Syntax Analysis
(Top-Down Parsing)

The Role of the Parser

token '

source Lexical - | parse : Rest of intermediate
O - Parser t-----ml -
program | Analyzer = I tree ! Front End |representation
get nert ; ;
token i
Y
Symbol
Table

* Obtains strings of tokens from the lexical analyzer and
verifies that the string can be generated by the grammar.

* Efficient parsing methods

— Top-down Parsers:
* Build parse trees from the root to the leaves
* Handmade parsers (e.g. LL grammars)
— Bottom-up Parsers
* Build parse trees from the leaves to the top
* Generated by automated tools (e.g. LR grammars)

Context-Free Grammars

Terminals (tokens)

— Basic symbols from which strings are formed
Nonterminals

— Syntactic variables that denote sets of strings

Start symbol

— A nonterminal that denotes the language defined by
the grammar

Productions

— The manner in which the terminals and nonterminals
can be combined to from strings.

Notational Conventions

a, b, c (small earlier part of the alphabet): a single
terminal symbol.

A, B, C (large earlier part of the alphabet): a single
nonterminal symbol.

X, V, z (small later part of the alphabet): a string of
terminals.

X, Y, Z (large later part of the alphabet): a single
grammar symbol (a terminal or a nonterminal symbol).

a,[3, v (small Greek letters): a string of grammar
symbols.

S: the start symbol.

Derivations

* A production is treated as a rewriting rule

— The nonterminal on the LHS is replaced by the string
on the RHS of the production.

— ExampleE->E+E |E*E | (E) | -E|ID,
E=>-E:“Ederives-E”
E=>-E=>-(E)=>-(ID) : derivation of -(ID) from E
E =>" -(ID)

— =>:derives in one step,
=>" : derives in zero or more steps,
=>* : derives in one or more steps.

—a=>"a
a=> Band B =>y,thena=>"y

Derivations

Let S be the start symbol of G, then a string of terminals w
is in L(G) iff S =>* w.

— The string w is called a sentence of G
A language generated by a grammar is called a context-free
language
Two grammars are called equivalent if they generate the
same language.

If S =>" a, where o may contain nonterminals, then a is a
sentential form.

— A sentence is a sentential form with no nonterminals.

— Leftmost derivation: derivations in which only the leftmost
nonterminal in any sentential form is replaced.

— Rightmost derivation: derivations in which only the rightmost
nonterminal in any sentential form is replaced.

Elimination of Left Recursion

 Agrammar is left recursive if there is a derivation A =>*
Ao for a nonterminal A and some string a.

— Top-down parsing mechanism cannot handle left-recursive
grammars.

* |Insection 2.4, A->Aa | Bisconverted to

A->BR
R->aR | e.

— It does not eliminate left recursions involving two or more

steps of derivations.

S->Aalb
A->Ac|Sd]|e

— Solution: give orders to nonterminals and if there is a

production whose first RHS nonterminal is higher than the
LHS, replace the RHS nonterminal with its productions.

Eliminating Left Recursion

arrange the nonterminals in some order Ay, Aa,... , A,.
for (each i from 1 ton) {
for (each jfrom1toi—1) {

replace each production of the form A; — A;v by the

productions A; = 017 | d27y | -+ | 6k, where
Aj =01 | 92| -+ | O are all current A j-productions
}
eliminate the immediate left recursion among the A;-productions
}
Example
—S->Aa| b,

A->Ac|Sd]|e.
— Order nonterminals as S, A

— Wheni=2,A->Sdis converted to
A->Ac|Aad | bd]| e

S->Aal|b
A->bdA | A
A->cA |adA | e

Left Factoring

* |n predictive parsing, when we cannot select the
production rule immediately, modify the
grammar to defer the decision.

— stmt —-> IF expr THEN stmt ELSE stmt
| IF expr THEN stmt

* IfA->afB,| af,, then modify the grammar as
A->aA
A -> Bl | Bz

— stmt -> IF expr THEN stmt stmt’

stmt’/’ -> ELSE stmt | €

Top-Down Parsing

* |n many cases, left-recursion removal and left
factoring results in a grammar that can be
parsed by a recursive-decent parser without
backtracking (i.e. a predictive parser).

Nonrecursive Predictive Parsing

Input | al|+[b]8] * Input: string of terminals
/ followed by $
. Predictive e Stack: sequence of grammar
Stack | X = Parsing |7+ Output symbols with S on the bottom.
Y rogram)
= e Parsing table: M[A,a], where A
5 ! is a nonterminal, a is a

Parsing terminal or S.
Table

M

 Let X be the symbol on top of the stack, and a be the current input
e IfX=a=S5, announce the success.
 IfX=a#§5, pops X and advance the input pointer

 If Xis nonterminal

— If M[X,a] = {X->UVW}, replace X on top of the stack with WVU (with U
on top)

— If M[X,a] = error, declare an error

Nonrecursive Predictive Parsing

set ¢p to point to the first symbol of w;
set X to the top stack symbol;
while (X #8§) { /* stack is not empty */
if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a]=X = "1Y2---Y;) {
output the production X — Y1 Y5 --- Yi;
pop the stack;
push Y%,Yi_1,...,Y1 onto the stack, with Y7 on top;

}

set X to the top stack symbol;

Input | 17 [

Stack

Example

[a [+ [0]s]

Predictive
Parsing
Program

—— Qutput

'%N%N

Y

Parsing
Table
M

e Quiz:id + (id)

NON - INPUT SYMBOL
TERMINAL id % () $
E E—-TE E—TF
E E' — +TFE' E —¢|E —e¢
T T — BT T - FT'
o T — € T — +FT’ T —€e|T —e¢
F F—id F - (E)
MATCHED STACK INPUT ACTION
E$ id+id xid$
TE'S id+id+*id$ output E - TE'
FT'E'$S id+id=id$ output T — FT'
id T'"E'$ id+id*id$ output F — id
id T'E'$ +id *id$ match id
id E'$ +id *id$ output T’ — €
id + TE'$ +id *id$ output E' — + TE'
id + TE'$ id *id$ match +
id + FT'E'$ id *id$ output I' — FT"
id + id T'E'$ id *id$ output F — id
id +id T'E'$ *1d$ match id
id +id x FT'E'$ xid$ output 7' — x FT'
id + id * FT'E'$ id$ match *
id +id * id T'E'$ id$ output F — id
id + id * id T'E'$ $ match id
id + id * id E'$ $ output 7" — ¢
id + id = id $ $ output E' =€

FIRST and FOLLOW

* FIRST(a)
— The set of terminals that begin the strings derived from a
— If a=>"a B then ais in FIRST(a)
— If a =>* €, then €is in FIRST(a)

* FOLLOW(A)

— The set of terminals a that can appear immediately to the
right of A in some sentential form.

— If S=>"a A ap, then ais in FOLLOW(A)
 Compute FIRST(X)

— If X is terminal, then FIRST(X) is {X}.

— If X -> € is a production, then add € to FIRST(X).

— If X'is nonterminal and X ->Y, Y, ... Y, is a production,
* Add a to FIRST(X) if a € FIRST(Y) and e€ FIRST(Y) for 1 <=j <.
* Add € to FIRST(X) if ee FIRST(Y)) for 1 <=j<=k.

FIRST and FOLLOW

* Compute FIRST(X, ... X,)

— Add a to FIRST(X, ... X,) if a €FIRST(X;) and eFIRST(X))
forl<=j<i.

— Add € to FIRST(X, ... X)) if eeFIRST(X)) for 1 <=j < n.
e Compute FOLLOW(A)

— Add S to FOLLOW(S) if S is the start symbol.

— If there is a production A -> a B 3, then add FIRST(3)-{€}
to FOLLOW(B).

— |If there is a production A -> a B or a production A -> a B
B where € eFIRST([), then add FOLLOW(A) to
FOLLOW(B).

* Example
E -> T E’
E" -> + T E’
T ->F T
T -> * F T/
F'-> (E)

FIRST and FOLLOW

| €

| €
| ID

FIRST(E) =
FIRST(E") ={+, <}
FIRST(T”) ={*, ¢}
FOLLOW(E) = FOLLOW(E ")
FOLLOW(T) = FOLLOW(T")
FOLLOW(F) ={+, *,),

FIRST(T) = FIRST(F) ={ (, 1D}

1), S}
1t),
$}

S}

Building a Predictive Parsing Table

* For each production A -> a do
— For each terminal a in FIRST(a), add A -> a to M[A,a].

— If € € FIRST(0), add A -> o to M[A,b] for each b €
FOLLOW(A). (b is a terminal or S)

— Make each undefined entry of M be error.

Building a Predictive Parsing Table

* Example FIRST(E) = FIRST(T) = FIRST(F) = { (, 1D}

E -> T E’ FIRST(E")={+, €}

E’ => + T E’ | € FIRST(T’)={*, e}

T -> F T/ FOLLOW(E) = FOLLOW(E") ={), S}

T/ -> * F T' | € FOLLOW(T)=FOLLOW(T’")={+,), S }

F -> (E) | ID FOLLOW(E)={+, *,), S }

NON - INPUT SYMBOL
TERMINAL 5l 1 x () 3

E E—> TE B 7TF |
E E' - +TE' E'>elE —e
T F s Fg i o B
i § T —3 2 BT T —e|T —e¢
F F—id F — (E)

LL(1) Grammars

* LL(1): a grammar whose predictive parsing table has no
multiply-defined entries.

— First L: scanning input from left to right
— Second L: producing a leftmost derivation.
— 1: using 1 input symbol of lookahead
e Grammar G is LL(1) iff whenever A -> a | B are two
distinct productions of G, then the following holds

— For no terminal a do both a and [3 derive strings beginning
with a.

— At most one of a and 3 can derive the empty string

— If B =>* €, then a does not derive any string beginning with
a terminal in FOLLOW(A).

