead LR): intermediate in power and cost. Work with most programming language grammars.

LR Parsing Algorithm

- Configuration
- ($\left.s_{1}, X_{1}, s_{2}, X_{2} \ldots s_{n} \mid a_{1}, a_{2}, \ldots\right)$, where s_{i} is a state, X_{i} is a symbol, a_{i} is a token.
- 4 Actions of LR parser
- Shift and go to state s
- (... $\left.s_{1} \mid a_{1} a_{2} \ldots\right)->\left(\ldots s_{1} a_{1} s \mid a_{2} \ldots\right)$

- Reduce X -> $X_{1} \ldots X_{n}$
- $\left(\ldots s_{0} X_{1} s_{1} \ldots X_{n} s_{n} \mid a_{1} \ldots\right)->\left(\ldots s_{0} X s \mid a_{1} \ldots\right)$, where s is the goto target of s_{0} for symbol X.
- Accept: finish with success
- Error: found an error

LR Parsing Example

Parse id * id + id
(1) $E \rightarrow E+T$
(2) $E \rightarrow T$
(3) $T \rightarrow T * F$
(4) $T \rightarrow F$
(5) $F \rightarrow(E)$
(6) $F \rightarrow$ id

Stack

STATE	ACTION						GOTO		
	id	+	$*$	$($	$)$	$\$$	E	T	F
0	s 5			s 4			1	2	3
1		s 6				acc			
2		r 2	s 7		r 2	r 2			
3		r 4	r 4		r 4	r 4			
4	s 5			s 4			8	2	3
5		r 6	r 6		r 6	r 6			
6	s 5			s 4				9	3
7	s 5			s 4					10
8		s 6			s 11				
9		r 1	s 7		r 1	r 1			
10		r 3	r 3		r 3	r 3			
11		r 5	r 5		r 5	r 5			

LR Parsing Example

	STACK	SYMBOLS	InPut	ACTION
(1)	0		id $*$ id $+\mathrm{id} \$$	shift
(2)	05	id	* id + id \$	reduce by $F \rightarrow$ id
(3)	03	F	* id + id \$	reduce by $T \rightarrow F$
(4)	02	T	* id + id \$	shift
(5)	027	T *	id +id $\$$	shift
(6)	0275	$T *$ id	+id\$	reduce by $F \rightarrow \mathbf{i d}$
(7)	02710	$T * F$	+id $\$$	reduce by $T \rightarrow T * F$
(8)	02	T	+ id \$	reduce by $E \rightarrow T$
(9)	01	E	+ id \$	shift
(10)	016	$E+$	id \$	shift
(11)	0165	$E+\mathrm{id}$	\$	reduce by $F \rightarrow \mathbf{i d}$
(12)	0163	$E+F$	\$	reduce by $T \rightarrow F$
(13)	0169	$E+T$	\$	reduce by $E \rightarrow E+T$
(14)	01	E	\$	accept

Constructing SLR Parsing Table

- States of an SLR parser represent sets of items.
- LR(0) items of a grammar G is a production of G with a dot at some positions of the RHS.

```
- E.g. A -> XYZ: A->.XYZ, A->X.YZ,
    A->XY.Z, A->XYZ.
    A \(->\in: A->\).
```

- An item represents how much of a production we have seen
- $X->X$. YZ means, we've just seen a string derivable from X and expect to see a string derivable from YZ.
- Augmented grammar
- Add a new start symbol S' and add a production S' -> S
- To indicate when to stop.

Constructing SLR Parsing Table

- The central idea of SLR parsing is to construct a DFA recognizing the viable prefixes.
- Imagine an NFA:
- States are the items
- Add a transition from $A->\alpha . X \beta$ to $A ~->~ \alpha X . \beta$ labeled X.
- Add a transition from A-> α. B B to $B->. \gamma$ labeled ϵ
- Construct a DFA using the subset construction algorithm.
- Canonical LR(0) items
- Give basis for the DFA states
- CLOSURE and GOTO functions can find the canonical LR(0) items.
- Valid items
- Item A -> β_{1}. β_{2} is valid for a viable prefix $\alpha \beta_{1}$ if there is a derivation $S^{\prime}=>^{*} \alpha A w=>\beta_{1} \beta_{2} w$

CLOSURE and GOTO functions

- CLOSURE(I)
- If | is a set of items, CLOSURE(I) is a set of items built by the two rules
- Add every item in I to CLOSURE(I)
- If $A->\alpha . B \beta \gamma$ is in CLOSURE(I) and $B->\gamma$ is a production, add $B->. \gamma$ to CLOSURE(I). Apply this rule until no more new items are added to CLOSURE(I).
- A -> α. $B \beta$ in CLOSURE(I) means, we might next see a substring derivable from $B \beta$. Hence we add $B->. \gamma$ to CLOSURE(I).
- GOTO (I, X)
- GOTO $(1, X)$ is the closure of the set of all items A-> $\alpha X . \beta$ such that A -> $\alpha . X \beta$ is in I.
- The closures of items are the states of DFA and GOTO(I,X) specifies the transition from the state I under input X.

CLOSURE and GOTO functions

- Given the augmented grammar

$$
\begin{array}{lllll}
E^{\prime} & -> & E & & \\
E & -> & E+T & T \\
T & -> & T \star E & F \\
F & -> & (E) & \text { id }
\end{array}
$$

- CLOSURE(\{ $E^{\prime}->. E$ \}) is

$$
\begin{aligned}
&\left\{\begin{array}{l}
\\
\\
\prime
\end{array}>\cdot E, E->\cdot E+T, E->\cdot T, T->\cdot T * F, T->\cdot F,\right. \\
&F->\cdot(E), E->\cdot i d\}
\end{aligned}
$$

- GOTO(\{ E'->E., E->E.+T \}, +) is

$$
\begin{aligned}
&\{ \mathrm{E}->\mathrm{E}+. \mathrm{T}, \mathrm{~T}->. \mathrm{T} *, \mathrm{~T}->. \mathrm{F}, \mathrm{~F}->\cdot(\mathrm{E}), \\
&\mathrm{F}->. \text { id }\}
\end{aligned}
$$

Canonical LR(0) items

```
SetOfItems ClOSURE(I) {
    J=I;
    repeat
        for ( each item A->\alpha\cdotB\beta in J )
            for ( each production B->\gamma of G}\mathrm{ )
                if (B->\gamma is not in J )
                        add B}->\gamma to J
    until no more items are added to }J\mathrm{ on one round;
    return J;
}
void items(G}\mp@subsup{G}{}{\prime})
    C= CLOSURE({[S'}->\cdotS]})
    repeat
        for (each set of items I in C)
        for ( each grammar symbol }X\mathrm{ )
                if ( GOTO}(I,X)\mathrm{ is not empty and not in C )
                        add GOTO}(I,X) to C
    until no new sets of items are added to C on a round;
}
```


Constructing SLR Parsing Tables

1. Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$, the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime}.
2. State i is constructed from I_{i}. The parsing actions for state i are determined as follows:
(a) If $[A \rightarrow \alpha \cdot a \beta]$ is in I_{i} and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then set ACTION $[i, a]$ to "shift j." Here a must be a terminal.
(b) If $[A \rightarrow \alpha \cdot]$ is in I_{i}, then set ACTION $[i, a]$ to "reduce $A \rightarrow \alpha$ " for all a in $\operatorname{Follow}(A)$; here A may not be S^{\prime}.
(c) If $\left[S^{\prime} \rightarrow S \cdot\right]$ is in I_{i}, then set ACTION $[i, \$]$ to "accept."

If any conflicting actions result from the above rules, we say the grammar is not $\operatorname{SLR}(1)$. The algorithm fails to produce a parser in this case.
3. The goto transitions for state i are constructed for all nonterminals A using the rule: If $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$, then $\operatorname{GOTO}[i, A]=j$.
4. All entries not defined by rules (2) and (3) are made "error."
5. The initial state of the parser is the one constructed from the set of items containing $\left[S^{\prime} \rightarrow S\right]$.

Constructing SLR Parsing Tables

- Quiz: build an SLR Parsing Table for the grammar below.
$\mathrm{E} \rightarrow>\mathrm{E}+\mathrm{id}$
E $->$ id
Items
$I_{0}: E^{\prime}->. E, E->. E+i d, E->. i d$
$I_{1}: E^{\prime}->E ., E->E .+i d$
I_{2} : E->id.
$I_{3}: ~ E->E+. i d$
$I_{4}: ~ E->E+i d$.
FIRST/FOLLOW
$\operatorname{FIRST}\left(E^{\prime}\right)=\operatorname{FIRST}(E)=\{i d\}$
FOLLOW (E') $=\{\$\}$
FOLLOW (E) = \{+, \$\}

	+	id	\$	E
0		$s 2$		1
1	$s 3$		$a c c$	
2	$r 2$			
3		$s 4$		
4	$r 1$		$r 1$	

