CSE 504 Compiler Design
A Simple Compiler (1)

YoungMin Kwon

Simple Compiler: Objective

* Learn the overall phases of a compiler
* Learn how to write a grammar

* Translate a source code to an abstract stack machine code
e Lexical scanner
* Parser
* Code generation

e Learn abstract stack machines

Syntax Definition

* Context-Free Grammars
* Naturally describe the hierarchical structure of many programming languages

* e.g. if-else statement in C language

*1f (expression) statement else statement
In the context-free grammar
stmt -> IF (expr) stmt ELSE stmt,

where stmt and expr are nonterminals representing statements and

expressions
IF, ELSE, (, and) aretokens

Such rules are called a production and —> may be read as “can have the form”

Context-Free Grammar

* 4 Components
1. A set of tokens (terminals)
2. A set of nonterminals

3. A set of productions composed of
* left side: a nonterminal
* arrow: —>
* right side: a sequence of terminals and nonterminals
4. A start symbol (first production is for the start symbol)

* Productions with the same left side can be grouped
(separated by |)

Context-Free Grammar (Example)

* Example
e list -> list + digit
list -> list - digit
list -> digit
digit -> 0 | 1 | 2 | .. | 9

* string -> string + string
| string - string
| digit

digit -=> 0 | 1 | 2 | .. | 9

Context-Free Grammar: Derivations and Language

* A grammar derives strings by beginning with the start symbol and
repeatedly replacing the nonterminals with the body of the corresponding
production.

e All terminal strings derived from the start symbol form the language defined
by the grammar.

* e.g. we can deduce that 9-5+2 is a list as follows
* 9,5, 2 are digits by the productions digit -> 9,digit -> 5,digit -> 2
* 9isalist by the production 1ist —-> digit (9is a digit)
* 9-5is alist by the production 1ist -> list — digit (9isalist,5is a digit)
* 9-5+2 is a list by the production 11st -> list + digit (9-5isalist, 5 is a digit)

 Parsing is the process of finding the deduction tree for a grammar from a
terminal string.

Context-Free Grammar (Ambiguity)

* The grammar for string is ambiguous. string f i?éiiE ’ igigg
digit
* e.g. Two parse trees for9-5 + 2 gt L
*(9-5)+2 and9-(5+2)
string string
/ | \ / | \
string + string string - String
/ | \ | | / | \
string -~ string 2 9 string + string

9 5 5 2

Associativity to fix the ambiguity

* Left associativity:

* 9 - 5 + 2 shouldbereadas (9 - 5) + 2
e list -> list + digit
| list - digit
| digit
* If 5+ 2 became a list first, there are no productions that can derive further.
* Right associativity:

° a = Db = c shouldbereadasa = (b = ¢)
* right -> letter = right
| letter
letter > a | b | .. | z

* |If a=b became a right first, there are no productions that can derive further.

Parse treesfor9-5+2anda=b=c

list right
/ | \ / | \
lust - digit letter = right
2 ™™ | # I
[1st - digit 2 a letter = right
| | | |
digit 5 b letter

| |

9 C

Precedence to fix the ambiguity

* Precedence
e 1+2*3shouldbereadas1+(2*3)not(1+2)*3

* To fix the precedence, we can add a new nonterminal term

* exXpr —> expr + term
| expr — term
| term
term -> term * digit
| term / digit
| digit
digit -> 0 | 1 | .. | 9

* Observe that if 1 + 2 became an expr first, we cannot build a parse
tree: there are no productions like expr > expr * term

Simple Compiler: Syntax for expressions

* exXpr —-> expr + term
| expr - term
| term

* term —-> term * factor
| term / factor
| factor

e factor —-> NUMBER
| IDENTIFIER
| (expr)

* Quiz: with the context-free grammar above, build a parse tree for
X-2%*(3+y)

Simple Compiler: Syntax for statements

e stmt -> ID := expr ;
| IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
| WHILE expr DO stmt
| BEGIN opt stmts END

opt stmts -> ¢
N | opt stmts stmt

* Quiz: with the context-free grammar above, build a parse tree for

IF X
THEN
x = 0;
ELSE
BEGIN
y =y + 1;
X = 1;

END

Syntax-Directed Definition

* Specifies the translation of a construct in terms of
attributes associated with its syntactic components

1. Associate a set of attributes to each grammar symbol
e E.g. attributes: type, memory location of a code, string ...
2. Add a set of semantic rules for computing values of the
attributes associated with the symbols in the production
* Types of Attributes:

* Inherited attributes: attributes that are dependent on it’s
parent, sibling, and self nodes

* Synthesized attributes: attributes that are dependent on it’s
child and self nodes.

Postfix Notation

 Postfix notation of an expression E can be inductively defined as
e If Eis avariable or a constant, postfix notation of E is E itself

* If E is an expression of the form E, op E,, the postfix notation of Eis E’; E’, op,
where E’; and E’, are the postfix notations for E; and E,

* If Eis of the form (E,), the postfix notation of E is the postfix notation of E;
* e.g. the postfix notation of (9-5)+2 is 95-2+

* To evaluate the postfix notation, repeatedly find the left most
operator and replace the operator and the two numbers on its right
with their evaluation.

°e.g.95-2+ ->42+->6
e Quiz: evaluate the postfix notation 952+-3*

Syntax-Directed Definition for infix to postfix
translation

Production Semantic Rule
expr —-> expr; + term expr.t = expr,;.t | term.t | ‘+/
expr —-> expr,; - term expr.t = expr;.t | term.t | ‘-7
expr —-> term expr.t = term.t
term -> 0 term.t = ‘0’
term -> 1 term.t = ‘1’
term -> 9 term.t = ‘9’

where | means the string concatenation.

Syntax-Directed Definition for infix to postfix
translation

* Example attributes for9 -5 + 2

ezpr.t = 95-2+

Pl W
erprt = 95- + term.dt = 2
expri =9 = term.t =5 2

termit=29 5

9
* Quiz: Update the syntax-directed definition with factor and
compute the attributesof 1-2*3+4

Syntax-Directed Definition: tree traversal

* One way to compute the attributes is to travers
the parse tree in the depth first manner.

* Depth first traversal
procedure visit (node N) {
foreach child C of N, from left to right {
visit (C) ;
}

evaluate semantic rules at node N;

}

* The picture on the right is an example of depth
first traversal

* Check how the attributes in the parse tree (9-
5+2) of the previous page is computed by the
depth first traversal.

Translation Scheme

* Definition: translation Scheme is a context-free grammar in which program
fragments called semantic actions are embedded within the right sides of
productions

* Translation Scheme is an alternative way of translation without manipulating
strings.

* If we perform the semantic actions as we encounter them while depth first
traversing the tree, we can produce the same postfix translation.

* Example
* rest -> + term { print('+’) } rest,

* The parse tree below shows an extra leaf from the semantic action

rest

+ term {print('+')} resty

Translation Scheme

 Actions for infix to postfix translation e Actions translating 9+5-2 into 95-2+
expr — expr; + term {print(’ +’)} eTPr
expr — expr; - term {print('-')} // \
expr — lerm expr term {print(’+’}}
term — O {print('0")} / .
term — 1 {print('1")} / \ h"". ' / :
e expr - term {print('-")} 2 {prmt(2')}
term — 9 {print('9’)} ‘ / S\
term 5 {print('5")}

* Quiz: Update the translation scheme with factor and check how 1 -
2 * 3 + 4 is translated into a postfix notation.

