
CSE 504 Compiler Design
A Simple Compiler (1)

YoungMin Kwon

Simple Compiler: Objective

• Learn the overall phases of a compiler
• Learn how to write a grammar
• Translate a source code to an abstract stack machine code

• Lexical scanner
• Parser
• Code generation

• Learn abstract stack machines

Syntax Definition

• Context-Free Grammars
• Naturally describe the hierarchical structure of many programming languages

• e.g. if-else statement in C language
• if (expression) statement else statement
• In the context-free grammar
• stmt -> IF (expr) stmt ELSE stmt,
• where stmt and expr are nonterminals representing statements and

expressions
IF, ELSE, (, and) are tokens

• Such rules are called a production and -> may be read as “can have the form”

Context-Free Grammar
• 4 Components

1. A set of tokens (terminals)
2. A set of nonterminals
3. A set of productions composed of

• left side: a nonterminal
• arrow: ->
• right side: a sequence of terminals and nonterminals

4. A start symbol (first production is for the start symbol)

• Productions with the same left side can be grouped
(separated by |)

Context-Free Grammar (Example)

• Example
• list -> list + digit
list -> list – digit
list -> digit
digit -> 0 | 1 | 2 | … | 9

• string -> string + string
| string – string
| digit

digit -> 0 | 1 | 2 | … | 9

Context-Free Grammar: Derivations and Language

• A grammar derives strings by beginning with the start symbol and
repeatedly replacing the nonterminals with the body of the corresponding
production.

• All terminal strings derived from the start symbol form the language defined
by the grammar.

• e.g. we can deduce that 9-5+2 is a list as follows
• 9, 5, 2 are digits by the productions digit -> 9, digit -> 5, digit -> 2
• 9 is a list by the production list -> digit (9 is a digit)
• 9-5 is a list by the production list -> list – digit (9 is a list, 5 is a digit)
• 9-5+2 is a list by the production list -> list + digit (9-5 is a list, 5 is a digit)

• Parsing is the process of finding the deduction tree for a grammar from a
terminal string.

Context-Free Grammar (Ambiguity)

string -> string + string
| string – string
| digit

digit -> 0 | 1 | 2 | … | 9

• The grammar for string is ambiguous.
• e.g. Two parse trees for 9 - 5 + 2

• (9 - 5) + 2 and 9 - (5 + 2)

Associativity to fix the ambiguity

• Left associativity:
• 9 – 5 + 2 should be read as (9 – 5) + 2
• list -> list + digit

| list – digit
| digit

• If 5 + 2 became a list first, there are no productions that can derive further.

• Right associativity:
• a = b = c should be read as a = (b = c)
• right -> letter = right

| letter
letter -> a | b | … | z

• If a = b became a right first, there are no productions that can derive further.

Parse trees for 9 - 5 + 2 and a = b = c

Precedence to fix the ambiguity

• Precedence
• 1 + 2 * 3 should be read as 1 + (2 * 3) not (1 + 2) * 3

• To fix the precedence, we can add a new nonterminal term
• expr -> expr + term

| expr – term
| term

term -> term * digit
| term / digit
| digit

digit -> 0 | 1 | … | 9

• Observe that if 1 + 2 became an expr first, we cannot build a parse
tree: there are no productions like expr -> expr * term

Simple Compiler: Syntax for expressions

• expr -> expr + term
| expr – term
| term

• term -> term * factor
| term / factor
| factor

• factor -> NUMBER
| IDENTIFIER
| (expr)

• Quiz: with the context-free grammar above, build a parse tree for
x - 2 * (3 + y)

Simple Compiler: Syntax for statements

• stmt -> ID := expr ;
| IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
| WHILE expr DO stmt
| BEGIN opt_stmts END

opt_stmts -> ε
| opt_stmts stmt

• Quiz: with the context-free grammar above, build a parse tree for
IF x
THEN

x := 0;
ELSE

BEGIN
y := y + 1;
x := 1;

END

Syntax-Directed Definition
• Specifies the translation of a construct in terms of

attributes associated with its syntactic components
1. Associate a set of attributes to each grammar symbol

• E.g. attributes: type, memory location of a code, string …
2. Add a set of semantic rules for computing values of the

attributes associated with the symbols in the production
• Types of Attributes:

• Inherited attributes: attributes that are dependent on it’s
parent, sibling, and self nodes

• Synthesized attributes: attributes that are dependent on it’s
child and self nodes.

Postfix Notation

• Postfix notation of an expression E can be inductively defined as
• If E is a variable or a constant, postfix notation of E is E itself
• If E is an expression of the form E1 op E2, the postfix notation of E is E’1 E’2 op,

where E’1 and E’2 are the postfix notations for E1 and E2
• If E is of the form (E1), the postfix notation of E is the postfix notation of E1

• e.g. the postfix notation of (9-5)+2 is 95-2+
• To evaluate the postfix notation, repeatedly find the left most

operator and replace the operator and the two numbers on its right
with their evaluation.

• e.g. 95-2+ -> 42+ -> 6
• Quiz: evaluate the postfix notation 952+-3*

Syntax-Directed Definition for infix to postfix
translation

Production Semantic Rule
expr -> expr1 + term expr.t = expr1.t | term.t | ‘+’

expr -> expr1 - term expr.t = expr1.t | term.t | ‘-’

expr -> term expr.t = term.t

term -> 0 term.t = ‘0’

term -> 1 term.t = ‘1’

… …

term -> 9 term.t = ‘9’

where | means the string concatenation.

Syntax-Directed Definition for infix to postfix
translation
• Example attributes for 9 – 5 + 2

• Quiz: Update the syntax-directed definition with factor and
compute the attributes of 1 - 2 * 3 + 4

Syntax-Directed Definition: tree traversal

• One way to compute the attributes is to travers
the parse tree in the depth first manner.

• Depth first traversal
procedure visit(node N) {

foreach child C of N, from left to right {
visit(C);

}
evaluate semantic rules at node N;

}

• The picture on the right is an example of depth
first traversal

• Check how the attributes in the parse tree (9-
5+2) of the previous page is computed by the
depth first traversal.

Translation Scheme
• Definition: translation Scheme is a context-free grammar in which program

fragments called semantic actions are embedded within the right sides of
productions

• Translation Scheme is an alternative way of translation without manipulating
strings.

• If we perform the semantic actions as we encounter them while depth first
traversing the tree, we can produce the same postfix translation.

• Example
• rest -> + term { print(‘+’) } rest1

• The parse tree below shows an extra leaf from the semantic action

Translation Scheme
• Actions translating 9+5-2 into 95-2+• Actions for infix to postfix translation

• Quiz: Update the translation scheme with factor and check how 1 -
2 * 3 + 4 is translated into a postfix notation.

