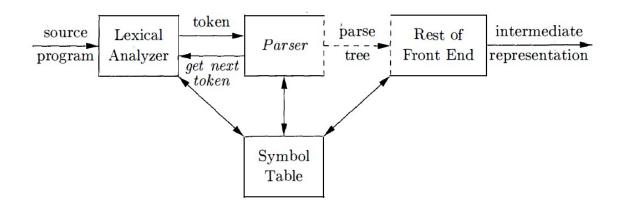
Syntax Analysis (Top-Down Parsing)

YoungMin Kwon

The Role of the Parser



- Obtains strings of tokens from the lexical analyzer and verifies that the string can be generated by the grammar.
- Efficient parsing methods
 - Top-down Parsers:
 - Build parse trees from the root to the leaves
 - Handmade parsers (e.g. LL grammars)
 - Bottom-up Parsers
 - Build parse trees from the leaves to the top
 - Generated by automated tools (e.g. LR grammars)

Context-Free Grammars

- Terminals (tokens)
 - Basic symbols from which strings are formed
- Nonterminals
 - Syntactic variables that denote sets of strings
- Start symbol
 - A nonterminal that denotes the language defined by the grammar
- Productions
 - The manner in which the terminals and nonterminals can be combined to from strings.

Notational Conventions

- a, b, c (small earlier part of the alphabet): a single terminal symbol.
- A, B, C (large earlier part of the alphabet): a single nonterminal symbol.
- x, y, z (small later part of the alphabet): a string of terminals.
- X, Y, Z (large later part of the alphabet): a single grammar symbol (a terminal or a nonterminal symbol).
- α,β, γ (small Greek letters): a string of grammar symbols.
- S: the start symbol.

Derivations

- A production is treated as a rewriting rule
 - The nonterminal on the LHS is replaced by the string on the RHS of the production.
 - Example E -> E + E | E * E | (E) | E | ID, E => - E : "E derives - E" E => - E => - (E) => -(ID) : derivation of -(ID) from E E =>* -(ID)
 - => : derives in one step, =>* : derives in zero or more steps, =>+ : derives in one or more steps. - $\alpha =>^* \alpha$ $\alpha =>^* \beta$ and $\beta => \gamma$, then $\alpha =>^* \gamma$

Derivations

- Let S be the start symbol of G, then a string of terminals w is in L(G) iff S =>⁺ w.
 - The string w is called a sentence of G
- A language generated by a grammar is called a context-free language
- Two grammars are called equivalent if they generate the same language.
- If $S = >^+ \alpha$, where α may contain nonterminals, then α is a sentential form.
 - A sentence is a sentential form with no nonterminals.
 - Leftmost derivation: derivations in which only the leftmost nonterminal in any sentential form is replaced.
 - Rightmost derivation: derivations in which only the rightmost nonterminal in any sentential form is replaced.

Elimination of Left Recursion

- A grammar is left recursive if there is a derivation $A =>^+$ A α for a nonterminal A and some string α .
 - Top-down parsing mechanism cannot handle left-recursive grammars.
- In section 2.4, $A \rightarrow A \alpha \mid \beta$ is converted to $A \rightarrow \beta R$ $R \rightarrow \alpha R \mid \epsilon$.
 - It does not eliminate left recursions involving two or more steps of derivations.

S -> A a | b A -> A c | S d | e

 Solution: give orders to nonterminals and if there is a production whose first RHS nonterminal is higher than the LHS, replace the RHS nonterminal with its productions.

Eliminating Left Recursion

```
arrange the nonterminals in some order A_1, A_2, ..., A_n.

for ( each i from 1 to n ) {

for ( each j from 1 to i - 1 ) {

replace each production of the form A_i \rightarrow A_j \gamma by the

productions A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where

A_j \rightarrow \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_j-productions

}

eliminate the immediate left recursion among the A_i-productions

}
```

- Example
 - S -> A a | b,
 A -> A c | S d | ε.
 - Order nonterminals as S, A
 - When i = 2, A -> S d is converted to A -> A c | A ad | bd | ϵ

```
S -> A a | b
A -> bd A' | A'
A' -> c A' | ad A' | ε
```

Left Factoring

• In predictive parsing, when we cannot select the production rule immediately, modify the grammar to defer the decision.

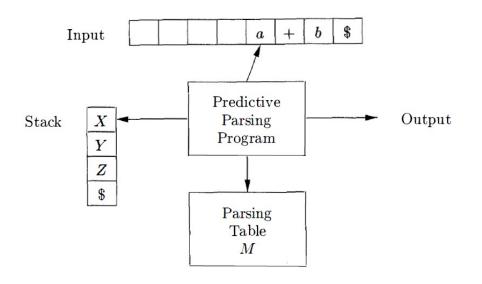
- stmt -> IF expr THEN stmt ELSE stmt | IF expr THEN stmt

- If A -> $\alpha \beta_1 \mid \alpha \beta_2$, then modify the grammar as A -> $\alpha A'$
 - $A' \rightarrow \beta_1 \mid \beta_2$
 - stmt -> IF expr THEN stmt stmt'
 stmt' -> ELSE stmt | <</pre>

Top-Down Parsing

 In many cases, left-recursion removal and left factoring results in a grammar that can be parsed by a recursive-decent parser without backtracking (i.e. a predictive parser).

Nonrecursive Predictive Parsing



- Input: string of terminals followed by \$
- Stack: sequence of grammar symbols with \$ on the bottom.
- Parsing table: M[A,a], where A is a nonterminal, a is a terminal or \$.

- Let X be the symbol on top of the stack, and a be the current input
- If X = a = \$, announce the success.
- If $X = a \neq $$, pops X and advance the input pointer
- If X is nonterminal
 - If M[X,a] = {X->UVW}, replace X on top of the stack with WVU (with U on top)
 - If M[X,a] = error, declare an error

Nonrecursive Predictive Parsing

```
set ip to point to the first symbol of w;

set X to the top stack symbol;

while (X \neq \$) \{ / \$ stack is not empty \ast /

if (X \text{ is } a) pop the stack and advance ip;

else if (X \text{ is a terminal}) error();

else if (M[X, a] \text{ is an error entry}) error();

else if (M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k) \{

output the production X \rightarrow Y_1 Y_2 \cdots Y_k;

pop the stack;

push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, with Y_1 on top;

\}

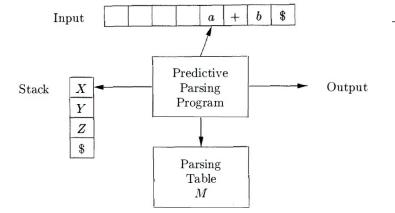
set X to the top stack symbol;

\}
```

Example

• id + id * id

NON - TERMINAL	INPUT SYMBOL						
	id	+	*	()	\$	
E	$E \rightarrow TE'$			$E \rightarrow TE'$		•	
E'		$E' \to + T E'$			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \to FT'$		1	$T \to FT'$	· 6		
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$	
F	$F ightarrow \mathbf{id}$			$F \to (E)$			



• Quiz: id + (id)

			•
MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id	
	TE'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id}$	output $E \to TE'$
	FT'E'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id}$	output $T \to FT'$
	id $T'E'$ \$	$\mathbf{id} + \mathbf{id} * \mathbf{id}$	output $F \to \mathbf{id}$
\mathbf{id}	T'E'\$	+ id * id\$	match id
\mathbf{id}	E'\$	+ id * id\$	output $T' \to \epsilon$
\mathbf{id}	+ TE'\$	+ id * id\$	output $E' \to + TE'$
id +	TE'\$	id * id\$	match +
\mathbf{id} +	FT'E'\$	id * id\$	output $T \to FT'$
\mathbf{id} +	id $T'E'$ \$	$\mathbf{id} * \mathbf{id}$	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	* id\$	match id
$\mathbf{id} + \mathbf{id}$	* FT'E'\$	* id\$	output $T' \to * FT'$
$\mathbf{id} + \mathbf{id} *$	FT'E'\$	\mathbf{id}	match *
id + id *	id $T'E'$ \$	\mathbf{id}	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	T'E'\$	\$	match id
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	E'\$	\$	output $T' \to \epsilon$
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	\$	\$	output $E' \to \epsilon$

FIRST and FOLLOW

- FIRST(α)
 - The set of terminals that begin the strings derived from $\boldsymbol{\alpha}$
 - If $\alpha = \ast^* a \beta$ then a is in FIRST(α)
 - If $\alpha =>^* \epsilon$, then ϵ is in FIRST(α)
- FOLLOW(A)
 - The set of terminals a that can appear immediately to the right of A in some sentential form.
 - If S =>^{*} α A a β , then a is in FOLLOW(A)
- Compute FIRST(X)
 - If X is terminal, then FIRST(X) is {X}.
 - If $X \rightarrow \epsilon$ is a production, then add ϵ to FIRST(X).
 - If X is nonterminal and X -> $Y_1 Y_2 \dots Y_k$ is a production,
 - Add a to FIRST(X) if $a \in FIRST(Y_i)$ and $e \in FIRST(Y_i)$ for $1 \le j \le i$.
 - Add ϵ to FIRST(X) if $\epsilon \in \text{FIRST}(Y_j)$ for $1 \le j \le k$.

FIRST and FOLLOW

- Compute FIRST(X₁ ... X_n)
 - Add a to $FIRST(X_1 \dots X_n)$ if $a \in FIRST(X_i)$ and $e \in FIRST(X_j)$ for $1 \le j \le i$.
 - − Add ϵ to FIRST(X₁ ... X_n) if $\epsilon \in$ FIRST(X_j) for 1 <= j < n.
- Compute FOLLOW(A)
 - Add \$ to FOLLOW(S) if S is the start symbol.
 - If there is a production $A \rightarrow \alpha B \beta$, then add FIRST(β)-{ ϵ } to FOLLOW(B).
 - If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B$ β where $\epsilon \in FIRST(\beta)$, then add FOLLOW(A) to FOLLOW(B).

FIRST and FOLLOW

• Example

 $E \rightarrow T E'$ $E' \rightarrow + T E' \mid \in \mathsf{FIRST}(E') = \{+, \in\}$ $T \quad -> F \quad T' \qquad \qquad \mathsf{FIRST}(T') = \{ \star, \in \}$ $F \rightarrow (E) | ID$

 $FIRST(E) = FIRST(T) = FIRST(F) = \{ (, ID \} \}$ $T' \rightarrow F T' \mid \in FOLLOW(E) = FOLLOW(E') = \{ \}, \}$ $FOLLOW(T) = FOLLOW(T') = \{+, \}, \\ \$ \}$ FOLLOW(F) = { +, *,), \$ }

Building a Predictive Parsing Table

- For each production A -> α do
 - For each terminal a in FIRST(α), add A -> α to M[A,a].
 - If $\epsilon \in FIRST(\alpha)$, add A -> α to M[A,b] for each b \in FOLLOW(A). (b is a terminal or \$)
 - Make each undefined entry of M be error.

Building a Predictive Parsing Table

• Example

 FIRST(E) = FIRST(T) = FIRST(F) = { (, ID }

 E -> T E'
 FIRST(E') = { +, \in }

 E' -> + T E' | \in FIRST(T') = { *, \in }

 T -> F T'
 FOLLOW(E) = FOLLOW(E') = {), \$ }

 T' -> * F T' | \in FOLLOW(T) = FOLLOW(T') = { +,), \$ }

 F -> (E) | ID
 FOLLOW(F) = { +, *,), \$ }

NON -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
E	$E \rightarrow T E'$			$E \rightarrow TE'$			
E'		$E' \to + T E'$			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \rightarrow FT'$		8	$T \to FT'$			
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \rightarrow \epsilon$	
F	$F ightarrow \mathbf{id}$			$F \to (E)$			

LL(1) Grammars

- LL(1): a grammar whose predictive parsing table has no multiply-defined entries.
 - First L: scanning input from left to right
 - Second L: producing a leftmost derivation.
 - 1: using 1 input symbol of lookahead
- Grammar G is LL(1) iff whenever A -> α | β are two distinct productions of G, then the following holds
 - For no terminal a do both α and β derive strings beginning with a.
 - At most one of α and β can derive the empty string
 - If $\beta =>^* \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A).