CSE 504 Compiler Design
Lex & Yacc

YoungMin Kwon

Lex

* A lexical scanner tool

* Lex program is comprised of 3 sections separated by %%

* Definition Section:
* Any initial C program code, like header files, comes here.
* The C code needs to be surrounded by %{ and %} delimiters.
* Rules Section:
e Each rule is a pair of a pattern (a regular expression) and an action.
 When a pattern is recognized, the corresponding action is executed.

* The rules are evaluated from the first to the last and when there are multiple matches in
a pattern the longest one is chosen.

» User subroutine section:
* Any legal C code can come here.

Regular Expressions in Lex

. matches any single character except for \n.

* matches zero or more copies of the preceding expression.

+ matches one or more copies of the preceding expression.

? matches zero or one occurrence of the preceding expression.

{}if 1~ 2 numbers or a name is contained

* how many time the previous pattern is allowed if it contains 1 ~ 2 numbers.
* A{1,3}: one to three occurrences of A.
* substitution of a name if it contains a name.

¢ \tO escape metacharacters
* \n for the newline character, * for the literal asterisk character.

Regular Expressions in Lex

* A matches the beginning of a line
* S matches the end of a line

* [] character class
* any characters inside the brackets.
* if the first character is **, any characters except for the ones in the brackets.
* - can be used to indicate the range like a-z, 0-9.
* - or | at the first character position is interpreted literally.

* | matches either the preceding expression or the following expression
e e.g.cow | pig | sheep

Regular Expressions in Lex

» “...”_ matches everything within the quotation marks literally except
for the C escape sequence.

* / matches the preceding expression only if followed by the following

expression.
* e.g. 0/ 1 matches 0 in the string “01” but not in the string “02”

* () group a series of regular expressions together

Regular Expressions (Examples)

* [0-9] matches a digit

* [0-9]+ matches a number

* [a-zA-Z_][a-zA-Z_0-9]* matches an identifier
[\t\n\r] matches a whitespace

* #.* matches the remainder of a line from the # character (a useful
expression for comments)

o°
—_

/*lex1l.1l: Lex example program*/

#include <stdio.h>

o°
—

o\°
o°

[\t\n\r] ; /*semicolon means no action*/
“exit” { return 1; } /*returns 1 to the caller of yylex()*/
[a-zA-Z]+ { printf (“found a word: %s\n”, yytext); } /*yytext contains the matching text*/
[0-9]+ { printf (“found a number: %s\n”, yytext); }

{ printf (“found a special char: %$s\n”, yytext); }

o\°
o\°

int yywrap() { return 1; } /*ignore this function for now*/
int main (int argc, char** argv)
{

yylex(); /*yylex tries to match the rule section*/

Compile the lex program (Windows example)

Install an SSH program like putty (http://www.putty.org/)
SSH to momgoose (223.194.199.10)

* You can use the GUI tool on the right
* Or, change directory to where the putty is installed
e putty 223.194.199.10 or

putty your login 1d@223.194.199.10

Create afile, say 1ex1 .1, with the program

in the previous page
Compile lex1.lprogram

* /usr/bin/flex lexl.1l (itwillcreate lex.vy.c)
* /usr/bin/gcc lex.yy.c (itwillcreate a.out)

Run the compiled program

e ./a.out

ﬁ PuTTY Cenfiguration

Category:

- Session
Logging
=1 Teminal

- Keyboard
- Bell

- Features
=) Window

- Appearance
- Behaviour
- Translation
- Selection
- Colours

[=- Connection

.. Data

- Proxy

- Telnet

- Rlogin

(- 55H

- Serial

Basic options for your PuT T session

Specify the destination you want to connect to

Host Name for IP address) Port
|youngmin kwon@223.194.193.10 | |22 |
Connection type:

(OJRaw () Telnet () Rlogn @ 55H () Seqal

Load, save or delete a stored session

Saved Sessions

|ITIDITIQDDSE |

Default Seﬁinis T

Close window on ext:
(Aways (JMNever (@) Onbyon clean et

Cpen Cancel

Yacc
* A parser generator tool

* Like Lex, Yacc program is comprised of 3 sections separated by %%

e Definition Section:

* Any initial C code, like header files, comes here. It needs to be surrounded by
% { and %} delimiters.

* Tokens (terminals) are defined here after %token keyword (single character
tokens don’t need definitions)

* e.g. stoken NUMBER IDENTIFIER

* Token associativity (s 1left, %right, %nonassoc)and precedence (by
their order of definitions from low to high) are defined here
e Example precedence and associativity: UMINUS has the highest priority and ‘+, *-" have
the lowest priority
Sleft “+/ -7
Sleft “*x7 /!
nonassoc UMINUS (unary minus)

Yacc

 Definition section (continued)
* Symbols (terminals and nonterminals) can have types defined in Sunion
keyword.

sunion {
double dbl;
char* str;

}
* With the types we can define

stoken<dbl> NUMBER
stoken<str> IDENTIFIER
stype<dbl> expr term factor

* [t is customary to use all upper case names for terminals and all or
mostly lower case names for others.

e User subroutine section (after the second %%)
* Any legal C code can come here.

Yacc (Rule Section)

* A program area in between the first %% and the second %%

 Alist of productions (rules) are defined in the rule section

* Each rule defines a production
* Arrow (—>)is replaced by " :’
* The end of aruleis marked by *;’
* The Left Hand Side (LHS) of the first rule is the start symbol (the root of the parse tree) unless
overridden by $start declaration.
* Actions, C codes wrapped in { and }, can be added to the rules.
* As soon as a rule matches, the corresponding action is executed.
* The values of Right Hand Side (RHS) symbolsare 51, $2,
* The value of the LHS symbol is $$

* Example

expr : expr ‘+’ term { S$$
| expr ‘-’ term { $S

.
4

W
=
I +

Working with Lex

* yyparse() is the function that starts the parsing.
* yyparse calls yylex() when it needs a token.

* The tokens defined in a yacc program will be added to y.tab.h file and
a lex program can include this header file to use the symbols.

sunion { #define NUMBER 257
double dbl; #define IDENTIFIER 258
char* str; will be converted to typedef union |

} double dbl;

$token<dbl> NUMBER char* str;

$token<str> IDENTIFIER } YYSTYPE;

extern YYSTYPE yylval;

o°
—_

/*file name: calc.y*/
#include <stdio.h>
#include <stdlib.h>

int yylex();
int yyerror (char¥*);

o°

}

Sunion {
double dval;

fa—

.
4

o°

token <dval> NUMBER
type <dval> expr term factor

o°

o°
o°

Rule section is on the right

o°
o°

int main (int argc, char**argv)
{

yyparse () ;
}

calc

expr

term

.
14

factor

expr ‘\n’ { printf ("ans

expr '+' term
expr '-' term

term

term '*' factor
term '/' factor

factor

1(1 expr |)|
| NUMBER

.
14

$S
$S
$S

$S
$S
$S

$S
$S

$1
$1
$1;

$1
$1
$1;

$2;
$1;

$1f\n",

+ $3; }

- $3; 1}
}

* $3; 1}

/ $3; }

}

}
}

$1);

}

o\°
—

/*file name: calc.l*/
#include <string.h>
#include “calc.tab.h”

O\O —

\t\r]+ ;

—~ — 0° o©

yylval.dval =
return NUMBER;

}
.I\n |

[0-9]1+(\.[0-9]+)>

) I (\N.[0-91+)
atof (yytext) ;

return yytext[0];

——

o\°
o\°

int yywrap() { return 1; }

int yyerror (char*)

{ return 1;

{

}

/*ignore white spaces*/

/*set the value of the token*/
/*return the token NUMBER*/

/*return the single character tokens*/

/*ignore this function for now*/
/*ignore this function for now*/

Compile with Make

* SSH to momgoogse and create calc.| and calc.y in the previous slides
* Create a file with the following contents and name it as Makefile

LEX = /usr/bin/flex #define the variables LEX, YACC, and CC
YACC = /usr/bin/bison
CC = /usr/bin/gcc

a.out: lex.yy.c calc.tab.c #LHS of ‘:’ 1is the output, RHS is the input
S(CC) lex.yy.c calc.tab.c #the blank at the beginning should be a tab
lex.yy.c: calc.l calc.tab.h
S (LEX) calc.1l
calc.y.c calc.y.h: calc.y
S (YACC) calc.y —-d #-d option creates calc.y.h

e Run the command make
* Try run the program a.out

How the parser works

* The parser created by yacc is LALR(1) parser, an LR parser with 1 look
ahead. We will learn LR parsers later.

* LR parsers use a stack, an action table, and a goto table to parse the input.
* The parsing algorithm can be described by actions on configuration

» Configuration

A stack of states and symbols (terminals and nonterminals), a delimiter |, and
unhandled input tokens

* (S;, X4, Sy, X, ... S, | T, Ty, ...), where S, is a state, X, is a symbol, T, is a token.

How LR parsers work

STACK

* 4 Actions of LR parser
 Shift and go to state S
¢ (S TT)> (S, T,S T,
* Reduce X -> X, ... X,

¢ (e SpXy Sy XS, | Ty > (1 SgX S| T, .0,
where S is the goto target of S, for symbol X.

* Accept: finish with success
e Error: found an error

INPUT a, .| e a, | %
LR
[y S — . - = QUuTPUT
z Parsing Program
xm - |
— action z2olo
Yo

How the parser works

* To see how the parser works, let’s create a yacc program (phrase.y)

phrase: cart animal CART
| work animal PLOW

cart aﬁimal: HORSE
B | GOAT

work animalg HORSE
B | OX
* Run /usr/bin/bison phrase.y —v will produce phrase.output and other files

* Next slide shows some of the states, actions (shift, reduce, accept), and goto
tables of each state in phrase.y.

* The dots “’ in the first lines of each state are where in the productions the state
represents.

* The last part shows how the configuration changes for the input HORSE CART.

phrase.output file (add -v option to bison)

0 Saccept: phrase $end (yacc added this rule)
1 phrase: cart animal CART
2 | work animal PLOW
3 cart animal: HORSE
4 | GOAT
5 work animal: HORSE
6 | OX
States
state O
0 Saccept: . phrase S$end

HORSE shift, and go to state 1
GOAT shift, and go to state 2
0):¢ shift, and go to state 3
phrase go to state 4

cart _animal go to state 5

work animal go to state 6

state 1
3 cart animal: HORSE
5 work animal: HORSE

PLOW reduce using rule 5 (work animal)
$default reduce using rule 3 (cart animal)

state 2
4 cart animal: GOAT

$default reduce using rule 4 (cart ...

state 4
0 Saccept: phrase . S$Send
Send shift, and go to state 7
state 5
1 phrase: cart animal . CART
CART shift, and go to state 8
state 7/
0 Saccept: phrase S$Send
Sdefault accept
state 8
1 phrase: cart animal CART

Sdefault reduce using rule 1 (phrase)

Configurations for the input “HORSE CART"”
0 | HORSE CART S$Send)

0 HORSE 1 | CART S$Send)

cart animal 5 | CART Send)
cart animal 5 CART 8 | S$Send)
phrase 4 | $end)

0 phrase 4 Send 7 |)

accept

O O O

Shift/Reduce Conflict

 Shift/Reduce conflict occurs when both shift and reduce actions are
possible for an input string.

* Example
e : ‘X'
| e Y+’ e

« X+ X " + X have two possible actions at the position "
» After reducing the stringtoe +e > + X
* Shift + and reduce X to e later
* Reducee+etoe

Reduce/Reduce Conflict

* Reduce/Reduce conflict occurs when two reduce actions are possible
for an input string.

* Example

e el | e2 ;

el : X' ;

e2 : X'

* An input X can be reduced to both el and e2.

