
CSE504 Compiler Design
Syntax Analysis (SLR Parser)

YoungMin Kwon

Bottom-Up Parsing

• Attempts to construct a parse tree beginning
at the leaves and working up towards the
root.

Bottom-up parse for id * id

Reductions

• Bottom-up parsing
– Reducing a string w to the start symbol
– At each reduction step, a particular substring

matching the RHS of a production is replaced by the
LHS.

– Rightmost derivation is traced out in reverse.

E.g.
S -> aABe
A -> Abc | b
B -> d

abbcde can be reduced to S

abbcde
aAbcde
aAde
aABe
S

Handle Pruning
• Handle:

– A handle of a right-sentential form γ is a production A->β and a
position of γ where the β may be found and replaced by A to
produce the previous step of rightmost derivation.
• If S =>* α A w => α β w, then A -> β in the position following α is a

handle of α β w.
– E.g. In the previous example

• aAbcde => abbcde, handle is A->b at position 2.
• aAde => aAbcde, handle is A->Abc at position 2.

• Handle pruning:
– A->β in α β w is a handle.
– Reducing β to A can be thought as pruning the

handle (removing the children of A from the
parse tree).

• A Rightmost derivation in reverse can be
obtained by handle pruning

Shift-Reduce Parsing
• Shift-Reduce parsing

– A bottom-up parsing where a stack holds grammar symbols and
an input buffer holds the rest of the string to be parsed.

– While scanning the input from left to right, the parser shifts 0+
input symbols onto the stack

– If it is ready to reduce the RHS of a production, pop the RHS
from the stack and push the LHS to the stack.

– Handles always appear at the top of the stack
• 4 Actions if Shift-Reduce Parsing

– Shift: push the next input symbol to the stack
– Reduce: pop the RHS of a production and push the LHS.
– Accept: announce the success
– Error: found an error

Shift-Reduce Parsing
• Why the handle is always on top of the stack?
• Two possible cases of two successive steps of

rightmost derivation
(1) S =>* α A z => α β B y z => α β γ y z

• A is replaced by β B y (has a nonterminal B), then B is
replaced.

(2) S =>* α B x A z => α B x y z => α γ x y z
• A is replaced by y (terminals only), then B is replaced.

Shift-Reduce Parsing
• Case 1: S =>* α A z => α β B y z => α β γ y z

– ($ α β γ | y z $): the parser reached this configuration. γ is
the handle and it is reduced to B.

– ($ α β B | y z $): since B is the rightmost nonterminal in
α β B y z, the handle cannot be inside the stack.

– ($ α β B y | z $): the parser shifted y. β B y is the handle
and it gets reduced to A.

• Case 2: S =>* α B x A z => α B x y z => α γ x y z
– ($ α γ | x y z $): the parser reached this configuration. γ is

the handle and it is reduced to B
– ($ α B x y | z $): after shifting x y, get the next handle y on

top of the stack and reduce it to A
– ($ α B x A | z $): configuration after the reduction.

Shift-Reduce Parsing

• Viable Prefixes
– The set of prefixes of right-sentential forms that

can appear on the stack of shift-reduce parser.
– A prefix of a right-sentential form that does not

continue past the right end of the rightmost
handle.

LR Parsers

• LR(k) Parsing:
– L: left-to-right scanning of the input.
– R: constructing the rightmost derivation in reverse.
– k: number of input symbols of lookahead.

• SLR (Simple LR): easiest to implement, least
powerful.

• Canonical LR: most powerful, most expensive.
• LALR (look-ahead LR): intermediate in power and

cost. Work with most programming language
grammars.

LR Parsing Algorithm

• 4 Actions of LR parser
– Shift and go to state s

• (… s1 | a1 a2…) -> (… s1 a1 s | a2 …)
– Reduce X -> X1 … Xn

• (… s0 X1 s1 … Xn sn | a1 …) -> (… s0 X s | a1 …),
where s is the goto target of s0 for symbol X.

– Accept: finish with success
– Error: found an error

• Configuration
– (s1, X1, s2, X2 … sn | a1, a2, …), where si is a state, Xi is a

symbol, ai is a token.

LR Parsing Example

Parse id * id + id

LR Parsing Example

Constructing SLR Parsing Table
• States of an SLR parser represent sets of items.
• LR(0) items of a grammar G is a production of G with a

dot at some positions of the RHS.
• E.g. A -> XYZ: A->.XYZ, A->X.YZ,

A->XY.Z, A->XYZ.
A -> ϵ: A->.

– An item represents how much of a production we have
seen
• X->X.YZ means, we’ve just seen a string derivable from X and

expect to see a string derivable from YZ.

• Augmented grammar
– Add a new start symbol S’ and add a production S’ -> S
– To indicate when to stop.

Constructing SLR Parsing Table
• The central idea of SLR parsing is to construct a DFA

recognizing the viable prefixes.
– Imagine an NFA:

• States are the items
• Add a transition from A -> α.Xβ to A -> αX.β labeled X.
• Add a transition from A -> α.Bβ to B->.γ labeled ϵ

– Construct a DFA using the subset construction algorithm.
• Canonical LR(0) items

– Give basis for the DFA states
– CLOSURE and GOTO functions can find the canonical LR(0)

items.
• Valid items

– Item A -> β1 . β2 is valid for a viable prefix α β1 if there is a
derivation S’ =>* α A w => α β1 β2 w

CLOSURE and GOTO functions
• CLOSURE(I)

– If I is a set of items, CLOSURE(I) is a set of items built by the
two rules
• Add every item in I to CLOSURE(I)
• If A -> α.Bβγ is in CLOSURE(I) and B->γ is a production, add B->.γ to

CLOSURE(I). Apply this rule until no more new items are added to
CLOSURE(I).

– A -> α.Bβ in CLOSURE(I) means, we might next see a
substring derivable from Bβ. Hence we add B->.γ to
CLOSURE(I).

• GOTO(I,X)
– GOTO(I,X) is the closure of the set of all items A -> αX.β

such that A -> α.Xβ is in I.
– The closures of items are the states of DFA and GOTO(I,X)

specifies the transition from the state I under input X.

CLOSURE and GOTO functions

• Given the augmented grammar
E’ -> E
E -> E + T | T
T -> T * F | F
F -> (E) | id

• CLOSURE({ E’->.E }) is
{ E’->.E, E->.E+T, E->.T, T->.T*F, T->.F,

F->.(E), F->.id }

• GOTO({ E’->E., E->E.+T }, +) is
{ E->E+.T, T->.T*F, T->.F, F->.(E),

F->.id }

Canonical LR(0) items

DFA for viable prefixes

Constructing SLR Parsing Tables

FIRST(E’): (, id
FIRST(E) : (, id
FIRST(T) : (, id
FIRST(F) : (, id
FOLLOW(E’): $
FOLLOW(E) : +,), $
FOLLOW(T) : +, *,), $
FOLLOW(F) : +, *,), $

Constructing SLR Parsing Tables
• Quiz: build an SLR Parsing Table for the grammar below.

E -> E + id
E -> id
Items
I0: E’->.E, E->.E+id, E->.id
I1: E’->E., E->E.+id
I2: E->id.
I3: E->E+.id
I4: E->E+id.
FIRST/FOLLOW
FIRST(E’) = FIRST(E) = {id}
FOLLOW(E’) = {$}
FOLLOW(E)= {+,$}

+ id $ E

0 s2 1

1 s3 acc

2 r2

3 s4

4 r1 r1

