CSE214 Data Structures
Maps

YoungMin Kwon

Map Abstract Data Type

= Map
= Map is an abstract data type for efficiently storing

and retrieving values based on unique search keys

= Maps store key-value pairs (k, v) called entries

= Maps are also known as associative arrays

= Keys serve somewhat like indexes into the map

Map Abstract Data Type

= Map examples

-

= Keys are labels
= Values are folders
= Map is the file cabinet

Map Abstract Data Type

= Map examples
= URL (http://datastructures.net) and the page contents

= A student ID and the student’s record

= DNS maps host name (www.suny.ac.kr) to IP address
221.143.20.101

" |n computer graphics, color name (Crimson) to RGB
(Oxdc, 0x14, Ox3c)

@Koreaw ‘

Map Abstract Data Type

size(): Returns the number of entries in M.
isEmpty(): Returns a boolean indicating whether M is empty.
k

get(k): Returns the value v associated with key &, if such an entry exists;
otherwise returns null.

put(k, v): If M does not have an entry with key equal to k, then adds entry
(k,v) to M and returns null; else, replaces with v the existing
value of the entry with key equal to k and returns the old value.

remove(k): Removes from M the entry with key equal to k, and returns its
value: if M has no such entry, then returns null.

keySet(): Returns an iterable collection containing all the keys stored in M.

values(): Returns an iterable collection containing all the values of entries
stored in M (with repetition if multiple keys map to the same
value).

entrySet(): Returns an iterable collection containing all the key-value en-
tries in M.

Map

| — — — — —

S S N e e

e— e = =

— e e e e e e

— — — — — —_—

N S St St vt St it

— — — — — —

Map Abstract Data Type (Operations)

Q o
= Q
> lo = = = = — ””%mom\mmuJD
J O3 O O o = -t 3 3 — . -
mUnnnnCBnE AEnnr..m)7B
= Q=
N .
) ~
~—
= —
.MWJABfDerlA.ﬁ_Ud\e?_d\.Weﬂs
=8 BT P eI o Pt dl e gl D-SS w
N O O Q >
MEuuuuugggsmmngtea
waocaan gg guwg=x?~

Java Interface for Map ADT

public interface Map<K, V> {

}

int size();

boolean isEmpty();

V get(K key);

V put(K key, V value);

V remove(K key);

Iterable<K> keys();

Iterable<V> values();
Iterable<Entry<K,V>> entries();

public interface Entry<K, V> {

public K key();

public V value();

public void setKey(K key);
public void setValue(V value);

@ Korea_‘_m

Application: Word Counter

/#*% A program that counts words in a document, printing the most frequent. */
public class WordCount {
public static void main(String[] args) {
Map<String,Integer> freq = new ChainHashMap<>();// or any concrete map
// scan input for words, using all nonletters as delimiters
Scanner doc = new Scanner(System.in).useDelimiter(" [“a-zA-Z]+");
while (doc.hasNext()) {

String word = doc.next().toLowerCase(); // convert next word to lowercase
Integer count = freq.get(word); // get the previous count for this word
if (count == null)

count = 0; // if not in map, previous count is zero
freq.put(word, 1 + count); // (re)assign new count for this word

}

int maxCount = 0;
String maxWord = "no word";
for (Entry<String,Integer> ent : freq.entrySet()) // find max-count word
if (ent.getValue() > maxCount) {
maxWord = ent.getKey();
maxCount = ent.getValue();
}
System.out.print("The most frequent word is '" + maxWord);
System.out.println("' with " + maxCount + " occurrences. ");

}
| (e

= Hash table

= One of the most efficient data structures for

Hashing

implementing a map (also used most in practice)

" [ntuitive example:

= Keys are integers

" Lookup table is an array of length N

0

2

4

5

7

8

9

10

D

Z

C

Q

= A table of length 11 containing (1,D), (3,2), (6,C), and

(7,Q).

@Koreah ‘

Hashing

= Two challenges

= We may NOT wish to devote an array of length N
when N > n

= Map’s key may not be an integer in general

Hashing

= Hash function

" maps a general key to 0~ N-1
= N is the capacity of bucket array

= Two or more distinct keys can be mapped to the
same index = bucket array

Hashing

= Hash function
= Use the hash function value h(k) as an index
= Store an entry (k, v) in a bucket A[h(k)]

= Collision: two or more entries are mapped to the same
bucket in A

= Two parts of a hash function S iy O

= Hash code: maps a key k to
an integer

-—® © e o o o o ¢ oo oo o>

1 2

= Compression function: maps e =21 0
the hash code to [0, N-1] compression function
= Hash code is independent to

the bucket array size

Hash Codes

" Treating bit representations as an integer
= pyte, short, int, char, float = int

" How about long, double: larger than 32bit
= |gnore the half: can collide easily
= Combine them: add or xor the two halves
= General objects of any size (x,, X4, .-, X, 1)

" Xy Xy F o+ X
" Xg DX, D ... DX, 4

Hash Codes

" Polynomial hash codes
= Using add, xor for (x,, X4, ..., X,,1) : easy to collide
when the order of x/’s is significant

= E.g. “temp01”, and “temp10”
= “stop”, “tops”, “pots”, and “spot”

= Polynomial hash code (fora + 1)
" Xga" 4 X @M L+ X 52+ X
" X, +alx,,+a(x, s+ ... +a(x, +a(x, + ax,)) ...))
" |lgnore the overflows

= 3,37, 39, 41 for a = fewer than 7 collision for 50,000
English words

Hash Codes

= Cyclic-shift hash codes

= A variant of the polynomial hash code

= Multiplication by a = cyclic shift of a partial sum

= (001111011001 01101010 1000 10101000 =
1011 0010 1101 0101 0001 0101 0000 0111

static int hashCode(String s) {
int h=0:
for (int i=0; i<s.length(); i++) {
h=(h <<5)|(h>>>27); // 5-bit cyclic shift of the running sum
h += (int) s.charAt(i); add in next character

j

return h; Shift right,

¥ fill zero
@ lKorea_y_‘”

Hash Code in Java

= Object class includes hashCode() method

= A 32 bit integer for the object’s memory address

= |ssue with equals

= Equivalent keys should have the same hash code

= Otherwise, map may not function correctly

= |f x.equals(y), then x.hashCode() == y.hashCode()

@ Koreaw

Compression Functions

= Compression function
= Maps the hash code into the range [0, N-1]

= The division method
" imod N
= Making N a prime number helps spread out the

distribution of the hashed values

= Hash codes of {200, 205, 210, 215, ..., 595} will have 3
collisions when N is 100

= No collisions when N is 101

@Koreaw

Compression Functions

= The MAD method
= Multiply-Add-and-Divide (MAD)

"[(a-i+b)modp] modN
= N is the size of the bucket array
" pisaprime number larger than N
" 3 and b are integers chosen from [0, p-1] witha >0

Collision Handling Schemes
Separate Chaining

= Separate chaining

= Have each bucket A[j] store its own container for
all entries (k, v) with h(k) =

A

0

I

,

4

-

6 7

8

9 10 11 12

10,0/ 1]

|

p

16,000

\

Collision Handling Schemes
Separate Chaining

= |Load factor
= Assuming the use of a good hash function
= Expected size of a bucketisn /N

" n: number of entries in the map
= N: the number of buckets

= The search in a chain will take O(n / N)
= The ratio L = n / N is called the load factor

Collision Handling Schemes
Open Addressing

= Separate chaining

= Requires an auxiliary data structure (bucket)

= Open addressing

= Stores entries directly in a table slot without using
an auxiliary data structure

= Several variants of this approach is collectively
referred to as open addressing

@ Korea_‘_m

Collision Handling Schemes
Open Addressing

" Linear probing

" Let h(k) = for an entry (k, v).
= |f A[j] is occupied, try A[(j+1) mod N], A[(j+2)

mod N], and so on

New element with

I\'C}' = |5to be in.\CI'lCtl\r _A_

"
SVYAVYE
6 7 8

0O 1 2

3

Must probe 4 times
before finding empty slot

4 5

4

10

15

26| 5 [37

16

21

Collision Handling Schemes
Open Addressing

= Linear proving
" To delete: mark the entry with a defunct object

= To search: from A[h(k)], look for an entry with k
until an empty slot is encountered while skipping
the defunct objects

= Disadvantage: it tends to cluster entries into a
contiguous runs

Collision Handling Schemes
Open Addressing

= Double hashing

= Use a secondary hash function h’(k)

= |[f Al h(k)] is occupied try
Al (h(k)+f(i))modN], fori=1,2,3,..
wheref(i)=i-h'(k)

= Another approach

= On collision, try A[(h(k) +f(i)) mod N |, where
fli)is based on a pseudo random number
generator

@ Koream_

Rehashing

= Efficiency of hash table
= |t depends on keeping the load factor A = n/N low

= Separate chaining: large A increases the entries in a
bucket

= Open addressing: large A grows the cluster of entries

= Rehashing

= |f AL go above a specified threshold, resize the table
reapply the compression function to each entry

= New table size: a prime number about the double of
the current the size

= Amortization: put is an O(1) operation

@Koreaw ‘

Efficiency of Hash Tables

Method Hash Table
expected | worst case
get O(1) O(n)
put O(l) O(n)
remove O(l) O(n)
size, isEmpty O(1) O(1)
entrySet, keySet, values O(n) O(n)

Skip Lists

" Askiplist S foramap M
= Consists of a series of lists {S,, Sy, --., S}

= Each list S, stores a subset of entries of M sorted by
keys and two sentinel keys denoted by -co and +o0

" Lists in S satisfy
= S, contains every entry of M plus -0o and +00

= S. contains a randomly generated subset of S, | plus -o0
and +o0 fori=1, ..., h-1,

= S, contains only -oo and +o0

@ Korea_‘_.!.

Skip Lists

=] =]
[} 17} [F=<]

€T .
] {17] (23] I o K
=] (7] I o TR {55]
{071 (25 317 [44] (55 —+x<]
=12 17 20 25 =] 31 38 39 44 = 50 = 55 }—+X]

= |ntuitively, S;,; contains roughly alternate entries of S,

= Randomization: for each entry in S, we flip a coin and
add itto S, if head comes up

@ Ko rea

Skip Lists

= Representation

= Two dimensional collection of positions (levels
and towers)

= Each /evelis a list S,
= Each tower contains positions storing the same entry

= Positions in a skip list

next(p): Returns the position following p on the same level.

prev(p): Returns the position preceding p on the same level.
sbove(p): Returns the position above p in the same tower.
below(p): Returns the position below p in the same tower.

@ Korea_m

Skip Lists

= Search
= E.g. searching for 50

Ss [=<] [F=]
s+ 2 7] <]
s 3 07 =) S £
Sy =} { 17 | { 25 — 31} { 55 p—+x]
Si 27] [25 31} (4] {53 <]

So {7 0 s B e B0 o 4 50 {55 —+x<]

@ Koream_

Skip Lists

= Search

Algorithm SkipSearch(k):
Input: A search key k
Output: Position p in the bottom list Sy with the largest key having key(p) <k

p=35 {begin at start position}
while below(p) # null do
p = below(p) {drop down}
while £ > key(next(p)) do
p = next(p) {scan forward}
return p

= Expected running time: O(log n)

Skip Lists

" |[nsertion
= E.g. Inserting 42

= =]
Co—m) L
L] (i 55 7] =]
=] ; oo i s
BN W "EI—EE S e

%

N o ST oy I o X

“

= New entries are in thick lines; their preceding
entries are flagged

= Expected running time: O(log n)

@ Korea_m

Algorithm Skiplnsert(k, v):
Input: Key k and value v
Output: Topmost position of the entry inserted in the skip list

p = SkipSearch(k) {position in bottom list with largest key less than &}
g = null {current node of new entry’s tower}
i = —1 {current height of new entry’s tower}
repeat
i =1i+1 {increase height of new entry’s tower}
ifi > h then s: top of the first tower
h=h-+1 t: top of the last tower {add a new level to the skip list}
t = next(s
s = insertAfterAbove(null, s, (—oc, null)) {grow leftmost tower}
insertAfterAbove(s, ¢, (+o0.null)) {grow rightmost tower}
g = insertAfterAbove(p. ¢. (k.v)) {add node to new entry’s tower}
while above(p) == null do
p = prev(p) {scan backward}
p = above(p) Add (k,v) after p {jump up to higher level}
until coinFlip() == tails and above q
n=n-+l
return ¢g {top node of new entry’s tower}

@ EORRE =

Skip Lists

= Removal
= E.g. Removing 25

nlp

¥
LI ;
Ii e Kl H

&
B

= Expected running time: O(log n)

@ Korea_‘_m

