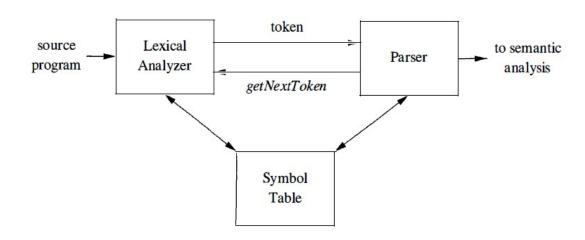
CSE504 Compiler Design Lexical Analysis

YoungMin Kwon

The Role of the Lexical Analyzer



- Why separating lexical analysis and parsing
 - Simplify design (comments, white spaces...)
 - Improve compiler efficiency (simpler algorithm)
 - Improve compiler portability

Specification of Tokens

- String and Language
 - Alphabet (character class): any finite set of symbols.
 - A string of some alphabet: a finite sequence of symbols drawn from the alphabet.
 - Language: any set of strings over some fixed alphabet.
- Operations on Language

OPERATION &	DEFINITION AND NOTATION
$\underline{\hspace{1cm}}$ Union of L and M	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
- Concatenation of L and M	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
Kleene closure of L	$L^* = \cup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \cup_{i=1}^{\infty} L^i$

Regular Expressions

- Rules that define the regular expression over alphabet $\boldsymbol{\Sigma}$
 - ϵ is a regular expression denoting $\{\epsilon\}$
 - If $a \in \Sigma$, a is a regular expression denoting $\{a\}$
 - (r)|(s) is a regular expression denoting $L(r) \cup L(s)$
 - (r)(s) is a regular expression denoting L(r)L(s)
 - (r)* is a regular expression denoting (L(r))*
 - (r) is a regular expression denoting L(r), where r and s are regular expressions denoting L(r) and L(s)

Quiz: Find the language L(a(b|c)*)

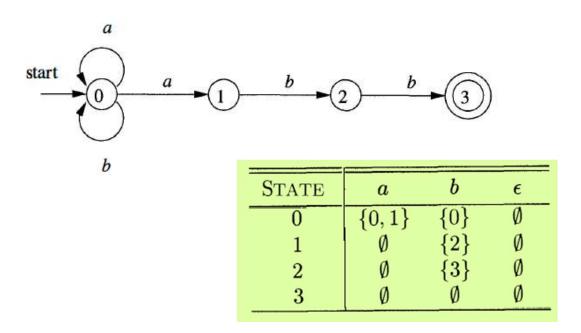
Nonregular Sets

- Balanced or nested structure
 - -e -> (e)
- Repeating strings
 - {wcw | w is a string of a's and b's}
- Arbitrary number of repetitions
 - n H a₁ a₂ ... a_n

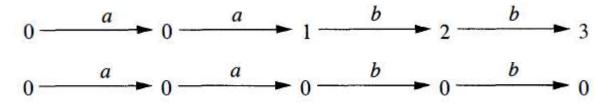
Finite Automata

- A recognizer for a language L is a program that takes a string x as an input and answers "yes" if x ∈ L and "no" otherwise.
- Nondeterministic Automata (NFA) consist of
 - 1. a set of status S
 - 2. a set of input symbol Σ
 - 3. a transition function *move*: maps (S, Σ) to S
 - 4. an initial state $s_0 \in S$
 - 5. a set of final states $F \subseteq S$

NFA example

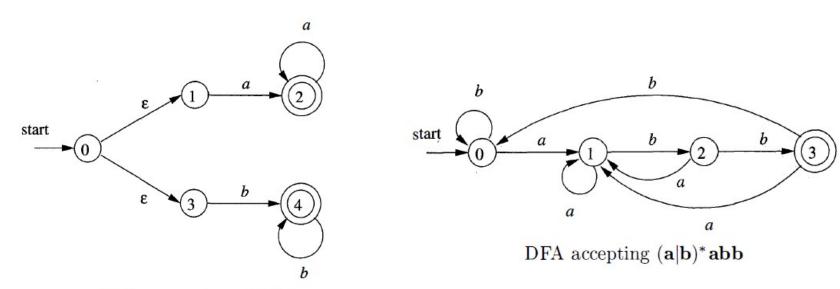


 In NFA, the same input string can result in different states.



Finite Automata

- Deterministic Finite Automata (DFA)
 - DFA is a special case of NFA with
 - No state has an ∈-transition
 - Each state has at most 1 edge for each input symbol.



NFA accepting **aa***|**bb***

Simulating DFA

```
s = s_0;
c = nextChar();
while (c != eof) \{
s = move(s, c);
c = nextChar();
}
if (s is in F) return "yes";
else return "no";
```

Quiz:

- 1. Check if aabbabb is in the language of (a|b)*abb
- 2. Check if aabbaa is in the language of (a|b)*abb

NFA to DFA

OPERATION	DESCRIPTION
ϵ -closure(s)	Set of NFA states reachable from NFA state s
	on ϵ -transitions alone.
ϵ - $closure(T)$	Set of NFA states reachable from some NFA state s
	in set T on ϵ -transitions alone; $= \bigcup_{s \text{ in } T} \epsilon$ - $closure(s)$.
move(T, a)	Set of NFA states to which there is a transition on
	input symbol a from some state s in T .

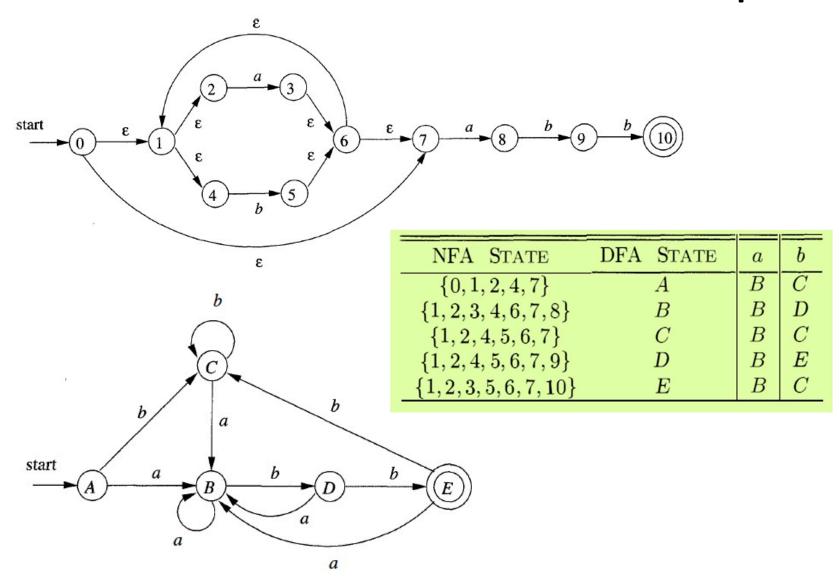
```
initially, \epsilon-closure(s_0) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) {
    mark T;
    for ( each input symbol a ) {
        U = \epsilon-closure(move(T, a));
        if ( U is not in Dstates )
            add U as an unmarked state to Dstates;
        Dtran[T, a] = U;
    }
```

The subset construction

NFA to DFA Conversion

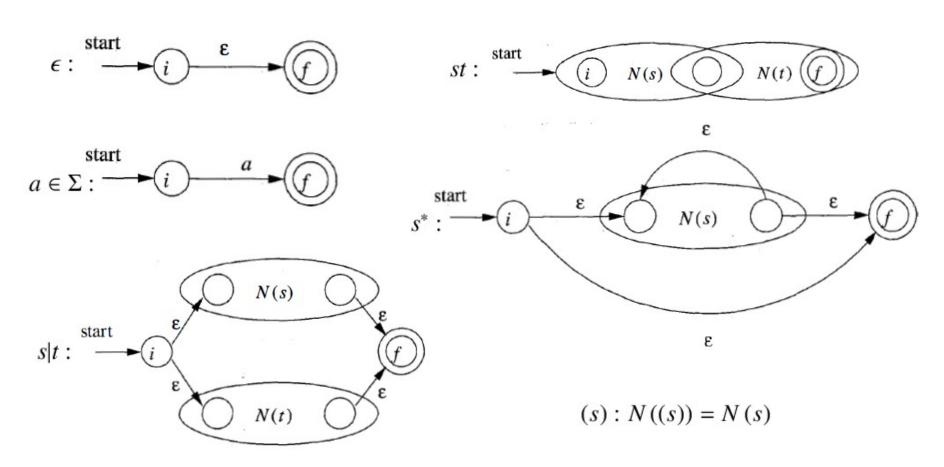
```
push all states of T onto stack; initialize \epsilon-closure(T) to T; while ( stack is not empty ) {
	pop t, the top element, off stack;
	for ( each state u with an edge from t to u labeled \epsilon )
	if ( u is not in \epsilon-closure(T) ) {
	add u to \epsilon-closure(T);
	push u onto stack;
	}
}
Computing \epsilon-closure(T)
```

NFA to DFA Conversion example

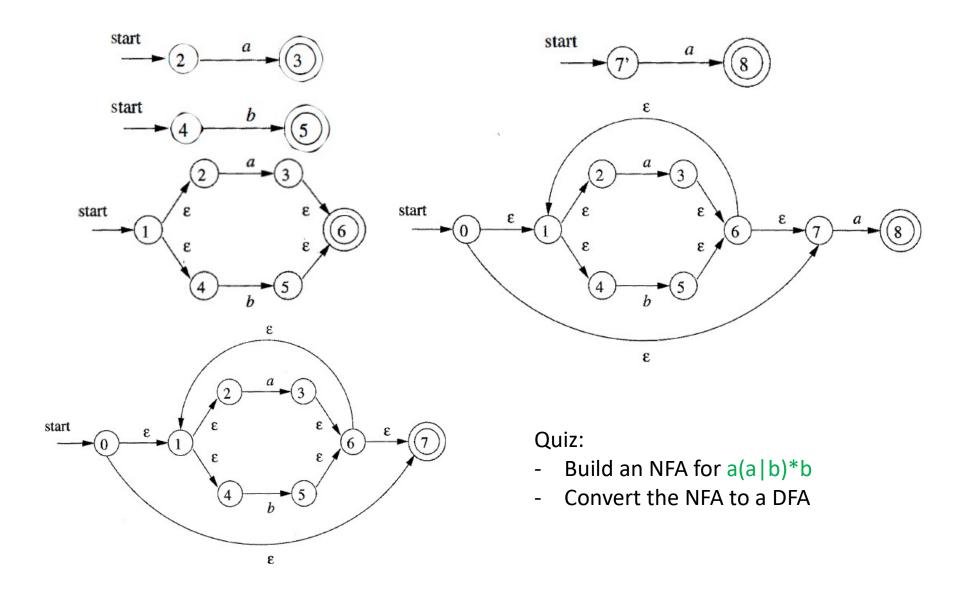


(Thompson's Construction Algorithm)

Let N(s) and N(t) be NFAs for s and t



Regular Expression to NFA: (a|b)*abb



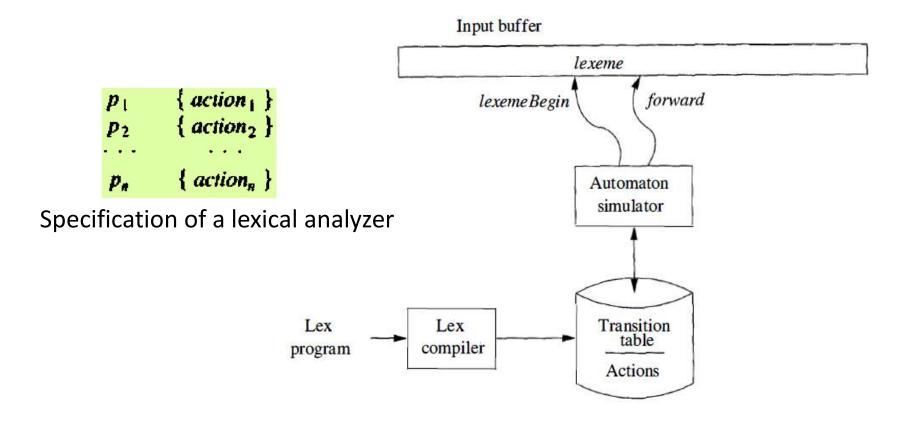
Simulating NFA

```
S = \epsilon - closure(s_0);
      c = nextChar();
      \mathbf{while} \; (\; c \mathrel{\mathop:}= \mathbf{eof} \;) \; \{
                S = \epsilon - closure(move(S, c));
5)
                c = nextChar();
6)
      if (S \cap F := \emptyset) return "yes";
      else return "no";
                                  start
                                                                    ε
```

Quiz:

Check if ababa will be accepted by the NFA on the right

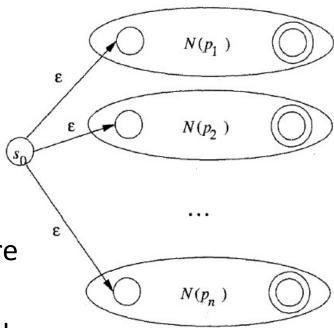
Lexical Analyzer



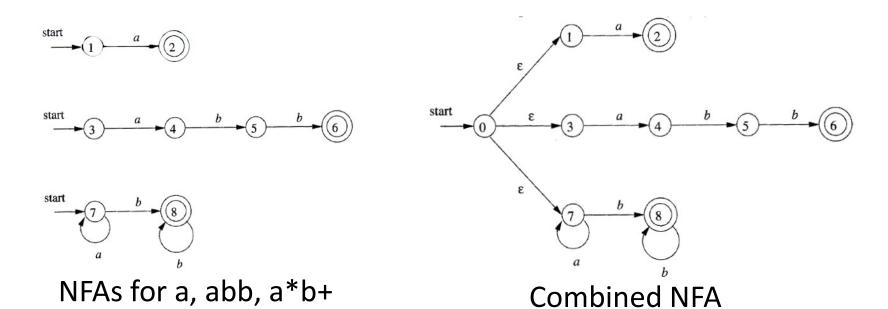
Model of Lex compiler

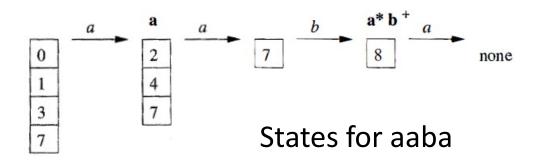
Pattern Matching with NFAs

- For patterns p₁, ..., p_n
 - Construct NFAs $N(p_1)$, ..., $N(p_n)$
 - − Add a start state s_0 and add ϵ transitions from s_0 to each $N(p_i)$.
 - To match the longest pattern, keep simulate NFA until there are no more transitions.
 - Move backward to the last state with an accepting state.



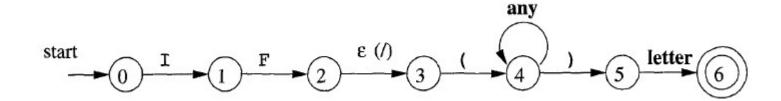
Pattern Matching Example





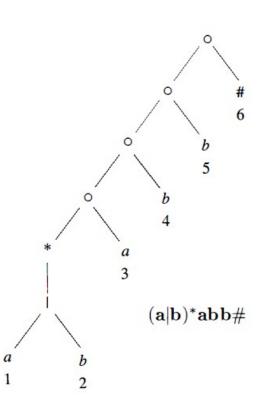
The lookahead operator

- r1/r2: match a string in r1 only if followed by a string in r2
 - E.g. in Fortran: D05I=1.25 vs D05I=1,25
 D0/{letter_or_digit}*={letter_or_digit}*,
- Implementing lookahead operator
 - When converting to NFA, treat / as ϵ
 - When a string is recognized, truncate the lexeme at the position where the last transition on the (imaginary) / occurred.
- E.g. IF / \ (.* \) {letter}- IF (123) a



- Important States of NFA
 - An NFA state is important if it has a non-∈ transition
 - Subset construction algorithm uses only important states (
 ∈-closure(move(T,a)))
 - Two subsets can be identified if
 - 1. They have the same important states and
 - 2. They both have an accepting state or neither have one.
 - Thompson's construction builds an important state exactly when a symbol in the alphabet appears.
- Augmented regular expression
 - Append a unique marker # to a regular expression r: (r)#
 - Any DFA state with a transition on # is an accepting state.

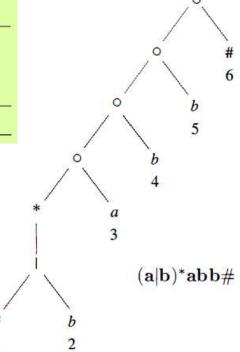
- Position: label non-∈ leaves of a syntax tree for a regular expression with a unique number.
- For a node n in a syntax tree, let r be the subexpression corresponding to n.
 - nullable(n): if r can generate an empty string.
 - firstpos(n): the set of positions that can match the first symbols of the strings generated by r.
 - lastpos(n): the set of positions that can match the last symbols of the strings generated by r.
- For a position i, followpos(i): the set of positions j such that there is some input string ...cd... such that i corresponds to c and j to d.



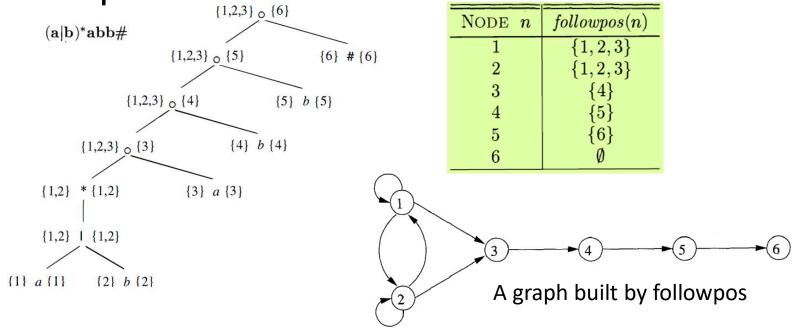
NODE n	nullable(n)	firstpos(n)
A leaf labeled ϵ	true	Ø
A leaf with position i	false	$\{i\}$
An or-node $n = c_1 c_2$	$nullable(c_1)$ or	$firstpos(c_1) \cup firstpos(c_2)$
	$nullable(c_2)$	
A cat-node $n = c_1 c_2$	$nullable(c_1)$ and	$\mathbf{if} \; (\; \mathit{nullable}(c_1) \;)$
	$nullable(c_2)$	$firstpos(c_1) \cup firstpos(c_2)$
		else $firstpos(c_1)$
A star-node $n = c_1^*$	true	$\mathit{firstpos}(c_1)$

followpos(i)

- If n is a cat-node with left c1 and right c2, and i ∈ lastpos(c1), then all positions in firstpos(c2) are in followpos(i).
- If n is a star-node and i ∈ lastpos(n), then all positions in firstpos(n) are in followpos(i).



Example



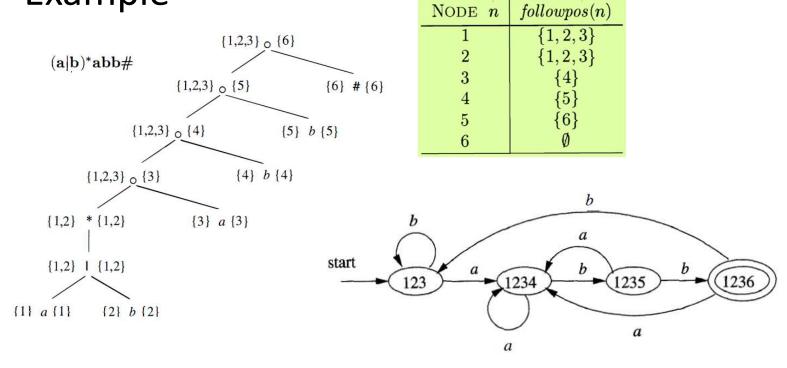
Construct NFA without ∈-transition

- 1. Make all positions in the firstpos of the root initial states
- 2. Label each edge (i,j) with the symbol at position i.
- 3. Make the position for # the only accepting state.

- Apply the subset construction algorithm directly to the implicit NFA.
 - Construct a syntax tree for (r)#
 - 2. Construct, nullable, firstpos, lastpos, and followpos
 - 3. Construct Dstates and Dtran using the algorithm below. The start state is firstpos(root), the accepting states are the ones with the position for #.

```
initialize Dstates to contain only the unmarked state firstpos(n_0), where n_0 is the root of syntax tree T for (r)\#; while ( there is an unmarked state S in Dstates ) { mark S;
    for ( each input symbol a ) {
        let U be the union of followpos(p) for all p in S that correspond to a;
        if ( U is not in Dstates )
            add U as an unmarked state to Dstates;
        Dtran[S, a] = U;
}
```

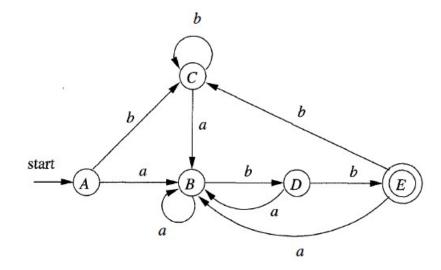
Example



Quiz: Build a DFA for a(a|b)*b

Minimizing the number of DFA states

- Make every state has a transition on every input symbol. (add a dead state d if necessary)
- String w distinguishes states s and t if feeding w from the states ended up with an accepting state in one case and a non-accepting state in the other.
- Starting from F and S-F, keep partitioning the states until they are not distinguishable.



Minimizing the number of DFA states

- 1. Start with an initial partition Π with two groups, F and S-F, the accepting and nonaccepting states of D.
- 2. Apply the procedure of Fig. 3.64 to construct a new partition Π_{new} .

```
initially, let \Pi_{\text{new}} = \Pi;

for (each group G of \Pi) {

partition G into subgroups such that two states s and t

are in the same subgroup if and only if for all

input symbols a, states s and t have transitions on a

to states in the same group of \Pi;

/* at worst, a state will be in a subgroup by itself */

replace G in \Pi_{\text{new}} by the set of all subgroups formed;

}
```

Figure 3.64: Construction of Π_{new}

- 3. If $\Pi_{\text{new}} = \Pi$, let $\Pi_{\text{final}} = \Pi$ and continue with step (4). Otherwise, repeat step (2) with Π_{new} in place of Π .
- 4. Choose one state in each group of Π_{final} as the representative for that group. The representatives will be the states of the minimum-state DFA D'. The other components of D' are constructed as follows: