CSE504 Compiler Design
Lexical Analysis

The Role of the Lexical Analyzer

token

source Lexical
—

program Analyzer _

.

) getNextToken

Parser

7

Symbol
Table

to semantic
analysis

* Why separating lexical analysis and parsing
— Simplify design (comments, white spaces...)
— Improve compiler efficiency (simpler algorithm)

— Improve compiler portability

Specification of Tokens

e String and Language
— Alphabet (character class): any finite set of symbols.

— A string of some alphabet: a finite sequence of symbols
drawn from the alphabet.

— Language: any set of strings over some fixed alphabet.
* Operations on Language

OPERATION DEFINITION AND NOTATION
Union of L and M LUM ={s|sisin L or sisin M}
Concatenation of L and M | LM = {st | sisin L and ¢ is in M}
Kleene closure of L L* =UgR, L}
Positive closure of L I =ux. Lt

Regular Expressions

* Rules that define the regular expression over
alphabet 2
e € is a regular expression denoting {e€}
o If a € X, a is a regular expression denoting {a}
e (r)|(s) is a regular expression denoting L(r) U L(s)
e (r)(s) is a regular expression denoting L(r)L(s)
e (r)#* 1s a regular expression denoting (L(r))*

e (r) is aregular expression denoting L(r),
where r and s are regular expressions denoting L(r) and L(s)

Quiz: Find the language . (a (b|c) *)

Nonregular Sets

e Balanced or nested structure
—e->(e)
* Repeating strings
— {wcw | wis a string of a’s and b’s}
e Arbitrary number of repetitions

—nHa;a,..a,

Finite Automata

 Arecognizer for alanguage L is a program that takes a
string x as an input and answers “yes” if x € L and “no”
otherwise.

 Nondeterministic Automata (NFA) consist of

1

?

Do W

a set of status S
a set of input symbol X
a transition function move: maps (5, %) to S

an initial state sg € S

. a set of final states F C S

NFA example

start m a b b
© © O—~&)
b
STATE a b ¢
0 {0,1} {0} 0
1) {2} ()
2 0 {3} 0
3 0 0 0

* [n NFA, the same input string can result in
different states.

Finite Automata

* Deterministic Finite Automata (DFA)

— DFA is a special case of NFA with
* No state has an e-transition
* Each state has at most 1 edge for each input symbol.

DFA accepting (alb)*abb

NFA accepting aa*|bb”

Simulating DFA

§ = S0;
¢ = nextChar();
while (¢ != eof) {
s = move(s,c);
¢ = nextChar();
}
if (sisin F') return "yes";
else return "no";

DFA accepting (alb)*abb

Quiz:
1. Check if aabbabb is in the language of (a|b)*abb
2. Check if aabbaa is in the language of (a|b)*abb

NFA to DFA

OPERATION DESCRIPTION

e-closure(s) Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s

in set T on e-transitions alone; = Ug in T €-closure(s).

move(T, a) Set of NFA states to which there is a transition on
input symbol a from some state s in 7.

initially, e-closure(sg) is the only state in Dstates, and it is unmarked:
while (there is an unmarked state 7' in Dstates) {
mark T7;
for (each input symbol a) {
U = e-closure(move(T, a));
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[T,a] = U;
) ,

The subset construction

NFA to DFA Conversion

push all states of T" onto stack;
initialize e-closure(T') to T';
while (stack is not empty) {
pop t, the top element, off stack;
for (each state u with an edge from ¢ to u labeled €)
if (w is not in e-closure(T')) {
add u to e-closure(T);
push u onto stack;

}

Computing e-closure(T)

NFA to DFA Conversion example

g NFA STATE DFA STATE | a | b
{0,1,2,4,7} A B |'C

2 B B|D
C NG

D B | E

E B ||\

Regular Expression to NFA

(Thompson’s Construction Algorithm)

* Let N(s) and N(t) be NFAs for s and t

start € start
€: o @ St G) N @I@)

£

(2) 2 Nl(s)) =N{(s)

Regular Expression to NFA: (a|b)*abb

Start

o (52) ._.._.a__...(start o a

.,F-\-E‘\\

(©)

7

start b et

=t
©)

e

a

—

- Build an NFA for a(a|b)*b
- Convert the NFA to a DFA

Simulating NFA

1) S = e-closure(sy);

2) ¢ = nextChar();

3) while (¢ != eof) {

4) S = e-closure(move(S,c));

5) ¢ = nextChar();

6) }

7) if(SNF '=0)return "yes"; .
8) else return "no";

start

Quiz:
* Check if ababa will be accepted
by the NFA on the right

Lexical Analyzer

Input buffer
[_ lexeme L
P { action } lexeme Begin forward
D3 { action, }
P { action, } Automaton i
.r . . simulator
Specification of a lexical analyzer |
Lex Lex = Transition
program compiler table

Model of Lex compiler

Pattern Matching with NFAs

* For patterns py, ..., P,
— Construct NFAs N(p4), ... ,N(p,,)

— Add a start state sy and add €
transitions from s, to each N(p,).

— To match the longest pattern, keep
simulate NFA until there are no more
transitions.

— Move backward to the last state with
an accepting state.

Pattern Matching Example

il S -1;®- /“
- £
start i % B AN start £ a b g b
3 () (5) (6) (0 ——(3) (4)—(5)————.

B N

O O
b ¢ b
NFAs for a, abb, a*b+ Combined NFA
a a a b a*b” a

r(}_ 2 - 17 | ; I_Ei_ - none
[L LA

3 7

7 States for aaba

The lookahead operator

r1/r2: match a stringin 1 only if followed by a string in
r2

— E.g.in Fortran: DO5I=1.25 vs DO5I=1,25
DO/ {letter or digit}*={letter or digit}*,

Implementing lookahead operator

— When converting to NFA, treat / as €

— When a string is recognized, truncate the lexeme at the position
where the last transition on the (imaginary) / occurred.

Eg. IF / \(.* \) {letter}
— IF (123) a

any

start £ (/) m
D) DO (6)

Regular Expressions to DFA

* |mportant States of NFA
— An NFA state is important if it has a non-€ transition

— Subset construction algorithm uses only important states (
e-closure(move(T,a)))

— Two subsets can be identified if
1. They have the same important states and
2. They both have an accepting state or neither have one.

— Thompson’s construction builds an important state exactly
when a symbol in the alphabet appears.

* Augmented regular expression
— Append a unique marker # to a regular expression r: (r)#
— Any DFA state with a transition on # is an accepting state.

Regular Expressions to DFA

Position: label non-€ leaves of a syntax tree
for a regular expression with a unique g
number. 7\
For a node n in a syntax tree, let r be the A
subexpression corresponding to n. & N
— nullable(n): if r can generate an empty string. "

— firstpos(n): the set of positions that can match N\
the first symbols of the strings generated by r. 7

— lastpos(n): the set of positions that can match | "
the last symbols of the strings generated by r. |
oy . . . 7 (a|b\}*abb#
For a position i, followpos(i): the set of PR
positions j such that there is some input : 6
string ...cd... such that i corresponds to c and j
to d.

Regular Expressions to DFA

NODE n nullable(n) ?rstpos(n)
A leaf labeled € true 0
A leaf with position i false {i}
An or-node n =c;|e; | nullable(c,) or | firstpos(ci) U firstpos(cs)
nullable(c,) j/o\
A cat-node n = ¢jea | nullable(c;) and if (nullable(cy)) 0” ; i
nullable(cs) firstpos(er) U firstpos(cz) A% 6
else firstpos(cy) X,

/

e b

A star-node n = ¢;* true firstpos(cy) / \ 5
b

e followpos(i) VYA
— If nis a cat-node with left c1 and right c2,)

and i € lastpos(cl), then all positions in
firstpos(c2) are in followpos(i).

/' 5 (afb)*abb#
— If nis a star-node and i € lastpos(n), then all g
positions in firstpos(n) are in followpos(i). 1 "

a
3

Regular Expressions to DFA

Example
(a[b)*abb# {]?O\ NODE n | followpos(n)
| {123} o {6} # (6} 1 {1,2,3}
/\ 2 {1,2,3)
(12,3} ¢ (4) (5} b (5} 3 {4}
1?\ 4} b (4} 2 {8}

{12} *{12) {3} a {3}

‘” %\ O——O—®
AN C(@)/

(I afl} (2} b2} A graph built by followpos

Construct NFA without e-transition

1. Make all positions in the firstpos of the root initial states
2. Label each edge (i,j) with the symbol at position i.

3. Make the position for # the only accepting state.

Regular Expressions to DFA

* Apply the subset construction algorithm directly to the
implicit NFA.
1. Construct a syntax tree for (r)#
2. Construct, nullable, firstpos, lastpos, and followpos

3. Construct Dstates and Dtran using the algorithm below.
The start state is firstpos(root), the accepting states are
the ones with the position for #.

initialize Dstates to contain only the unmarked state firstpos(no),
where ng is the root of syntax tree T for (r)#;
while (there is an unmarked state S in Dstates) {
mark S;
for (each input symbol a) {
let U be the union of followpos(p) for all p
in S that correspond to a;
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[S, a] = U;

Regular Expressions to DFA

Example NODE n | followpos(n)
i T i {1,2,3)
(alb)abb S \ . A
{1,23} o {5} {6}
4 5
{1.2,3} o {4} {5} b {5} 6 0
e
{1,2,3} o {3} {4} b {4)
/\
{1,2} “"{1,2} {3} a {3}
{12} 1 {1,2}
2 ey

{1t a {1} {21 b (2]

Quiz: Build a DFA for a(a|b)*b

Minimizing the number of DFA states

 Make every state has a transition on every input
symbol. (add a dead state d if necessary)

e String w distinguishes states s and t if feeding w from
the states ended up with an accepting state in one case
and a non-accepting state in the other.

e Starting from F and S-F,

b
keep partitioning the |
states until they are not / a
distinguishable. iy QR

Minimizing the number of DFA states

1. Start with an initial partition II with two groups, F' and S — F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition ey .

initially, let Ilhew = II;
for (each group G of IT) {
partition G into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;
/* at worst, a state will be in a subgroup by itself */
replace G in Ilpew by the set of all subgroups formed;

Figure 3.64: Construction of IIpew

3. If Ipew = II, let IIg,,) = IT and continue with step (4). Otherwise, repeat
step (2) with Ilpeyw in place of II.

4. Choose one state in each group of Ilg,, as the representative for that

group. The representatives will be the states of the minimum-state DFA
D'. The other components of I)' are constructed as follows:

