CSE216 Programming Abstractions

Monads

YoungMin Kwon

Monads

" Monads model computations

= Computation
= Like a function that maps from input to output

= But it may do something more
= Side effects (e.g. printing)

= Monads provide an abstraction of effects

Monads

Monad operations

" return
= Put a value in some wrapper

= Takes a value of type a and returns a monadic value of
type m a

" bind (>>=)

= Takes a function f of type a — m b and returns a
monadic value of type m b after applying f to a

@Koreaw ‘

State Monad

= Managing a state without assignments

module State = struct
(*monad operations¥™)
let ret v = fun s -> (s, V) (C*ini1 state -> fin state, val*)
let (G>=) m F =
fun s ->

let (8", V) =m s In (*s/s’: ini/fin state of m*)
(fv) s- (*s”> : 1Ini1 state of (f v)¥*)
(*other operations®™)
let get = fun s -> (s, S) (*val 1s curr state s¥*)

let put s> = fun s -> (s”, OQ)(*replace curr state s with s’%)
end

= Monad is a function from an initial state to a final
state with a value

modulle State = struct

State Monad Cponad PErations) e vy

let G>=) m T =
fun s ->
let (s", V) = m s iIn
(fv) s*
rEEt (*other operations¥™)

. e ey let get = fun s -> (s, S)
= A function whose initial state lot put 5° = fun & - (o*. O)

and final state are the same end

>>=

= A function which uses the final state s’ of its first argument
as the initial state of its second argument

get

= A function which leaves the state unmodified and returns
it as a result (get the current state)

put

= A function which ignores the initial state, replacing it with
the value supplied as an argument (put the new state)

@Koreaw

Estimating 7

= Estimating

= Area of the square
r-r=r?

= Area of the disk under square
n-r’/4

=
\\\\\
\,
N\
N\
N

= The area of the quarter disk over the area of the

square
(t-r?/4)/r’=n/4

Estimating 7

= To estimate T
= Mark n random points within elle| |)
the square I \

" (x,y) wherex=randr,y=randr

= Counter the number of points
(x, y) within the quarter disk
" x2+y2<r?

= The fraction of the points within the quarter disk over
nis approximately w / 4

@Koream

Implement rand

= Using the State monad, implement rand

flet rand n =
(* random number generator
implement a random number generator
using the State monad such that

x[0] = given
x[i] = x[i-1] * 16807 mod OX7FFFFfff

return value x[1] mod n

*)

let _ = (*7, 9, 3%)
let test =
rand 10 >>= fun x -> ret (printf "%d\n" x) 1In

(test () >>= test >>= test) 1
s

Estimate m using rand

flet pi n =
(** estimate pi
- generate random numbers X and y, iIn the range of
[0..999] with the seed value of 2, n times
- count the number of cases when x"2 + y™2 < 1000"2
- the fraction of the count over n i1s about pi/4

*)

let = pi 100000 (*3.14292%)

