
CSE 504 Compiler Design
Lex & Yacc

YoungMin Kwon

Lex
• A lexical scanner tool
• Lex program is comprised of 3 sections separated by %%

• Definition Section:
• Any initial C program code, like header files, comes here.
• The C code needs to be surrounded by %{ and %} delimiters.

• Rules Section:
• Each rule is a pair of a pattern (a regular expression) and an action.
• When a pattern is recognized, the corresponding action is executed.
• The rules are evaluated from the first to the last and when there are multiple matches in

a pattern the longest one is chosen.
• User subroutine section:

• Any legal C code can come here.

Regular Expressions in Lex

• . matches any single character except for \n.
• * matches zero or more copies of the preceding expression.
• + matches one or more copies of the preceding expression.
• ? matches zero or one occurrence of the preceding expression.
• {} if 1 ~ 2 numbers or a name is contained

• how many time the previous pattern is allowed if it contains 1 ~ 2 numbers.
• A{1,3}: one to three occurrences of A.

• substitution of a name if it contains a name.
• \ to escape metacharacters

• \n for the newline character, * for the literal asterisk character.

Regular Expressions in Lex

• ^ matches the beginning of a line
• $ matches the end of a line
• [] character class

• any characters inside the brackets.
• if the first character is ^, any characters except for the ones in the brackets.
• - can be used to indicate the range like a-z, 0-9.
• - or] at the first character position is interpreted literally.

• | matches either the preceding expression or the following expression
• e.g. cow | pig | sheep

Regular Expressions in Lex

• “…” matches everything within the quotation marks literally except
for the C escape sequence.

• / matches the preceding expression only if followed by the following
expression.

• e.g. 0 / 1 matches 0 in the string “01” but not in the string “02”

• () group a series of regular expressions together

Regular Expressions (Examples)

• [0-9] matches a digit
• [0-9]+ matches a number
• [a-zA-Z_][a-zA-Z_0-9]* matches an identifier
• [\t\n\r] matches a whitespace
• #.* matches the remainder of a line from the # character (a useful

expression for comments)

%{

/*lex1.l: Lex example program*/

#include <stdio.h>

%}

%%

[\t\n\r] ; /*semicolon means no action*/

“exit” { return 1; } /*returns 1 to the caller of yylex()*/

[a-zA-Z]+ { printf(“found a word: %s\n”, yytext); } /*yytext contains the matching text*/

[0-9]+ { printf(“found a number: %s\n”, yytext); }

. { printf(“found a special char: %s\n”, yytext); }

%%

int yywrap() { return 1; } /*ignore this function for now*/

int main(int argc, char** argv)

{

yylex(); /*yylex tries to match the rule section*/

}

Compile the lex program (Windows example)
• Install an SSH program like putty (http://www.putty.org/)
• SSH to momgoose (223.194.199.10)

• You can use the GUI tool on the right
• Or, change directory to where the putty is installed
• putty 223.194.199.10 or
putty your_login_id@223.194.199.10

• Create a file, say lex1.l, with the program
in the previous page

• Compile lex1.lprogram
• /usr/bin/flex lex1.l (it will create lex.yy.c)
• /usr/bin/gcc lex.yy.c (it will create a.out)

• Run the compiled program
• ./a.out

Yacc
• A parser generator tool
• Like Lex, Yacc program is comprised of 3 sections separated by %%
• Definition Section:

• Any initial C code, like header files, comes here. It needs to be surrounded by
%{ and %} delimiters.

• Tokens (terminals) are defined here after %token keyword (single character
tokens don’t need definitions)

• e.g. %token NUMBER IDENTIFIER
• Token associativity (%left, %right, %nonassoc) and precedence (by

their order of definitions from low to high) are defined here
• Example precedence and associativity: UMINUS has the highest priority and ‘+’, ‘-’ have

the lowest priority
%left ‘+’ ‘-’
%left ‘*’ ‘/’
%nonassoc UMINUS (unary minus)

Yacc
• Definition section (continued)

• Symbols (terminals and nonterminals) can have types defined in %union
keyword.
%union {

double dbl;
char* str;

}
• With the types we can define

%token<dbl> NUMBER
%token<str> IDENTIFIER
%type<dbl> expr term factor

• It is customary to use all upper case names for terminals and all or
mostly lower case names for others.

• User subroutine section (after the second %%)
• Any legal C code can come here.

Yacc (Rule Section)
• A program area in between the first %% and the second %%
• A list of productions (rules) are defined in the rule section

• Each rule defines a production
• Arrow (->) is replaced by ‘:’
• The end of a rule is marked by ‘;’

• The Left Hand Side (LHS) of the first rule is the start symbol (the root of the parse tree) unless
overridden by %start declaration.

• Actions, C codes wrapped in { and }, can be added to the rules.
• As soon as a rule matches, the corresponding action is executed.
• The values of Right Hand Side (RHS) symbols are $1, $2, …
• The value of the LHS symbol is $$

• Example
expr : expr ‘+’ term { $$ = $1 + $3; }

| expr ‘-’ term { $$ = $1 - $3; }
;

Working with Lex

• yyparse() is the function that starts the parsing.
• yyparse calls yylex() when it needs a token.
• The tokens defined in a yacc program will be added to y.tab.h file and

a lex program can include this header file to use the symbols.

will be converted to

%union {
double dbl;
char* str;

}
%token<dbl> NUMBER
%token<str> IDENTIFIER

#define NUMBER 257
#define IDENTIFIER 258
typedef union {

double dbl;
char* str;

} YYSTYPE;
extern YYSTYPE yylval;

%{
/*file name: calc.y*/
#include <stdio.h>
#include <stdlib.h>

int yylex();
int yyerror(char*);

%}

%union {
double dval;

};

%token <dval> NUMBER
%type <dval> expr term factor

%%

Rule section is on the right

%%

int main(int argc, char**argv)
{

yyparse();
}

calc : expr ‘\n’ { printf("ans = %lf\n", $1); }

;

expr : expr '+' term { $$ = $1 + $3; }

| expr '-' term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term '*' factor { $$ = $1 * $3; }

| term '/' factor { $$ = $1 / $3; }

| factor { $$ = $1; }

;

factor : '(' expr ')' { $$ = $2; }

| NUMBER { $$ = $1; }

;

%{
/*file name: calc.l*/
#include <string.h>
#include “calc.tab.h”

%}
%%
[\t\r]+ ; /*ignore white spaces*/
([0-9]+(\.[0-9]+)?)|(\.[0-9]+) {

yylval.dval = atof(yytext); /*set the value of the token*/
return NUMBER; /*return the token NUMBER*/

}
.|\n {

return yytext[0]; /*return the single character tokens*/
}

%%

int yywrap() { return 1; } /*ignore this function for now*/
int yyerror(char*) { return 1; } /*ignore this function for now*/

Compile with Make
• SSH to momgoogse and create calc.l and calc.y in the previous slides
• Create a file with the following contents and name it as Makefile
LEX = /usr/bin/flex #define the variables LEX, YACC, and CC
YACC = /usr/bin/bison
CC = /usr/bin/gcc

a.out: lex.yy.c calc.tab.c #LHS of ‘:’ is the output, RHS is the input
$(CC) lex.yy.c calc.tab.c #the blank at the beginning should be a tab

lex.yy.c: calc.l calc.tab.h
$(LEX) calc.l

calc.y.c calc.y.h: calc.y
$(YACC) calc.y –d #-d option creates calc.y.h

• Run the command make
• Try run the program a.out

How the parser works

• The parser created by yacc is LALR(1) parser, an LR parser with 1 look
ahead. We will learn LR parsers later.

• LR parsers use a stack, an action table, and a goto table to parse the input.
• The parsing algorithm can be described by actions on configuration
• Configuration

• A stack of states and symbols (terminals and nonterminals), a delimiter |, and
unhandled input tokens

• (S1, X1, S2, X2 … Sn | T1, T2, …), where Si is a state, Xi is a symbol, Ti is a token.

How LR parsers work

• 4 Actions of LR parser
• Shift and go to state S

• (… S1 | T1 T2…) -> (… S1 T1 S | T2 …)
• Reduce X -> X1 … Xn

• (… S0 X1 S1 … Xn Sn | T1 …) -> (… S0 X S | T1 …),
where S is the goto target of S0 for symbol X.

• Accept: finish with success
• Error: found an error

How the parser works

• To see how the parser works, let’s create a yacc program (phrase.y)
phrase: cart_animal CART

| work_animal PLOW
;

cart_animal: HORSE
| GOAT
;

work_animal: HORSE
| OX
;

• Run /usr/bin/bison phrase.y –v will produce phrase.output and other files
• Next slide shows some of the states, actions (shift, reduce, accept), and goto

tables of each state in phrase.y.
• The dots ‘.’ in the first lines of each state are where in the productions the state

represents.
• The last part shows how the configuration changes for the input HORSE CART.

phrase.output file (add –v option to bison)

0 $accept: phrase $end (yacc added this rule)
1 phrase: cart_animal CART
2 | work_animal PLOW
3 cart_animal: HORSE
4 | GOAT
5 work_animal: HORSE
6 | OX

States
state 0

0 $accept: . phrase $end
HORSE shift, and go to state 1
GOAT shift, and go to state 2
OX shift, and go to state 3
phrase go to state 4
cart_animal go to state 5
work_animal go to state 6

state 1
3 cart_animal: HORSE .
5 work_animal: HORSE .
PLOW reduce using rule 5 (work_animal)
$default reduce using rule 3 (cart_animal)

state 2
4 cart_animal: GOAT .
$default reduce using rule 4 (cart_...)

state 4
0 $accept: phrase . $end
$end shift, and go to state 7

state 5
1 phrase: cart_animal . CART
CART shift, and go to state 8

state 7
0 $accept: phrase $end .
$default accept

state 8
1 phrase: cart_animal CART .
$default reduce using rule 1 (phrase)

Configurations for the input “HORSE CART”
(0 | HORSE CART $end)
(0 HORSE 1 | CART $end)
(0 cart_animal 5 | CART $end)
(0 cart_animal 5 CART 8 | $end)
(0 phrase 4 | $end)
(0 phrase 4 $end 7 |)
accept

Shift/Reduce Conflict

• Shift/Reduce conflict occurs when both shift and reduce actions are
possible for an input string.

• Example
e : ‘X’
| e ‘+’ e
;

• X + X ↑ + X have two possible actions at the position ↑
• After reducing the string to e + e ↑ + X
• Shift + and reduce X to e later
• Reduce e + e to e

Reduce/Reduce Conflict

• Reduce/Reduce conflict occurs when two reduce actions are possible
for an input string.

• Example
e : e1 | e2 ;
e1 : ‘X’ ;
e2 : ‘X’ ;
• An input X can be reduced to both e1 and e2.

