
CSE	504	Compiler	Design
Top-Down	Parsing	(Predictive	Parsing)

YoungMin Kwon

Parsing
• Parsing	is	the	process	of	determining	if	a	string	of	tokens	can	be	
generated	by	a	grammar
• For	any	context-free	grammar,	there	is	a	parser	that	can	parse	a	string	
of	n	tokens	in	O(n3)	times.
• For	programming	languages,	we	can	generally	construct	a	grammar	
that	can	be	parsed	quickly	(in	linear	time).
• Top-Down	parsing
• Build	parse	trees	from	the	root	node	to	leave	nodes.		
• Simple	(parsers	can	be	made	manually),	but	limited.

• Bottom-Up	parsing
• Build	parse	trees	from	leaves	towards	the	root.
• More	complex	(parsers	are	generated	from	software	tools),	but	more	generic.

Top-Down	Parsing

• Start	from	the	root,	labeled	with	the	
starting	nonterminal,	repeatedly	perform	
the	following	two	steps.
• At	node	n,	labeled	with	nonterminal	A,	select	
one	of	the	productions	for	A	and	construct	
children	at	n	for	the	symbols	on	the	RHS	of	
the	production.
• Find	the	next	node	at	which	a	subtree	is	to	
be	constructed.

Predictive	Parsing

• Recursive	Decent	Parsing
• A	top-down	parsing	method.
• For	each	nonterminal	of	a	grammar,	associate	a	procedure	and	execute	it	to	
process	the	input.

• Predictive	Parsing
• A	recursive	decent	parsing	method.
• The	lookahead symbol	unambiguously	determines	the	procedure	for	each	
nonterminal.
• In	the	next	example,	we	use	an	additional	procedure	match to	advance	the	
next	input	token	if	the	argument	matches	the	lookahead	symbol.

Pseudo-code	for	a	predictive	parser

Predictive	Parsing:	procedure	FIRST

• Predictive	parsing	relies	on	what	first	symbols	can	be	generated	by	
the	RHS	of	a	production.
• FIRST(α)
• Let	α	be	the	RHS	of	a	production	for	nonterminal	A	
• FIRST(α)	returns	the	set	of	tokens	that	appear	as	the	first	symbol	of	the	
strings	generated	from	α.
• For	recursive	decent	parsing	without	backtracking,	if	there	are	more	than	one	
productions,	their	FIRST	sets	must	be	disjoint.
• E.g.	for	A	->	α	|	β,		FIRST(α)	∩	FIRST(β)	=	∅

• Example:

Designing	a	Predictive	Parser

• The	procedures	for	nonterminals do	two	things
1. Decide	which	production	to	use	by	looking	at	the	lookahead	and	

FIRST(α).
• If	there	are	conflicts,	we	cannot	parse the	grammar	with	this	parsing	method.
• If	lookahead	doesn’t	appear	in	any	of	the	FIRST	sets,	use	the	ϵ-Production.	

2. Procedures	mimic	the	RHS	of	a	production
• Nonterminals result	in	a	call	to	the	procedure for	the	nonterminal.
• Tokens	matching	the	lookahead	results	in	reading	the	next	input.
• If	the	token	does	not	match	the	lookahead,	an	error	is	declared.

Designing	a	Predictive	Parser:
Extension	to	a	syntax	directed	translation

1. Construct	a	predictive	parser,	ignoring	the	actions	in	productions
2. Copy	the	action	from	the	translation	scheme	to	the	parser
• If	an	action	appears	after	a	grammar	symbol	X,	copy	the	action	after	
implementing	X.
• If	an	action	appears	at	the	beginning	of	a	production,	copy	it	before	
implementing	the	production.

Left	Recursion

• A	problem	with	left-recursive	grammars
• Infinite	recursion	will	occur	in	recursive	decent	parsers.
• expr -> expr + term
• The	leftmost	symobl on	the	RHS	is	the	same	as	the	LHS	of	the	production
• The	parser	may	look	like
procedure expr;
begin

if lookhaed is in FIRST(‘expr + term’) then
begin

expr; match(‘+’); term;
end

end

Fixing	the	Left	Recursion	Problem

• Change	Left	Recursive	Grammar	to	Right	Recursive	one
• A -> A α | β
• A -> β R
R -> α R | ϵ

• Example
• expr -> expr + term | term
• A = expr, α = + term, β = term
• expr -> term rest
rest -> + term rest | ϵ

Adapting	the	Translation	Scheme

• If	semantic	actions	are	in	left	recursive	productions,	carry	them	along	
in	the	production	
• Example

expr -> expr + term { print(‘+’) }
expr -> expr – term { print(‘-’) }
expr -> term
term -> 0 { print(‘0’) }
…
term -> 9 { print(‘9’) }

expr -> term rest
rest -> + term { print(‘+’) } rest
rest -> – term { print(‘-’) } rest
rest -> ϵ
term -> 0 { print(‘0’) }
…
term -> 9 { print(‘9’) }

=>

• A -> A α | A β | 𝛾
• A -> 𝛾 R

R -> α R | β R | ϵ

A = expr,
α = + term { print(‘+’) },
β = - term { print(‘-’) },
𝛾 = term

Adapting	the	Translation	Scheme

• Example:		Translation	of	9-5+2	into	95-2+

Procedures	for	expr,	term,	and	rest

Lexical	Analyzer

• It	converts	input	to	a	stream	of	tokens.
• Lexeme:	a	sequence	of	input	characters	that	comprise	a	single	token.
• Insulates	parser	from	the	lexeme	representation	of	tokens.
• Frees	parsers	from	removing	white	space and	comments.
• Removing	white	spaces	from	the	grammar	can	be	unnecessarily	complex.

• For	numbers,	return	num and	its	value	as	an	attribute.
• For	identifiers, return	id	and	its	symboltable entry	as	an	attribute.
• For	keywords,	need	to	check	if	a	lexeme	is	a	keyword	or	an	identifier.
• Easier	if	the	keywords	are	reserved.	

Interface	to	Lexical	Analyzer
• In	some	situations,	the	lexical	analyzer	has	to	read	some	characters	ahead	
before	it	can	decide.
• e.g.	to	distinguish	>=	and	>,	after	reading	>	the	lexical	analyzer	needs	to	read	one	
more	character.
• The	extra	characters	have	to	be	pushed	back	onto	the	input.

• The	parser	hold	the	produced	tokens	and	their	attributes	in	a	token	
buffer.
• Commonly	the	buffer	holds	just	one	token	and	a	procedure	call	from	the	parser	to	
the	lexical	analyzer	would	work.

A	Lexical	Analyzer

• Updating	the	grammar	and	semantic	
actions	for	the	factor
• factor -> (expr)

| NUM { print (NUM.value) }

• Procedure	for	factor

Symbol	Table

• Stores	information	about	various	source	language	constructs.
• lexeme	for	the	id,	
• type	of	the	id	(e.g.	procedure,	variable,	label),	
• its	position	in	storage,	…

• Interface
• insert(s, t): returns	index	of	the	new	entry	for	string	s,	token	t.
• lookup(s): returns	index	of	the	entry	for	string	s,	or	an	invalid	index	if	s	is	
not	found.

