CSE216 Programming Abstractions

Concurrency

YoungMin Kwon

Concurrent Programming

= A program is concurrent

= |f it has more than one active execution context
(thread of control)

= Why concurrent programming?
= https://www.youtube.com/watch?v=MNhubpzhs-0

@ Korea_m

Concurrent Programming

" To capture the logical structure of a program

= Many programs need to keep track of largely
independent tasks at the same time

= Represent each task with a separate thread
" Exploit parallel hardware for speed

" Physical distribution
= Applications run across the Internet

= Automobile: applications running on dozens of
processors spread throughout the vehicle

Concurrent Programming

" Concurrent system: two or more tasks
may be underway at the same time

= Parallel system: a concurrent system
with more than one task can be
physically active at once

= Distributed system: a parallel system
with physically separated devices

Levels of Parallelism

= |nstruction Level Parallelism (ILP)

= Superscalar pipelines
= Aggressive speculation
= However, a limit seems to be reached...

IF | ID

F | ID
IF
IF

WwB
wB
MEM
MEM

Levels of Parallelism

= \ector Parallelism

= Perform operations repeatedly on every element
of a very large data set

= Supercomputers
= GPU programming

>
-
s 4
- <
!
=

Levels of Parallelism

" General purpose computing
= Multicore processors
= Coarser-grain thread-level parallelism

Levels of Abstraction

= Black box parallel libraries

= Parallel algorithms: sorting routine, linear algebra
package, ...

= Caller does not know the implementation

= Mutually independent tasks (less abstract)
= |[n CH# task parallel library

Parallel.For(@, 100, i => { A[i] = foo(A[i]) });

Levels of Abstraction

= Tasks are not independent

= Explicitly synchronize their interactions to
eliminate races

= Example: synchronization error

Thread 1 Thread 2
a := count;
a := count;
a :=a+ 1;
count := a;
a :=a+ 1;
count := a;

count is a shared var, a is a local var

@ Korea_‘_m

Levels of Abstraction

= Race condition

= Two or more threads are racing to touch a
common object

= System behavior depends on which one gets there
first

= Critical section

= A section of a code that that should be accessed
mutually exclusively

@Koreaw ‘

Process vs Thread vs Task

" Processes
= A virtualized computer
= Has its own address space, open files, process state, ...

= Threads
= Avirtualized CPU
= Has its own set of registers and stack
= Shares the other resources with other threads

= Tasks

= Well-defined unit of work that must be performed by
some threads

Threads: Two Issues (1/2)

= Communication

= A mechanism that allows one thread to obtain
information produced by another

= Shared memory
= Message passing

Threads: Two Issues (2/2)

" Synchronization

= A mechanism that allows a programmer to control
the order of operations in different threads

= Spinning (busy waiting)
= Blocking (scheduler based)

Thread Implementation

" Thread implementation
= One extreme: separate process for each thread

= Another extreme: put all threads of a program in a
single process

" Intermediate approaches

Thread scheduler

.....................................

(=) —
e D] =
g == ~ =0 = Z
-9 = ° =)) =
0 g
9 = bos
R = = = = = =
= = 5) =

iz = =
A S =
b ; (7]
g g Z
™ o
< (<)
>
~
S
Pr rl Pro r Processor N

1
i

5 o) g
1
)
’

Process scheduler
Korea

A State Model of a Process

A State Model of a Process

Ready queue
Admit Dispatch

—— 1 Processor

Time-out

A

Event | queue
Event | Event 1 wait

occurs

Event 2 queue
Event2] _ Event 2 wait

occurs

®
@
®

Event n queue

Event n Event n wait

A

occurs

= Multiple blocked queues

= Single blocked queue: OS has to scan the blocked queue

for every event

" The processes in a certain event queue are moved to the

Ready queue

@ Korea_‘_m

Thread Implementation

= Separate process for each thread
= Too expensive

= Performing thread-related operations requires a
system call

= Single process to host all threads

= Precludes parallel execution on a multicore or
multiprocessor machine

= |f a thread is making a blocking system call, all
threads in the process are blocked

@Koreaw

= Data structure

Simple Thread Scheduler

= At any time a thread is either blocked or runnable

current_thread

Waiting for condition foo

IR

ready_list

T

s

-
>

>

——>

—>

Waiting for condition bar

]

!

N

-
»

procedure reschedule
t : thread := dequeuel(ready_list)
transfer(t)

procedure yield
enqueuelready_list, current_thread)
reschedule

procedure sleep_on(ref Q : queue of thread)
enqueue(Q, current_thread)
reschedule

@ Koream_

Java Threads

= Two options to create threads

= Extend Thread class

" Implement Runnable interface
" Note: Thread class implements Runnable

class PrimeThread extends Thread {

}

long minPrime;
PrimeThread (long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger than minPrime

class PrimeRun implements Runnable {
long minPrime;
PrimeRun (long minPrime) {
this.minPrime = minPrime;
}

public void run() {
// compute primes larger than minPrime

}

PrimeThread p = new PrimeThread(143);
p.start();

PrimeRun p = new PrimeRun(143);
new Thread(p) .start();

@ Korea_‘_m

Java Threads

public static class ImplAsThread extends Thread {

private String msg;
public ImplAsThread(String msg) {

~N—

extend Thread class

this.msg = msg;

} override run method
run() will run
public void run() a new thread
try {

for(int 1 = 9; i < 10; i++) {

System.out.print(msg + " ");

Thread.sleep(10);

}
} catch(Exception e) {

e.printStackTrace();
}

@ Korea_‘_.!.

public static void test() {

try {

System.out.println("Testing ImplAsThread. ..

ImplAsThread a = new ImplAsThread("A");
ImplAsThread b = new ImplAsThread("B");

a.start();
b.start();

a.join();

b.join(); § until a and b terminate

_

a.run and b.run will run

on their own threads

main thread will wait

System.out.println("\nDone");
} catch(Exception e) {
e.printStackTrace();

}
}

Testing ImplAsThread...

ABBAABBABAABBABAABBA

Done

u).
s

@ Korea_‘_m

Java Thread

public static class ImplAsRunnable {
public static void foo(String msg) {
try {
for(int 1 = 0; i < 10; i++) {
System.out.print(msg + " ");
Thread.sleep(10);
}
} catch(Exception e) {
e.printStackTrace();

}
}

public static class Foo implements Runnable {
public void run() {

foo("A ");/\ Foo implements
} Implement run Runnable interface
}
method

@ Korea_‘_.!.

public static void test() {

try {
System.out.println("Testing ImplAsRunnable...");

Thread a = new Thread(new Foo());
Thread b = new Thread((i/;{ foo("B"));

a.run and b.run will run S a.start(); Runnable using
on their own threads b.start(); lambda

main thread will wait a'JZO{L”()S
until a and b terminate| 2-301n0);

System.out.println("\nDone");
} catch(Exception e) {
e.printStackTrace();

}
}

Testing ImplAsRunnable...
ABBAABBAABBAABBAABASB

Done

@ Korea_‘_.m

Synchronization

= Busy-wait synchronization

= A thread reads a variable X in a loop, waiting for it
to be avalueY

= Spin lock: provides a mutual exclusion

" Only the thread holding a lock can enter a critical
section

= Barriers: no thread continues past a given point
until all threads have reached that point

@ Korea_‘_m

Java Synchronization (Erroneous)

= Counter example
= Two threads increase a shared variable count
= Race condition exists between two threads

public class Counter {
public static class Unprotected {
static int count; //shared variable

public static void inc() {
for(int i = @; i < 1000000; i++)

count++; //count 1s 1increased by two threads
} \

- Load from memory to a register
- Increase the register value
- Save from register to memory

@ Koreaw

public static void test() {

try {
System.out.println("Testing Unprotected...");

count = 0;

Thread a
Thread b

new Thread(() -> inc());
new Thread(() -> inc());

a.start();
b.start();
a.join();
b.join();

n

System.out.println("count: " + count);
} catch(Exception e) {

e.printStackTrace();
}

}

Testing Unprotected...
count: 1887043

@Koreaw

Mutual Exclusion

= Mutual exclusion by lock

Thread 1

Thread 2

acquire(L);
a := count;
a :=a+ 1;
count := a;
release(L);

count is a shared var, a is a

local var

acquire(L);
a := count;
a :=a+ 1;
count := a;
release(L);

Thread 1

released

released

acquired

Thread 2

Synchronization: Spin Lock

type lock = Boolean := false;

procedure acquire_lock(ref L : lock)

while not test_and_set(L) In @ multi core system,
while L test_and_set(L) is expensive

— — nothing — — spin— compared to reading L

procedure release_lock(ref L : lock)
L := false

= Atomic operations
= Operations without context switches in the middle

= test and set: sets a Boolean variable true and returns
whether it was previously false

= compare and swap: if a variable has an expected
value, change it to the new value
G

Barriers

/@} @ @
T () é 'g .a:_)
©) @ ©)rrrr| B 3| ©
@, @ @

TIME e TIME e TiIMe ——

(a) (b) (c)

a) Threads approaching a barrier
b) All threads but one blocked at the barrier

c) When the last thread arrives the barrier, all of them
are let through

Synchronization: Barrier

= Every thread should complete their previous step
before any moves to the next

= Used in data-parallel algorithms, structured as phases

shared count : integer :=n
shared sense : Boolean := true
perthread private local_sense : Boolean := true

procedure central_barrier
local_sense := not local_sense
— — each thread toggles its own sense
If fetch_and_decrement(count) = 1
— - last arriving thread

count :=n — —reinitialize for next iteration
sense .= |local_sense — — allow other threads to proceed
else
repeat
——spin

until sense = local_sense @Koreaw

Synchronization: Atomic Operation

= Non-blocking algorithms

X is a shared var;
—— need mutual-exclusion
X ;= fool(x):

Mutual-exclusion using

acquire(L)
i A i x § a lock

r2 ;= fool(r1) — - probably a multi-instruction sequence
X:i=1r2

release(L)

start: Mutual-exclusion

Aemiy without using a lock

r2 .= foolr1) —— probably a multi-instruction sequence
r2 := CAS(x, r1,r2) —-replace x if it hasn't changed
If Ir2 goto start

Java Synchronization (atomic opr)

= Counter example using atomic operations

= |ssue
= Context switch occurred before a thread writes count
" The other thread increases the count many times
= When switched back, the first thread finishes the write

= Fix

= The issue can be fixed by increasing count atomically

@Koreaw ‘

public static class Atomic {
static AtomicInteger count;
public static void inc() {
for(int i = 9; i < 1000000; i++)
count.incrementAndGet();

}

public static void test() {

try {
System.out.println("Testing Atomic...");
count = new AtomicInteger(0);
Thread a = new Thread(() -> inc());
Thread b = new Thread(() -> inc());
a.start();
b.start();
a.join();
b.join();
System.out.println("count:

} catch(Exception e) {
e.printStackTrace();

n

+ count.get());

}
}

Testing Atomic...
count: 2000000 <:>KW%W‘

Synchronization: Scheduler-based

= Scheduler-based synchronization
= Switch to other thread

type lock = Boolean := false;

procedure acquire_lock(ref L : lock)
while not test_and_set(L)
count :=TIMEOUT
while L
count —=
if count =0
OS_yield — —relinquish processor and drop priority
count :=TIMEOUT

procedure release_lock(ref L : lock)
L := false

Synchronization: Semaphores

= A semaphore is a counter with two
operations

= P: (acquire) waits until the counter becomes
positive and decrements it

= \/: (release) atomically increments the counter

Synchronization: Semaphores

type semaphore = record
N : integer
Q : queue of threads

procedure Viref S : semaphore)

procedure P(ref S : semaphore)

disable_signals

acquire_lock(scheduler_lock)

SN-=1
fSN<O
sleep_on(S.Q)

release_lock(scheduler_lock)

reenable_signals

Admit

Event |
oceurs

Event 2
oceurs

Event n
oceurs

disable_signals
acquire_lock(scheduler_lock)
SN +:=1
tTN<O
— — at least one thread is waiting
enqueuelready_list, dequeue(S.Q))
release_lock(scheduler_lock)
reenable_signals

Release

Ready queue
Dispatch
— e
Time-out —|
Event | queue
==
Event 2 queue
.
.
.
Event n queue

Java Synchronization (Semaphore)

= Counter example using semaphore
= count is a shared variable
= Accessing count is a critical section

= Ensure the mutual exclusion when accessing the
critical section

= Mutex
= Mutex: a semaphore initialized to 1
= Call acquire before entering the critical section
= Call release after leaving the critical section

@ Korea_m

public static class Mutex {
static int count;
static Semaphore mutex;

public static void inc() {
try {
for(int i = 9; i < 1000000; i++) {
mutex.acquire(); //acquire mutex before CS
count++;
mutex.release(); //release mutex after CS
}
} catch(Exception e) {
e.printStackTrace();

}

@ Korea_m

public static void test() {
try {

System.out.println("Testing Mutex...");

count = 0;
mutex = new Semaphore(1);

Thread a = new Thread(() -> inc());
Thread b = new Thread(() -> inc());

a.start();
b.start();
a.join();
b.join();

System.out.println("count:

} catch(Exception e) {
e.printStackTrace();

}
}

Testing Mutex...
count: 2000000

n

+ count);

@Koreaw ‘

Synchronization: Monitors

= Monitor

= A module or an object with

= operations, internal state, and a number of condition
variables

= Only one operation of a monitor is active at a given
time

= Calling an operation on a busy monitor will be delayed
until the monitor is free

= A thread will be suspended by waiting on a condition
variable

= A thread may be resumed by signaling a condition
variable

@ Korea_‘_m

Queue of

Structure of a monitor

processes
Monitor waiting area Entrance
1) 1
MONITOR

Ll

L]
Condition ¢l Local data

L]
cwait(cl) [

Condition variables

Procedure 1

.
r

Condition cn

-
>

Urgent queue

L]
L]
L]
cwait (cn) E Procedure k
L]
L]
L]

csignal e
g Initialization code

: EllD
Exi Eomrores

Monitor-based Bounded Buffer

monitor bounded_buf
imports bdata, SIZE
exports insert, remove

buf : array [1..SIZE] of bdata
next_full, next_.empty : integer := 1, 1
full_slots : integer := 0

full_slot, empty_slot : condition

entry insert(d : bdata) entry remove : bdata
if full_slots = SIZE if full_slots = 0
wait(empty_slot) wait(full_slot)
buf[next_empty] :=d d : bdata := buf[next_full]
next_empty := next_empty mod SIZE + 1 next_full := next_full mod SIZE + 1

full_slots —= 1
fullsots 4= signallempty_slot)
signal(full_slot) 9 Pty-

returnd

Java Synchronization (synchronized)

" Counter example using synchronized

= Only one thread can be in a synchronized block
= Entering a monitor
* Mutual exclusion can be easily achieved

= Within a synchronized block
= wait: blocks on an event
= notify: resume a blocked thread
= notifyAll: resume all blocked threads

public static class Synchronized {
static int count;
static Object shared;
public static void inc() {
for(int i = 9; 1 < 1000000; i++) {
synchronized(shared) {
count++;

}
}
}
public static void test() {
try {
System.out.println("Testing Synchronized...");
count = @;
shared = new Object();
Thread a = new Thread(() -> inc());
Thread b = new Thread(() -> inc());
a.start();
b.start();
a.join();
b.join();
System.out.println("count:
} catch(Exception e) {
e.printStackTrace();

n

+ count);

}

} Gl

Producer-Consumer Example

" Bounded buffer problem using Semaphores
= Producer thread should be blocked if the buffer is full

= Consumer thread should be blocked if the buffer is
empty

= Semaphores to solve the problem

= slots: represents the number of empty slots in the
buffer (initialized to the size of buffer)

= items: represents the number of items in the buffer
(initialized to 0)

@Koream

Producer-Consumer Example

import java.util.concurrent.Semaphore;

public class ProducerConsumer {
public static class Queue {
int[] data; //bounded buffer
int f, size;

Semaphore mutex; //lock to access queue
Semaphore slots, items; //semaphores for the buffer

public Queue(int n) {
data = new int[n]; //bounded buffer (circular queue)
f = size = 0;

mutex = new Semaphore(l); //access lock
slots = new Semaphore(n); //to block producer
items = new Semaphore(@); //to block consumer

@ Koreaw

public void add(int x) {
try {
//try switch the order of slots and mutex
//mutex.acquire();

//block if no empty slot exists
slots.acquire();

//mutual exclusion to access queue (shared data)
mutex.acquire();

int i = (f+size) % data.length;
data[i] = x;
size++;

//release the access lock
mutex.release();

//wake up any blocked consumer
items.release();

} catch(Exception e) {
e.printStackTrace();

}

@ Koream_

public int remove() {
int x = 0;
try {
//try switch the order of items and mutex
//mutex.acquire();

//block if no item exists
items.acquire();

//mutual exclusion to access queue (shared data)
mutex.acquire();

x = data[f];
f = (f+1) % data.length;
size--;

//release the access lock
mutex.release();

//wake up any blocked consumer
slots.release();

} catch(Exception e) {
e.printStackTrace();

}

return Xx;

}
@Koreﬁ,ﬂ,ﬂ

public static void test() {

try {
System.out.println("Testing Producer Consumer...");

Queue queue = new Queue(5);

Thread producer = new Thread(() -> {
for(int i = 9; i < 100000; i++)
queue.add(i);
})s

Thread consumer = new Thread(() -> {
for(int i = @; i < 100000; i++)
onFalseThrow(i == queue.remove());

1)

producer.start();
consumer.start();
producer.join();
consumer.join();
System.out.println("Done");
} catch(Exception e) {
e.printStackTrace();

}

@Koreaw ‘

Assignment 9

" |n this assighment, you are requested to
implement the object based circuit simulator

again.
= This time, each gate is running on its own thread
while synchronized with others through
Semaphores.
= Download hw9.zip
= Implement all TODOs.

= Due date 6/11/2020

