CSE 504 Compiler Design
Overview

YoungMin Kwon

Course Objective

= |Learn how compilers are designed and implemented
= How to write grammars
= How to parse and translate grammars
= Theory behind them

= |Learn details of programming languages
= How programming language elements are implemented
= Runtime environments
= x86 assembly language

= Get used to useful tools and improve development skills
= Lexical scanner
= Parser generator
= Debugging skills...

@Koreah ‘

Course Materials

= Textbook:

= “Compilers Principles, Techniques, and Tools” 2nd
edition by Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey Ullman

" |exical scanner and Parser generator tools:

= “lex & yacc” by John R. Levine, Tony Mason, and
Doug Brown

Course Organization

Learn overall compiling steps using the tools

= Build a simple compiler for an abstract stack machine

= Get used to Lex and Yacc tools (Lexical scanner and Parser generator)
Lexical analysis

= Regular expressions

= Nondeterministic Finite Automata (NFA), Deterministic Finite
Automata (DFA)

Parsing

= Context-free grammars

= Top-Down parsing, Bottom-Up parsing
Semantic analysis

= Syntax directed translation

= Type checking

@Koream

Course Organization (continued)

x86 assembly code generation (without
optimization)

= Runtime environment

= Get used to x86 assembly language

= Translation to x86 assembly language

Intermediate code generation
Code generation
= Register allocation and assignment

Code optimization
= Global code optimization

Language Processors

= Compiler: a program that reads a program in one
language (the source language) and translates it into
an equivalent program in another language (the
target language).

" The target program is a self-sufficient program that
can handle user’s input and produce output.

source program
|

Y

- | S

Compiler input —= Target Program - output

| | L
'

target program

@Koreaw ‘

Language Processors

" |nterpreter: without producing a target
program, an interpreter executes the source
program on user’s input.

source program
Interpreter | output
input —» ‘
1

Language Processors

= Hybrid model: Java source code is compiled bytecodes
and the bytecodes are interpreted by a virtual machine

= Just-In-Time (JIT) compilers: translate the bytecodes
into the machine language immediately before they
run the intermediate program

source program

!

Translator

|
intermediate program —m- Virtual

Machine > output

input —e

Language Processors

|
SOUrce program
Preprocessor “

modified source program

Compiler J

!

target assembly program

Assembler J

relocatable machine code

J“‘"_ ‘ library files
| Linker/Loader e~ relocatable object files

+

target machine code

Preprocessor: collecting the source
program stored in separate files,
handling macros.

Assembler: translate assembly
language to a relocatable machine

code.

Linker: combines relocatable object
files and libraries so that a code in one
file can refer to a location in another
file.

Loader: loads all executable files into
memory for execution.

@Koreaw ‘

The Structure of a Compiler

" Front end (analysis part)
= Breaks up source program into pieces
" Imposes grammatical structure on them
= Syntactic and Semantic checking

" Produces intermediate representation of the
source program

= Back end (synthesis part)
= Optimizes the intermediate representation
= Produces the target program

Phases of a Compiler

Lexical analysis

= source text -> tokens
Syntax analysis

= tokes -> parse tree

Semantic analysis
= parse tree -> syntax tree (type checking) Symbol Table
Intermediate code generation

= syntax tree -> machine independent code

= e.g.three address code: 1 target address and 1 ~
2 source addresses; at most 1 operator for 1
instruction

Code optimization

= optimization (fast, short, less power) on the
intermediate code

Code generation
" intermediate code -> target machine code

character stream

|

‘ Lexical Analyzer ‘

— e]

token stream

!

[Syntax Analyzer

1

_ :
syntax tree

{

Semantic Analyzer
ER——
syntax tree

[

|
‘ Intermediate Code Generator

e —
intermediate representation

1

Machine-Independent
Code Optimizer

I
[

]
intermediate representation

Y
Code Generator

targetrmaflzhine code
1
i Machine-Dependent
Code Optimizer ‘

T
target-machine code

@Koreaw ‘

Phases of a Compiler (continued)

position = initial + rate # 60 {
| Intermediate Code Generator |
Lexical Analyzer i ; P
| o t1 = inttofloat (60)
fid, 1) {=) (id,2) iﬂ (id,3) (=) (60} t2 = id3 * t1
t3 = id2 + 2
' o 1 | position
fl Syntax :;Lnal}rzer | idl = t3 : 9 Fimitial
— 3 t
fd, 1 - T 4 Code Optimizer | ==
(id, 2 ™~ ! f
(id, 3] "~ 60 tl = 1d3 * 60.0
f il = i'ﬂ'* t1 SYMBOL TABLE
Semantic Analyzer . —
7 oy | Code Generator L
' wd
{id, 11'/ e . LDF B2, id3
fid 2)’/ o MULF R2, R2, #60.0
(id, 3 inttofloat LDF R1, id?2
t 60 ADDF R1, Ri, R2

STF idl, Rl

Grouping Phases into passes

" |n animplementation, several phases are grouped into
passes

= e.g.) front-end phases are grouped into one pass, optimization is
left as an optional pass, and the code generation makes another

pass.

= |exical analysis, Syntax analysis, Semantic analysis, Intermediate code
generation

= Code optimization
= Code generation
= Some compilers have several front-ends and one back-end
to handle multiple programming languages for a single
target machine

= Some compilers have a front-end and multiple back-ends to
handle multiple different target machines.

@ Korea_‘_m

Programming Language Basics

= Static policy: allows the compiler to decide an issue.

= Dynamic policy: allows the decision to be made on
runtime.
" e.g.) Scoping rule
= Scope of a declaration x is the region of the program
where x refers to this declaration.

= Static scope or lexical scope: if it is possible to determine
the scope of a declaration by looking only at the program.

= Dynamic scope: the same x can refer to different
declarations of x as the program runs

@Koream

Static Scoping and Block Structure

main() {

~ ~ .
10t = 1.
iit E i, 1'. B, DECLARATION | SCOPE
{ ’ int a = 1; B, - Bs
(int b = 2) int b =1; By - B
{ ’ By int b=2; |By-B
(int a=3; B inta=3; | B
@_t K a <« b ’ | int b = 4; By
}
{ - T ——
[int b = 4, B
cout << a << b, U
\cout << a <«<'b;)
}
Lcout << a << b; J

} _

Environments and States

" Environment: mapping from names to
locations in the store (I-values)

= State: mapping from locations in store to their
values (mapping from I-values to their r-

values) TT /ititfz\\
names locations values
(variables)

Parameter Passing Mechanism

Actual parameter: the parameters used in the call of a
procedure.

Formal parameter: the parameters in the procedure definition.

Call-by-Value: actual parameter is evaluated and placed in the
location corresponding to the formal parameter of the callee.

Call-by-Reference: the address of the actual parameter is passed
to the callee as the value of the corresponding formal parameter.

Call-by-Name: callee runs as if the actual parameters were
substituted with the formal parameters in the code.

In C, C++, Java, the basic type parameters are passed by Call-by-
Value mechanism. Composition types like objects and arrays are
passed by their addresses (Structures in C are passed by value).

@Koreaw ‘

