CSE504 Compiler Design
Syntax Analysis (SLR Parser)

Bottom-Up Parsing

e Attempts to construct a parse tree beginning
at the leaves and working up towards the
root.

d + id F x id T % 1d T » F g E
1 | | /TN |
1d F F id T » F ¢ i
i | T /1\
id 1d 17‘ id Ii{‘ " ji-"
1id .I.T‘ id
1d

Bottom-up parse for id * id

Reductions

Bottom-up parsing
— Reducing a string w to the start symbol

— At each reduction step, a particular substring
matching the RHS of a production is replaced by the
LHS.

— Rightmost derivation is traced out in reverse.

E.g. abbcde
S —-> aABe aAbcde
A -> Abc | Db aAde
B -> d aABe

S

abbcde canbereducedto S

Handle Pruning

e Handle:

— A handle of a right-sentential form y is a production A-> and a
position of y where the [may be found and replaced by A to
produce the previous step of rightmost derivation.

e IfS=>"aAw=>0apw,then A->Jin the position following a is a
handle of a 3 w.

— E.g. In the previous example
* aAbcde => abbcde, handle is A->b at position 2.)
* aAde => aAbcde, handle is A->Abc at position 2.

* Handle pruning:
— A->Bina B wis a handle.

— Reducing B to A can be thought as pruning the a
handle (removing the children of A from the
parse tree).

* A Rightmost derivation in reverse can be
obtained by handle pruning A

Shift-Reduce Parsing

e Shift-Reduce parsing

— A bottom-up parsing where a stack holds grammar symbols and
an input buffer holds the rest of the string to be parsed.

— While scanning the input from left to right, the parser shifts O+
input symbols onto the stack

— If it is ready to reduce the RHS of a production, pop the RHS
from the stack and push the LHS to the stack.

— Handles always appear at the top of the stack
* 4 Actions if Shift-Reduce Parsing
— Shift: push the next input symbol to the stack

— Reduce: pop the RHS of a production and push the LHS.
— Accept: announce the success
— Error: found an error

Shift-Reduce Parsing

 Why the handle is always on top of the stack?

* Two possible cases of two successive steps of
rightmost derivation
(1)S=>"aAz=>aBByz=>0aPByyz

* Aisreplaced by B By (has a nonterminal B), then B is
replaced.

(2)S=>"aBxAz=>aBxyz=>ayxyz

* Aisreplaced by y (terminals only), then B is replaced.

AN AN

Case

Shift-Reduce Parsing

e Casel:S=>"aAz=>aBByz=>aByyz
— (SaBvy|yzS): the parser reached this configuration. v is
the handle and it is reduced to B.

— (Sa BB |yzS):since Bis the rightmost nonterminal in
a B By z, the handle cannot be inside the stack.

— (Sa BBy | zS):the parser shifted y. B By is the handle
and it gets reduced to A.

e Case2:S=>"aBxAz=>0aBxyz=>ayxyz
— (Savy | xyzS):the parser reached this configuration. y is
the handle and it is reduced to B

— (SaBxy | zS): after shifting x y, get the next handle y on
top of the stack and reduce it to A

— (SaBxA | zS): configuration after the reduction.

Shift-Reduce Parsing

* Viable Prefixes

— The set of prefixes of right-sentential forms that
can appear on the stack of shift-reduce parser.

— A prefix of a right-sentential form that does not
continue past the right end of the rightmost
handle.

LR Parsers

LR(k) Parsing:

— L: left-to-right scanning of the input.

— R: constructing the rightmost derivation in reverse.
— k: number of input symbols of lookahead.

SLR (Simple LR): easiest to implement, least
powerful.

Canonical LR: most powerful, most expensive.

LALR (look-ahead LR): intermediate in power and
cost. Work with most programming language
grammars.

LR Parsing Algorithm

e Configuration

— (s, X, 55, %, ... s, | a;, @5, ...), where s. is a state, X is a

symbol, a. is a token.

* 4 Actions of LR parser

— Shift and go to state s
* (w.sy|ajay.)>(..57a,5|a,...)

— Reduce X -> X, ... X,

STACK

LU A R

Xom

LR

Parsing Program

2 QUTPUT

¥ -1

==

xm—l

Fo

action

xole

® (wsgXysy . X s, lag.)->(.spXs|ay..),

where s is the goto target of s, for symbol X.

— Accept: finish with success
— Error: found an error

LR Parsing Example

Parse id * id + id . T v
il T84T ik + w {) § [BT P
(2) E-T 0 $H s4 1 2 3
13} T3 Tal 1 s6 acce
(4) T —>F 2 22 BT r2 r2
(5) F - (E) 3 4 rd rd rd
(6) F —id 4]85 54 8§ 2 3

5! r6 16 r6 r6
6 SO s4 9 3
7 SO s4 10
O s s B A 8 s6 <11
e BN 9 o1 R ¥l
weiet g
= P 1(1J r? r? rZ:) r3
] i | e ro o ro Ird

LR Parsing Example

STACK | SYMBOLS INPUT ACTION

1) | o id*id +id$ | shift

2) |05 id id +id$ | reduce by F — id

3) |03 F *id +id$ | reduce by T’ —» F

(4) | 02 T +id +id$ | shift

5) 027 | T« id +id$ | shift

(6) | 0275 | Txid +1id$ | reduce by F — id

(7) | 02710 | Tx F +id$ | reduce by T - T x F

(8) | 02 T +1id$ | reduce by E - T

(9) | 01 E +id$ | shift
(10) | 016 E + id$ | shift
(11) | 0165 | E+id $ | reduce by F — id
(12) | 0163 | E+F $ | reduce by T —» F
(13) 10169 | E4+T $ | reduce by E5> E+T
(14) | 01 E $ | accept

Constructing SLR Parsing Table

» States of an SLR parser represent sets of items.

e LR(O) items of a grammar G is a production of G with a
dot at some positions of the RHS.

* E.g. A > XYZ2: A->.XY42, A->X.YZ,
A->XY .7, A->XYZ.
A —-> e€: A->.

— An item represents how much of a production we have

seen

* X->X.Y7 means, we've just seen a string derivable from X and
expect to see a string derivable from YZ.

* Augmented grammar
— Add a new start symbol S” and add a production S’ -> S
— To indicate when to stop.

Constructing SLR Parsing Table

 The central idea of SLR parsing is to construct a DFA
recognizing the viable prefixes.

— Imagine an NFA:

e States are the items
e Add a transition from A -> a.X[3 to A -> aX.p labeled X.
* Add a transition from A -> a.B[3 to B->.y labeled €

— Construct a DFA using the subset construction algorithm.
e Canonical LR(O) items
— Give basis for the DFA states

— CLOSURE and GOTO functions can find the canonical LR(0)
items.

e Valid items

— ltem A -> 3, . 3, is valid for a viable prefix a 3, if there is a
derivation S’ =>" a Aw =>a B, B, w

CLOSURE and GOTO functions

* CLOSURE(l)

— If | is a set of items, CLOSURE(!) is a set of items built by the
two rules
* Add every item in | to CLOSURE(!)

* If A->a.BByisin CLOSURE(l) and B->y is a production, add B->.y to
CLOSURE(l). Apply this rule until no more new items are added to
CLOSURE(I).

— A -> a.B3 in CLOSURE(l) means, we might next see a
substring derivable from B[3. Hence we add B->.y to
CLOSURE(I).

* GOTO(I,X)

— GOTO(I,X) is the closure of the set of all items A -> aX.[3
such that A -> a.XBisin |.

— The closures of items are the states of DFA and GOTO(!, X)
specifies the transition from the state | under input X.

CLOSURE and GOTO functions

* Given the augmented grammar

Ef =-> E

E ->E + T | T
T ->T=*F | F
Fo-> (E) | 1d

e CLOSURE({ E"->.E 1})is
{ E'->.E, E->.E+T, E->.T, T->.T*F, T->.F,
F->.(E), F->.1d }
* GOTO({ E’"->E., E->E.+T }, +)Iis

{ E->E+.T, T->.T*F, T->.F, F->.(E),
F->.1id }

Canonical LR(O) items

SetOfltems CLOSURE(I) {
o =T
repeat
for (eachitem A - «-BFin J)
for (each production B = v of G)
if(B— «yisnotin J)
add B = -y to J;

until no more items are added to J on one round;
return J;

void items(G") {
C = CLOSURE({[S" — -S]});
repeat
for (each set of items I in C')
for (each grammar symbol X)
if (GOTO(I, X) is not empty and not in C')
add coTo(I, X) to C;

until no new sets of items are added to C on a round;

DFA for viable prefixes

- FE

- E+T | T
- TxF | F
- (B | d

SEEECES!

Constructing SLR Parsing Tables

1. Construct C = {Iy,I1,...,I,}, the collection of sets of LR(0) items for
G'.

2. State ¢ is constructed from I;. The parsing actions for state i are deter-
mined as follows:

(a) If [A = a-aff] is in I; and GOTO(I;,a) = I;, then set ACTION[é, a] to
“shift 7.” Here a must be a terminal.

(b) If [A — «] is in I;, then set ACTION[i, a] to “reduce A — «” for all
a in FOLLOW(A); here A may not be S’.

(c) If [S" = S is in I;, then set ACTION[:, §] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.

3. The goto transitions for state 7 are constructed for all nonterminals A
using the rule: If GOTO(/;, A) = I;, then GOTO[i, A] = j.

4. All entries not defined by rules (2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set of items
containing [S" — -5].

FIRST(E"): (, 1id
FIRST(E) : (, 1id
FIRST(T) : (, 1id
FIRST (F) : (, 1id
FOLLOW(E’): S
FOLLOW(E) : +,), S
FOLLOW (T) =: +, *,), S
FOLLOW (F) =: +, *,), S
Iy
F—(E)
ACTION GOTO
STATE
d 4+ x () $ E T F
J
y, 0) sd 1 2 a3
1 s6 acc
) 2 ¥2 &8I r2 12
3 rd 14 4 r4
4 SD s4 8 2 3
5) 6 16 r6 r6
6 SO s4 9 3
¥ SH s4 10
8 s6 s11
9 rl s7]l ol
10 ¥3 I3 I3 3
11 5. 5 I's IbH

Constructing SLR Parsing Tables

e Quiz: build an SLR Parsing Table for the grammar below.
E -> E + 1id
E -> id
ltems
I,: E'->.E, E->.E+id, E->.id

I,: E'->E., E->E.+id
I,: E->id.
I,: E->E+.id P d 3
I,: E->E+id. 0 52
FIRST/FOLLOW 1 s3 acc
FIRST(E’) = FIRST(E) = {id} 2 |
FOLLOW(E’) = {$} 3 s4
FOLLOW (E)= {+,$}

4 rl rl

