
Syntax Analysis
(Top-Down Parsing)

YoungMin Kwon

The Role of the Parser

• Obtains strings of tokens from the lexical analyzer and
verifies that the string can be generated by the grammar.

• Efficient parsing methods
– Top-down Parsers:

• Build parse trees from the root to the leaves
• Handmade parsers (e.g. LL grammars)

– Bottom-up Parsers
• Build parse trees from the leaves to the top
• Generated by automated tools (e.g. LR grammars)

Context-Free Grammars

• Terminals (tokens)
– Basic symbols from which strings are formed

• Nonterminals
– Syntactic variables that denote sets of strings

• Start symbol
– A nonterminal that denotes the language defined by

the grammar
• Productions

– The manner in which the terminals and nonterminals
can be combined to from strings.

Notational Conventions

• a, b, c (small earlier part of the alphabet): a single
terminal symbol.

• A, B, C (large earlier part of the alphabet): a single
nonterminal symbol.

• x, y, z (small later part of the alphabet): a string of
terminals.

• X, Y, Z (large later part of the alphabet): a single
grammar symbol (a terminal or a nonterminal symbol).

• α,β, γ (small Greek letters): a string of grammar
symbols.

• S: the start symbol.

Derivations

• A production is treated as a rewriting rule
– The nonterminal on the LHS is replaced by the string

on the RHS of the production.
– Example E -> E + E | E * E | (E) | - E | ID,

E => - E : “E derives - E”
E => - E => - (E) => -(ID) : derivation of -(ID) from E
E =>* -(ID)

– => : derives in one step,
=>* : derives in zero or more steps,
=>+ : derives in one or more steps.

– α =>* α
α =>* β and β => γ, then α =>* γ

Derivations
• Let S be the start symbol of G, then a string of terminals w

is in L(G) iff S =>+ w.
– The string w is called a sentence of G

• A language generated by a grammar is called a context-free
language

• Two grammars are called equivalent if they generate the
same language.

• If S =>+ α, where α may contain nonterminals, then α is a
sentential form.
– A sentence is a sentential form with no nonterminals.
– Leftmost derivation: derivations in which only the leftmost

nonterminal in any sentential form is replaced.
– Rightmost derivation: derivations in which only the rightmost

nonterminal in any sentential form is replaced.

Elimination of Left Recursion
• A grammar is left recursive if there is a derivation A =>+

Aα for a nonterminal A and some string α.
– Top-down parsing mechanism cannot handle left-recursive

grammars.
• In section 2.4, A -> A α | β is converted to

A -> β R
R-> α R | ϵ.

– It does not eliminate left recursions involving two or more
steps of derivations.

S -> A a | b
A -> A c | S d | ϵ

– Solution: give orders to nonterminals and if there is a
production whose first RHS nonterminal is higher than the
LHS, replace the RHS nonterminal with its productions.

Eliminating Left Recursion

• Example
– S -> A a | b,

A -> A c | S d | ϵ.
– Order nonterminals as S, A
– When i = 2, A -> S d is converted to

A -> A c | A ad | bd | ϵ

S -> A a | b
A -> bd A’ | A’
A’ -> c A’ | ad A’ | ϵ

Left Factoring

• In predictive parsing, when we cannot select the
production rule immediately, modify the
grammar to defer the decision.
– stmt -> IF expr THEN stmt ELSE stmt

| IF expr THEN stmt

• If A -> α β1 | α β2, then modify the grammar as
A -> α A’
A’ -> β1 | β2
– stmt -> IF expr THEN stmt stmt’
stmt’ -> ELSE stmt | ϵ

Top-Down Parsing

• In many cases, left-recursion removal and left
factoring results in a grammar that can be
parsed by a recursive-decent parser without
backtracking (i.e. a predictive parser).

Nonrecursive Predictive Parsing
• Input: string of terminals

followed by $
• Stack: sequence of grammar

symbols with $ on the bottom.
• Parsing table: M[A,a], where A

is a nonterminal, a is a
terminal or $.

• Let X be the symbol on top of the stack, and a be the current input
• If X = a = $, announce the success.
• If X = a ≠ $, pops X and advance the input pointer
• If X is nonterminal

– If M[X,a] = {X->UVW}, replace X on top of the stack with WVU (with U
on top)

– If M[X,a] = error, declare an error

Nonrecursive Predictive Parsing

Example
• id + id * id

• Quiz: id + (id)

FIRST and FOLLOW
• FIRST(α)

– The set of terminals that begin the strings derived from α
– If α =>* a β then a is in FIRST(α)
– If α =>* ϵ, then ϵ is in FIRST(α)

• FOLLOW(A)
– The set of terminals a that can appear immediately to the

right of A in some sentential form.
– If S =>* α A a β, then a is in FOLLOW(A)

• Compute FIRST(X)
– If X is terminal, then FIRST(X) is {X}.
– If X -> ϵ is a production, then add ϵ to FIRST(X).
– If X is nonterminal and X -> Y1 Y2 … Yk is a production,

• Add a to FIRST(X) if a FIRST(Yi) and ϵ FIRST(Yj) for 1 <= j < i.
• Add ϵ to FIRST(X) if ϵ FIRST(Yj) for 1 <= j <= k.

FIRST and FOLLOW

• Compute FIRST(X1 … Xn)
– Add a to FIRST(X1 … Xn) if a FIRST(Xi) and ϵFIRST(Xj)

for 1 <= j < i.
– Add ϵ to FIRST(X1 … Xn) if ϵFIRST(Xj) for 1 <= j < n.

• Compute FOLLOW(A)
– Add $ to FOLLOW(S) if S is the start symbol.
– If there is a production A -> α B β, then add FIRST(β)-{ϵ}

to FOLLOW(B).
– If there is a production A -> α B or a production A -> α B

β where ϵ FIRST(β), then add FOLLOW(A) to
FOLLOW(B).

FIRST and FOLLOW

• Example
E -> T E’
E’ -> + T E’ | ϵ
T -> F T’
T’ -> * F T’ | ϵ
F -> (E) | ID

FIRST(E) = FIRST(T) = FIRST(F) = { (, ID }
FIRST(E’) = { +, ϵ }
FIRST(T’) = { *, ϵ }
FOLLOW(E) = FOLLOW(E’) = {), $ }
FOLLOW(T) = FOLLOW(T’) = { +,), $ }
FOLLOW(F) = { +, *,), $ }

Building a Predictive Parsing Table

• For each production A -> α do
– For each terminal a in FIRST(α), add A -> α to M[A,a].
– If ϵ FIRST(α), add A -> α to M[A,b] for each b

FOLLOW(A). (b is a terminal or $)
– Make each undefined entry of M be error.

Building a Predictive Parsing Table
• Example
E -> T E’
E’ -> + T E’ | ϵ
T -> F T’
T’ -> * F T’ | ϵ
F -> (E) | ID

FIRST(E) = FIRST(T) = FIRST(F) = { (, ID }
FIRST(E’) = { +, ϵ }
FIRST(T’) = { *, ϵ }
FOLLOW(E) = FOLLOW(E’) = {), $ }
FOLLOW(T) = FOLLOW(T’) = { +,), $ }
FOLLOW(F) = { +, *,), $ }

LL(1) Grammars

• LL(1): a grammar whose predictive parsing table has no
multiply-defined entries.
– First L: scanning input from left to right
– Second L: producing a leftmost derivation.
– 1: using 1 input symbol of lookahead

• Grammar G is LL(1) iff whenever A -> α | β are two
distinct productions of G, then the following holds
– For no terminal a do both α and β derive strings beginning

with a.
– At most one of α and β can derive the empty string
– If β =>* ϵ, then α does not derive any string beginning with

a terminal in FOLLOW(A).

