CSE 504 Compiler Design

Top-Down Parsing (Predictive Parsing)

YoungMin Kwon

Parsing

* Parsing is the process of determining if a string of tokens can be
generated by a grammar

* For any context-free grammar, there is a parser that can parse a string
of n tokens in O(n3) times.

* For programming languages, we can generally construct a grammar
that can be parsed quickly (in linear time).

* Top-Down parsing
* Build parse trees from the root node to leave nodes.
* Simple (parsers can be made manually), but limited.

* Bottom-Up parsing
* Build parse trees from leaves towards the root.
* More complex (parsers are generated from software tools), but more generic.

Top-Down Parsing

 Start from the root, labeled with the

starting nonterminal, repeatedly perform
the following two steps.

* At node n, labeled with nonterminal A, select
one of the productions for A and construct

children at n for the symbols on the RHS of
the production.

* Find the next node at which a subtree is to
be constructed.

type — simple
| tid
| array [simple) of type
simple — integer
| char
| num dotdot num

array [num dotdot num] of integer

(a)

(b)

(c)

(d)

(©)

array

array

array

array

pe

{ simple

/7/”’”\\\0‘

simple

N

num dotdot num

/7/\\\‘

simple

TN

num doidot num

simple

/I\

of

ype

ype

pe

simple

type

simple

integer

Predictive Parsing

* Recursive Decent Parsing
* A top-down parsing method.

* For each nonterminal of a grammar, associate a procedure and execute it to
process the input.

* Predictive Parsing

* A recursive decent parsing method.

* The lookahead symbol unambiguously determines the procedure for each
nonterminal.

* In the next example, we use an additional procedure match to advance the
next input token if the argument matches the lookahead symbol.

Pseudo-code for a predictive parser

procedure fype | procedure simpie |
begin begin
if lookuhead is in { integer. char, num } then Il lookahead = integer then
simple match (integer)
else if lookahead = '’ then begin else if lookahead = char then
match (" 1), march (M) match (char)

end
else if lookahead = array them begin
march (areay): march (' ("); simple . match ("1'); march (of); type

else if lookahead = num then begin
march (mum);, motch(dotdot); march (num)

end
end . else ¢rror
else error end:
end;
procedure march(s: tokon),

begin
if lookahead = t then
lovkahead .= nexttoken
else crror
end,;

Predictive Parsing: procedure FIRST

* Predictive parsing relies on what first symbols can be generated by
the RHS of a production.

* FIRST(al)
* Let a be the RHS of a production for nonterminal A

* FIRST(a) returns the set of tokens that appear as the first symbol of the
strings generated from a.

* For recursive decent parsing without backtracking, if there are more than one
productions, their FIRST sets must be disjoint.

e E.g.forA->a | B, FIRST(a) N FIRST(B) =<
* Example:

FIRST(simple) = { integer, char, aum }
FIRST(tid) = { 1}
FIRST(array [simple] of type) = { array }

Designing a Predictive Parser

* The procedures for nonterminals do two things

1. Decide which production to use by looking at the lookahead and
FIRST(a).
* If there are conflicts, we cannot parse the grammar with this parsing method.
* If lookahead doesn’t appear in any of the FIRST sets, use the e-Production.

2. Procedures mimic the RHS of a production
* Nonterminals result in a call to the procedure for the nonterminal.
* Tokens matching the lookahead results in reading the next input.
* |f the token does not match the lookahead, an error is declared.

Designing a Predictive Parser:
Extension to a syntax directed translation

1. Construct a predictive parser, ignoring the actions in productions

2. Copy the action from the translation scheme to the parser

* If an action appears after a grammar symbol X, copy the action after
implementing X.

* If an action appears at the beginning of a production, copy it before
implementing the production.

Left Recursion

* A problem with left-recursive grammars
* Infinite recursion will occur in recursive decent parsers.
* exXpr —-> expr + term
* The leftmost symobl on the RHS is the same as the LHS of the production

* The parser may look like
procedure expr;

begin
1if lookhaed is in FIRST (‘expr + term’) then
begin
expr; match('+’),; term;
end

end

Fixing the Left Recursion Problem

* Change Left Recursive Grammar to Right Recursive one
*A > A o | [
A -> B R
R -> o R | €

* Example
* expr —-> expr + term | term
*A = expr, o = + term, R = term

* exXpr —> term rest
rest -> + term rest | €

expr
expr
expr
term

term

Adapting the Translation Scheme

* If semantic actions are in left recursive productions, carry them along
in the production

* Example

->
->
->
->

->

expr + term { print(‘+’)
expr — term { print(‘'-")

Term

0 { print ('07")

9 { print('9")

}

}

}
}

<™ Q ¥

expr
rest
rest
rest
term

term

expr,
+ term { print(‘+") 1},
- term { print(‘'-’") 1},
= term

term rest

I

O

O

term { print(‘+’)
term { print(‘-")

{ print ('0")

{ print('9’)

}

}

} rest
} rest

Adapting the Translation Scheme

e Example: Translation of 9-5+2 into 95-2+

expr

term rest
\ \
\ \
N\ N
9 {prim('9)} - term { print('~") } rest
Ay \
/ _\ res // \x
5 {print("S")} + term {print("+') } rest
. N

/0 |

2" { print("2)} €

Procedures for expr, term, and rest

expr() term()
{ {
term(); rest(); if (isdigit(lqokahead}J {
} putchar{lookahead); match{lookahead);
}
rest() else errox();

{ }
if (lookahead == “+’) {
match(” +7); term(); putchar(’+’); rest();
}
else if (lookahead == “-7] {
match(“~’); term(); putchar{’-"); rest();

}

else ;

Lexical Analyzer

* [t converts input to a stream of tokens.
* Lexeme: a sequence of input characters that comprise a single token.
* Insulates parser from the lexeme representation of tokens.

* Frees parsers from removing white space and comments.
* Removing white spaces from the grammar can be unnecessarily complex.

* For numbers, return num and its value as an attribute.
 For identifiers, return id and its symboltable entry as an attribute.

* For keywords, need to check if a lexeme is a keyword or an identifier.
* Easier if the keywords are reserved.

Interface to Lexical Analyzer

* In some situations, the lexical analyzer has to read some characters ahead
before it can decide.

 e.g. to distinguish >= and >, after reading > the lexical analyzer needs to read one
more character.

* The extra characters have to be pushed back onto the input.

* The parser hold the produced tokens and their attributes in a token
buffer.

e Commonly the buffer holds just one token and a procedure call from the parser to
the lexical analyzer would work.

rcad pass
character . . l0kcn_ and
= lexical its aftributes
! y arser
nput analyzer P
push back

character

A Lexical Analyzer

us¢s getchar() returns token
— il
to rcad character lexan() to caller
lexical
pushes back ¢ using analyzer
ungetc(c, stdin)

sets global varjable

to attributc value

* Updating the grammar and semantic factor()
actions for the factor {

e factor -> (expr)
| NUM { print (NUM.value) }

if (lookahead == ’(’) {
match(’(’); expr(); match{’)’);

}
* Procedure for factor else if [(lookahead == NUM) |
printf(” %d ", tokenval); match(NUM};
}

else errxor{);

Symbol Table

e Stores information about various source language constructs.
* lexeme for the id,
* type of the id (e.g. procedure, variable, label),
* its position in storage, ...

* Interface
* insert (s, t): returnsindex of the new entry for string s, token t.

* lookup (s) : returns index of the entry for string s, or an invalid index if s is
not found.

