CSE216 Programming Abstractions
Type Systems

YoungMin Kwon

Why Types

Types provide implicit context
= a+ b: integer addition or floating point addition

"= new: allocate memory and call proper constructor

Types limit the set of permitted operations

= Reduce mistakes in programming
= E.g.: Prevent adding a number to a Boolean (1 + true)

With types, programs are easier to read

(C*what 1f 1 knew the type of delay, curr, and stream.™)

let rec after_delay delay curr stream =

Help compilers optimizing performances

@ Korea_‘_m

Type Systems

= A type system consists of

= Mechanism to
" Define types
= Associate them with language constructs

= A set of rules for
" Type equivalence
" Type compatibility
= Type inference

@Koream

Type Checking

= Type checking

" Process of ensuring that a program obeys the language’s
type compatibility rules

= Strongly typed language

= Prohibits the application of any unsupported operations to
objects

= Static type checking: type checking is performed at
compile time

= Dynamic type checking: type checking is performed at run-
time

@ Korea_‘_.!.

What is Type

= Denotational point of view

= A set of values known as a domain
" Eg.:{1, 2,3, ..},{Qd, b, c, ..}, {true, false},...

" Types are domains and the meaning of an
expression is a value from the domain

" Programmers may think user defined types as
mathematical operations on sets

= E.g.: Cartesian products for tuples

@ Korea_m

What is Type

" Structural point of view

= Atypeis either
= A primitive type (int, char, boolean, ...) or
= A composite type (tuple, record, list...)

= Programmers may think in terms of the way it is built
from simpler types

" Abstraction-based point of view
= Atypeis aninterface consisting of a set of operations

= Programmers may think in terms of its meaning or
purpose

@ Korea_‘_.!.

Polymorphism

" Parametric polymorphism
= Code takes a type as a parameter
= Generics or templates in Java, C++

= Subtype polymorphism

= A code designed to work with type T also works with
T’s subtypes

= Most object oriented languages

= Combination of subtype and parametric
polymorphism
= Useful for containers: List<T> or Stack<T>

Type Checking

= Type equivalence
= Whether two types are the same

= Type compatibility

* When an object of a type can be used in a certain
context

= Type conversion, type coercion, non-converting type
cast

= Type inference

" Given the types of the subexpressions, what is the
type of the expression as a whole?

@Koreah ‘

Type Equivalence

= Type equivalence
= Whether two types are the same

= Structural equivalence

= Two types are the same if they consists of the same
components in the same way

= E.g.: Algol-68, Modula-3, C, ML

= Name equivalence
= |Lexical occurrence of type definitions
= E.g.:Java, C#

Type Equivalence

type R1 = record type R2 = record type R3 = record
a, b: 1nteger a: 1nteger; b: 1nteger;
end b: 1nteger a: 1nteger
end end
= Example

" [n many languages R1 and R2 are structurally
equivalent

= [n many languages R3 is not equivalent to R1 or
R2.

@ Ko rea

Type Equivalence

type student = record type school = record
name, address: string name, address: string
1d: iInteger 1d: integer

end end

X: student;
y: school;

X 1=y

" Problem with structural equivalence

= Cannot distinguish types that the programmer may
think of as different

= Name equivalence

= |f the programmer distinguishes the types, they are
probably meant to be different

Type Conversion and Casts

" |[n a program, values of specific types are
expected

expression should have
the same type as a

a .= expression

a and b are both integers

a + b< or they are both floats

foo(vl: typel, v2: type2)

foo(exprl, expr2)‘§?55:\\\\‘

exprl should be typel and
expr2 should be type2

@ Koream_

Type Conversion and Casts

= Type conversion cases

= Types are structurally equivalent, but the language
uses name equivalence

= Conversion is purely conceptual

= Types have different sets of values, but the
intersecting values are represented in the same way
= Signed int <> unsigned int

= Runtime check: If the current value is in the intersect, use it
(1 — 1). If not, runtime error (-1 — ?).

@ Korea_‘_m

Type Conversion and Casts

= Type conversion cases (Cont’d)

= Types have different representations, but some
correspondence can be defined among their
values
" int <> float
= Machine instructions for the conversion

Non-converting Type Casts

= Particularly, in systems programming

= Change the type of a value without changing the
underlying implementation

= E.g. malloc
" Represent heap as a large array of bytes

= Reinterpret portions of the memory as pointers and
integers

Type Compatibility

" Most language requires type compatibility
rather than type equality

" 3+ b:aand b must be compatible with some type
that supports addition

" foo(a, b): aand b must be compatible with the
formal parameters (subtypes)

Type Compatibility

" Type compatibility varies from language to
language

" |n Ada, type S is compatible with type T if
= Sand T are equivalent

= One is a subtype of the other or both are subtypes
of the same base type

= Both are arrays with the same number and type of
elements

@Koreah ‘

Coercion

= Type coercion

= When necessary, a language performs an automatic,
implicit conversion to the expected type

= Coercion is a controversial subject

= Type conversion without programmer’s explicit cast —
it can weaken type security

= Natural way to support abstraction and extensibility
— easy to use new types with existing ones

@Koreaw

Type Checking in SPL

type kind = Boolean
| Number
| Function of kind * kind
| Error;;
type expr = B of bool (*Boolean™) Sub (N 1, B true) is a valid expr,
| N of int (*number™) but it is an unsupported opr.

| V of string (*variable®™)

(*arithmetic exprs*) y
| Add of expr * expr | Sub of expr * expr
(*predicates™)

| Equ of expr * expr | Leq of expr * expr

(*logical exprs*)

| And of expr * expr | Or of expr * expr | Not of expr
(*conditional expr¥*)

| IT of expr * expr * expr

(*function definition: parameter, body*)

| Fun of (kind * string) * expr

(*function application: operator, operand*)

| App of expr * expr;;

@ Korea_m

(**env has name-kind bindings*)
let rec lookup name env =
match env with
| [1 —> Error
| (k, n)::rest -> 1If name = n
then k
else lookup name rest iIn

(*kind returns the kind of expr In env¥*)
let rec kind expr env =
match expr with
| B b -> Boolean
| N n -> Number
| Vv -> lookup v env
| Add (el, e2) | Sub (el1, e2) ->
IT kind el env = Number && kind e2 env = Number
then Number
else Error
| Equ (el, e2) | Leq (el, e2) ->
iIT kind el env = Number && kind e2 env = Number
then Boolean
else Error
| Not e ->
1T kind e env = Boolean
then Boolean

else Error (:)mWa

| And (el, e2) | Or (el, e2) ->
iIT kind el env = Boolean && kind e2 env = Boolean
then Boolean
else Error
| IT (el, e2, e3) ->
let t2 = kKind e2 env 1In
let t3 kind e3 env 1In
iIT kind el env = Boolean && t2 = t3
then t2
else Error

| Fun ((k, v), e) -> (*not checking the return type*)
let t = kind e ((k, v)::env) In (*kind of e iIn extended env¥*)
iT t '= Error
then Function (k, t)
else Error
| App (el, e2) -> match kind el env with
| Function (tp, tb) ->
let t2 = kind e2 env iIn
i1IT tp = €2 && tp '= Error
then tb
else Error
| -> Error in

@Koream

Type Inference

" Type inference
= Determining the type of an expression

= Examples

* The result of an arithmetic operator usually has the
same type as the operand

" The result of a comparison is Boolean

" The result of a function call is the type of the function
body

" The result of an assignment has the same type as the
left-side

@Koreah ‘

HM Type Inference Algorithm
HM: Hindley and Milner

= Type inference example

let inc = fun x -> (+) 1 x;;
val inc : int -> int = <fun>

= Step 1: assign preliminary types

= Assign type variables for unknown types

Subexpression Preliminary type
fun x -=> (+#) 1 x A (whole expr)
X B (param)
(+) 1 x C (function body)
()1 D (sub-expr)
+) int -> (int -> Int)
1 int
X E (sub-expr)

@ Korea_‘_.m

HM Type Inference Algorithm

= Step 2: collect type constraints

Subexpression Preliminary type Constraints

fun x -=> (+) 1 x A A=B->C
X B
(+) 1 x C

(1 D D=E->C

) int -> (int -> iInt) |int -> D =

1 int int -> (int -> Int)
X E E=8B

@ Korea_‘_.!.

HM Type Inference Algorithm

= Step 3: solve type constraints

" Find a type assignment to type variables that can
satisfy all type constraints

n
> 0 m O

int -> iInt
int, C = 1Int
int

int -> iInt

Constraints
A=B ->C
D=E ->2C
int -=> D = Int -> (int -> Int)
E =8B

HM Type Inference Algorithm

= Type Constraint collection

= Assign a fresh type variable to
= Each function parameter
" Let D(x) be the type variable for a function parameter x

= Each subexpression of an expression
" Let U(e) be the type variable for a subexpression e

Type Constraints

. fun x -> add 1 x
= Generate type constraints T

= Foraconstantc:U(c) = type of c
= E.g. Let U(1) be A, then A =int

= Foravariablex: U(x) = D(xX)
= E.g. Let D(x) be A, U(x) be B, then A=B

= For function application el e2:
U(el) = U(e2) -> U(el e2)
= E.g. Let U(f x) be A, U(f) be B, U(x) be C, thenB=C->A

= For a function definition fun x -> e:
U(fun x -> e) = D(X) -> U(e)
= E.g. Let U(fun x ->vy) be A, D(x) be B, U(y) be C, then A=B->C

@ Koreaw

(*kind expression¥®)

type kexpr = KB | KN
| KV of int (*kind variable: kO, k1, k2, .*)
| KF of kexpr * kexpr (*kel -> ke2*)

(*type constraints for kvar = expr
kvar: type variable for expr
expr: expression (kvar = expr)
env : variable to type variable map
return: list of constraints (kexpr = kexpr)...
*
)
let rec constr kvar expr env =
let open State iIn
match expr with
| Nn -> ret [(KV kvar, KN)]
| Add (el, e2) | Sub (el1, e2) ->
newvar() >>= fun vl ->
newvar() >>= fun v2 ->
constr vl el env >>= fun cl ->
constr v2 e2 env >>= fun c2 ->
ret ((KV kvar, KN)::(KV vl, KN)::(KV v2, KN)::c2@cl)

@ Korea_‘_m

Unification

= How to solve type constraints

= Substitution: substitute a type variable in a type
expr with an associated type expr

(*substitute kvar 1n ke with kexp*)
let subst kvar kexp =
let rec subst® ke =
match ke with
| KB -> KB
| KN -> KN
| KV kv -> i1f kv = kvar then kexp else KV kv
| KF (kel, ke2) -> KF (subst® kel, subst® ke2) in
subst® 1In

= A composition of substitutions is a substitution
fun ke -> subs2 (subsl ke)
@Koreaw ‘

Unification

= Unifier

= A substitution U is a unifier of a constraint el = e2
if (U el)=(Ue2)

= HM type inference algorithm

= Given an expression, generate a set C of type
constraints

= Find a unifier U that unifies all constraints in C

@ Korea_‘_m

Unification

(*find a unifier for the constraints in cl*)
let rec unify cl =
match cl with
| [] -> fun x -> x (*1d: no substitution¥®)
| hd::-tl ->
match hd with
| (KV kv, ke) ->
1T contains kv ke
then assert false (*recursive def i1s not supported®)
else
let s
let u

subst kv ke iIn
unify (List.map (fun (a,b) -> (s a, s b))
tl) in
fun e -> u (s e) (*return the composite substitution®)
| (ke, KV kv) -> unify ((KV kv, ke)::tl) (*switch the order®)
| (KF (a,b), KF (c,d)) -> unify ((a,c)::(b,d)::tl)
| (a, b) >ifa=»>
then unify tl (*hd 1s already unified®)
else assert false in (cannot unify*)
@ Korea_‘_m

Assignment 8

" |n this assignment, you are required to
implement a constraint generator of HM type
inference algorithm

* Download spl_infer.ml
" Implement constr function

= Due date 6/2/2020

Assignment 8: Test Results

let testl O
let el =

let e2
let e3
let e4
let e5
let €6

[

If (Leq (Add (N 1, V "x™), Sub (N 2, V "x)),

Fun
Fun

App
App
App

unifier
unifier
unifier
unifier
Cunifier
Cunifier

B true,

B false) in
('x", el) 1In
'y, e2) 1In
(e3, B true)
(ed4, N 3) 1In
(e4, B true)

(constraints
(constraints
(constraints
(constraints
(constraints
(constraints

(KV
(KV
(KV
(KV
(KV
(KV

0);
0);
0);
0);
0);(assert false*)*)
0); (assert false*)*)

@ Korea_‘_.!.

Assignment 8: Test Results

let test2 () =
let open SyntaticSugar iIn
let max = "X @ "y @
1T (V7" <= 1y 10y 1) in

let ¢ = constraints max iIn
let s = unifier c iIn
s (KV 0)

(*

expected results

- - kexpr list = [KF (KN, KB);
KF (KV 1, KF (KN, KB));
KF (KN, KB);
KB]

- - kexpr = KF (KN, KF (KN, KN))

*)
let = testl ()
let = test2 ()

@ Koream_

