
CSE504 Compiler Design
Lexical Analysis

YoungMin Kwon

The Role of the Lexical Analyzer

• Why separating lexical analysis and parsing
– Simplify design (comments, white spaces…)
– Improve compiler efficiency (simpler algorithm)
– Improve compiler portability

Specification of Tokens

• String and Language
– Alphabet (character class): any finite set of symbols.
– A string of some alphabet: a finite sequence of symbols

drawn from the alphabet.
– Language: any set of strings over some fixed alphabet.

• Operations on Language

Regular Expressions

• Rules that define the regular expression over
alphabet Σ

Quiz: Find the language L(a(b|c)*)

Nonregular Sets

• Balanced or nested structure
– e -> (e)

• Repeating strings
– {wcw | w is a string of a’s and b’s}

• Arbitrary number of repetitions
– n H a1 a2 … an

Finite Automata

• A recognizer for a language L is a program that takes a
string x as an input and answers “yes” if x  L and “no”
otherwise.

• Nondeterministic Automata (NFA) consist of

NFA example

• In NFA, the same input string can result in
different states.

Finite Automata
• Deterministic Finite Automata (DFA)

– DFA is a special case of NFA with
• No state has an ϵ-transition
• Each state has at most 1 edge for each input symbol.

Simulating DFA

Quiz:
1. Check if aabbabb is in the language of (a|b)*abb
2. Check if aabbaa is in the language of (a|b)*abb

NFA to DFA

NFA to DFA Conversion

NFA to DFA Conversion example

Regular Expression to NFA
(Thompson’s Construction Algorithm)

• Let N(s) and N(t) be NFAs for s and t

Regular Expression to NFA: (a|b)*abb

Quiz:
- Build an NFA for a(a|b)*b
- Convert the NFA to a DFA

Simulating NFA

Quiz:
• Check if ababa will be accepted

by the NFA on the right

Lexical Analyzer

Specification of a lexical analyzer

Model of Lex compiler

Pattern Matching with NFAs

• For patterns p1, … , pn,
– Construct NFAs N(p1), … ,N(pn)
– Add a start state s0 and add ϵ

transitions from s0 to each N(pi).
– To match the longest pattern, keep

simulate NFA until there are no more
transitions.

– Move backward to the last state with
an accepting state.

Pattern Matching Example

NFAs for a, abb, a*b+ Combined NFA

States for aaba

The lookahead operator
• r1/r2: match a string in r1 only if followed by a string in
r2
– E.g. in Fortran: DO5I=1.25 vs DO5I=1,25
DO/{letter_or_digit}*={letter_or_digit}*,

• Implementing lookahead operator
– When converting to NFA, treat / as ϵ
– When a string is recognized, truncate the lexeme at the position

where the last transition on the (imaginary) / occurred.
• E.g. IF / \(.* \) {letter}

– IF (123) a

Regular Expressions to DFA
• Important States of NFA

– An NFA state is important if it has a non-ϵ transition
– Subset construction algorithm uses only important states (

ϵ-closure(move(T,a)))
– Two subsets can be identified if

1. They have the same important states and
2. They both have an accepting state or neither have one.

– Thompson’s construction builds an important state exactly
when a symbol in the alphabet appears.

• Augmented regular expression
– Append a unique marker # to a regular expression r: (r)#
– Any DFA state with a transition on # is an accepting state.

Regular Expressions to DFA
• Position: label non-ϵ leaves of a syntax tree

for a regular expression with a unique
number.

• For a node n in a syntax tree, let r be the
subexpression corresponding to n.
– nullable(n): if r can generate an empty string.
– firstpos(n): the set of positions that can match

the first symbols of the strings generated by r.
– lastpos(n): the set of positions that can match

the last symbols of the strings generated by r.
• For a position i, followpos(i): the set of

positions j such that there is some input
string …cd… such that i corresponds to c and j
to d.

Regular Expressions to DFA

• followpos(i)
– If n is a cat-node with left c1 and right c2,

and i  lastpos(c1), then all positions in
firstpos(c2) are in followpos(i).

– If n is a star-node and i  lastpos(n), then all
positions in firstpos(n) are in followpos(i).

Regular Expressions to DFA

• Example

Construct NFA without ϵ-transition
1. Make all positions in the firstpos of the root initial states
2. Label each edge (i,j) with the symbol at position i.
3. Make the position for # the only accepting state.

A graph built by followpos

Regular Expressions to DFA
• Apply the subset construction algorithm directly to the

implicit NFA.
1. Construct a syntax tree for (r)#
2. Construct, nullable, firstpos, lastpos, and followpos
3. Construct Dstates and Dtran using the algorithm below.

The start state is firstpos(root), the accepting states are
the ones with the position for #.

Regular Expressions to DFA

• Example

Quiz: Build a DFA for a(a|b)*b

Minimizing the number of DFA states

• Make every state has a transition on every input
symbol. (add a dead state d if necessary)

• String w distinguishes states s and t if feeding w from
the states ended up with an accepting state in one case
and a non-accepting state in the other.

• Starting from F and S-F,
keep partitioning the
states until they are not
distinguishable.

Minimizing the number of DFA states

