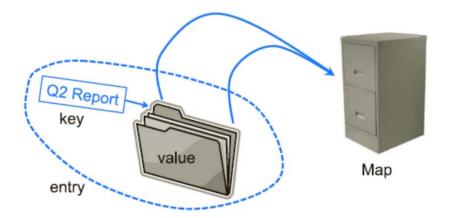
CSE214 Data Structures Maps

YoungMin Kwon

- Map
 - Map is an abstract data type for efficiently storing and retrieving values based on unique search keys
 - Maps store key-value pairs (k, v) called entries
 - Maps are also known as associative arrays
 - Keys serve somewhat like indexes into the map

Map examples



- Keys are labels
- Values are folders
- Map is the file cabinet

- Map examples
 - URL (http://datastructures.net) and the page contents
 - A student ID and the student's record
 - DNS maps host name (www.suny.ac.kr) to IP address
 221.143.20.101
 - In computer graphics, color name (Crimson) to RGB (0xdc, 0x14, 0x3c)

- size(): Returns the number of entries in M.
- isEmpty(): Returns a boolean indicating whether M is empty.
 - get(k): Returns the value v associated with key k, if such an entry exists; otherwise returns null.
 - put(k, v): If M does not have an entry with key equal to k, then adds entry (k, v) to M and returns null; else, replaces with v the existing value of the entry with key equal to k and returns the old value.
- remove(k): Removes from M the entry with key equal to k, and returns its value; if M has no such entry, then returns null.
 - keySet(): Returns an iterable collection containing all the keys stored in M.
 - values(): Returns an iterable collection containing all the *values* of entries stored in *M* (with repetition if multiple keys map to the same value).
- entrySet(): Returns an iterable collection containing all the key-value entries in M.

Map Abstract Data Type (Operations)

Method	Return Value	Мар	
isEmpty()	true	{}	
put(5,A)	null	$\{(5,A)\}$	
put(7,B)	null	$\{(5,A),(7,B)\}$	
put(2,C)	null	$\{(5,A),(7,B),(2,C)\}$	
put(8,D)	null	$\{(5,A),(7,B),(2,C),(8,D)\}$	
put(2,E)	C	$\{(5,A),(7,B),(2,E),(8,D)\}$	
get(7)	B	$\{(5,A),(7,B),(2,E),(8,D)\}$	
get(4)	null	$\{(5,A),(7,B),(2,E),(8,D)\}$	
get(2)	E	$\{(5,A),(7,B),(2,E),(8,D)\}$	
size()	4	$\{(5,A),(7,B),(2,E),(8,D)\}$	
remove(5)	A	$\{(7,B),(2,E),(8,D)\}$	
remove(2)	E	$\{(7,B),(8,D)\}$	
get(2)	null	$\{(7,B),(8,D)\}$	
remove(2)	null	$\{(7,B),(8,D)\}$	
isEmpty()	false	$\{(7,B),(8,D)\}$	
entrySet()	$\{(7,B),(8,D)\}$	$\{(7,B),(8,D)\}$	
keySet()	{7,8}	$\{(7,B),(8,D)\}$	
values()	$\{B,D\}$	$\{(7,B),(8,D)\}$	

Java Interface for Map ADT

```
public interface Map<K, V> {
    int size();
    boolean isEmpty();
    V get(K key);
    V put(K key, V value);
    V remove(K key);
    Iterable<K> keys();
    Iterable<V> values();
    Iterable<Entry<K,V>> entries();
}
public interface Entry<K, V> {
    public K key();
    public V value();
    public void setKey(K key);
    public void setValue(V value);
}
```


Application: Word Counter

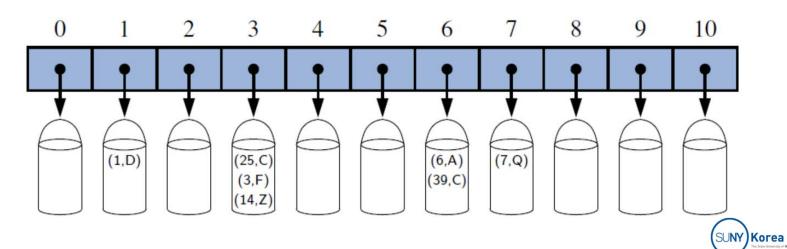
```
/** A program that counts words in a document, printing the most frequent. */
public class WordCount {
 public static void main(String[] args) {
   Map<String,Integer> freq = new ChainHashMap<>(); // or any concrete map
   // scan input for words, using all nonletters as delimiters
   Scanner doc = new Scanner(System.in).useDelimiter("[^a-zA-Z]+");
   while (doc.hasNext()) {
     String word = doc.next().toLowerCase(); // convert next word to lowercase
     Integer count = freq.get(word); // get the previous count for this word
     if (count == null)
       count = 0;
                                  // if not in map, previous count is zero
     freq.put(word, 1 + \text{count}); // (re)assign new count for this word
   int maxCount = 0;
   String maxWord = "no word";
   for (Entry<String,Integer> ent : freq.entrySet()) // find max-count word
     if (ent.getValue() > maxCount) {
       maxWord = ent.getKey();
       maxCount = ent.getValue();
   System.out.print("The most frequent word is '" + maxWord);
   System.out.println("' with " + maxCount + " occurrences.");
```

- Hash table
 - One of the most efficient data structures for implementing a map (also used most in practice)
 - Intuitive example:
 - Keys are integers
 - Lookup table is an array of length N

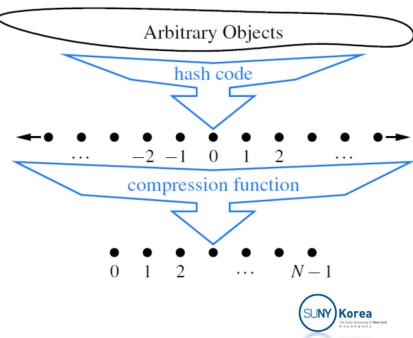
 A table of length 11 containing (1,D), (3,Z), (6,C), and (7,Q).

- Two challenges
 - We may NOT wish to devote an array of length N when $N \gg n$
 - Map's key may not be an integer in general

- Hash function
 - maps a general key to 0 ~ N-1
 - N is the capacity of bucket array
 - Two or more distinct keys can be mapped to the same index ⇒ bucket array



- Hash function
 - Use the hash function value h(k) as an index
 - Store an entry (k, v) in a bucket A[h(k)]
 - Collision: two or more entries are mapped to the same bucket in A
- Two parts of a hash function
 - Hash code: maps a key k to an integer
 - Compression function: maps the hash code to [0, N-1]
 - Hash code is independent to the bucket array size



Hash Codes

- Treating bit representations as an integer
 - byte, short, int, char, float ⇒ int
- How about long, double: larger than 32bit
 - Ignore the half: can collide easily
 - Combine them: add or xor the two halves
 - General objects of any size (x₀, x₁, ..., x_{n-1})

$$\blacksquare \ \mathsf{x}_0 \oplus \mathsf{x}_1 \oplus ... \oplus \mathsf{x}_{\mathsf{n-1}}$$

Hash Codes

- Polynomial hash codes
 - Using *add*, *xor* for $(x_0, x_1, ..., x_{n-1})$: easy to collide when the order of x_i 's is significant
 - E.g. "temp01", and "temp10"
 - "stop", "tops", "pots", and "spot"
 - Polynomial hash code (for a ≠ 1)
 - $x_0 a^{n-1} + x_1 a^{n-2} + ... + x_{n-2} a + x_{n-1}$
 - $x_{n-1} + a(x_{n-2} + a(x_{n-3} + ... + a(x_2 + a(x_1 + ax_0)) ...))$
 - Ignore the overflows
 - 3, 37, 39, 41 for $a \Rightarrow$ fewer than 7 collision for 50,000 English words

Hash Codes

- Cyclic-shift hash codes
 - A variant of the polynomial hash code
 - Multiplication by a ⇒ cyclic shift of a partial sum
 - <u>0011 1</u>101 1001 0110 1010 1000 1010 1000 ⇒ 1011 0010 1101 0101 0001 0101 0000 0111

```
static int hashCode(String s) {
  int h=0;
  for (int i=0; i<s.length(); i++) {
    h = (h << 5) | (h >>> 27); // 5-bit cyclic shift of the running sum
    h += (int) s.charAt(i); // add in next character
  }
  return h;
}
Shift right,
fill zero
```

Hash Code in Java

- Object class includes hashCode() method
 - A 32 bit integer for the object's memory address
- Issue with equals
 - Equivalent keys should have the same hash code
 - Otherwise, map may not function correctly
 - If x.equals(y), then x.hashCode() == y.hashCode()

Compression Functions

- Compression function
 - Maps the hash code into the range [0, N-1]
- The division method
 - i mod N
 - Making N a prime number helps spread out the distribution of the hashed values
 - Hash codes of {200, 205, 210, 215, ..., 595} will have 3 collisions when N is 100
 - No collisions when N is 101

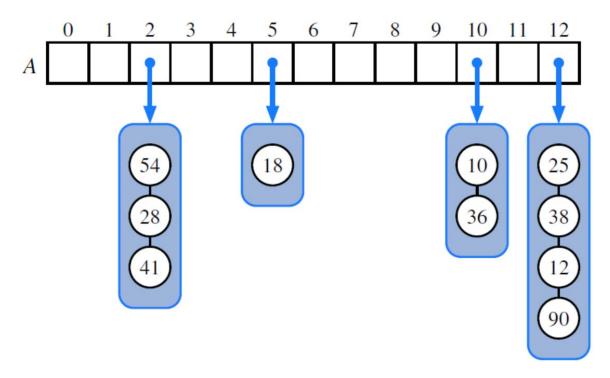
Compression Functions

- The MAD method
 - Multiply-Add-and-Divide (MAD)
 - [(a · i + b) mod p] mod N
 - N is the size of the bucket array
 - p is a prime number larger than N
 - a and b are integers chosen from [0, p-1] with a > 0

Collision Handling Schemes

Separate Chaining

- Separate chaining
 - Have each bucket A[j] store its own container for all entries (k, v) with h(k) = j

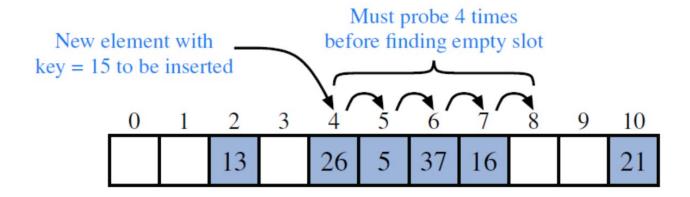


Collision Handling Schemes Separate Chaining

- Load factor
 - Assuming the use of a good hash function
 - Expected size of a bucket is n / N
 - n: number of entries in the map
 - N: the number of buckets
 - The search in a chain will take O(n / N)
 - The ratio $\lambda = n / N$ is called the load factor

- Separate chaining
 - Requires an auxiliary data structure (bucket)
- Open addressing
 - Stores entries directly in a table slot without using an auxiliary data structure
 - Several variants of this approach is collectively referred to as open addressing

- Linear probing
 - Let h(k) = j for an entry (k, v).
 - If A[j] is occupied, try A[(j+1) mod N], A[(j+2) mod N], and so on



- Linear proving
 - To delete: mark the entry with a defunct object
 - To search: from A[h(k)], look for an entry with k until an empty slot is encountered while skipping the defunct objects
 - Disadvantage: it tends to cluster entries into a contiguous runs

- Double hashing
 - Use a secondary hash function h'(k)
 - If A[h(k)] is occupied try A[(h(k) + f(i)) mod N], for i = 1, 2, 3, ... where f(i) = i · h'(k)
- Another approach
 - On collision, try A[(h(k) + f(i)) mod N], where f(i) is based on a pseudo random number generator

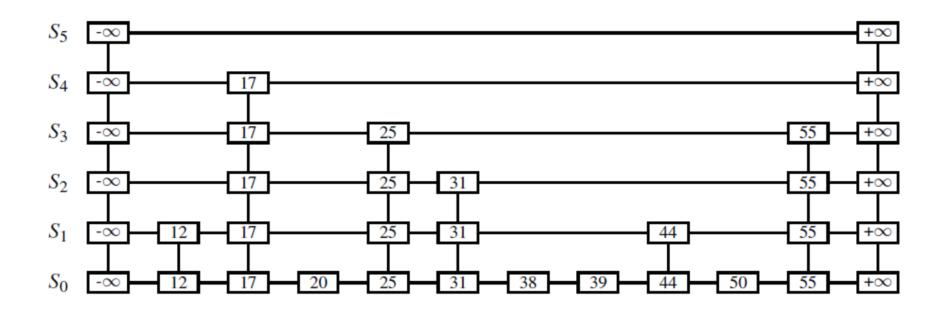
Rehashing

- Efficiency of hash table
 - It depends on keeping the load factor $\lambda = n/N$ low
 - Separate chaining: large λ increases the entries in a bucket
 - Open addressing: large λ grows the cluster of entries
- Rehashing
 - If λ go above a specified threshold, resize the table reapply the compression function to each entry
 - New table size: a prime number about the double of the current the size
 - Amortization: put is an O(1) operation

Efficiency of Hash Tables

Method	Hash Table	
Wiethou	expected	worst case
get	O(1)	O(n)
put	O(1)	O(n)
remove	O(1)	O(n)
size, isEmpty	O(1)	O(1)
entrySet, keySet, values	O(n)	O(n)

- A skip list S for a map M
 - Consists of a series of lists {S₀, S₁, ..., S_h}
 - Each list S_i stores a subset of entries of M sorted by keys and two sentinel keys denoted by -∞ and +∞
- Lists in S satisfy
 - S_0 contains every entry of M plus $-\infty$ and $+\infty$
 - S_i contains a randomly generated subset of S_{i-1} plus $-\infty$ and $+\infty$ for i = 1, ..., h-1,
 - S_h contains only $-\infty$ and $+\infty$



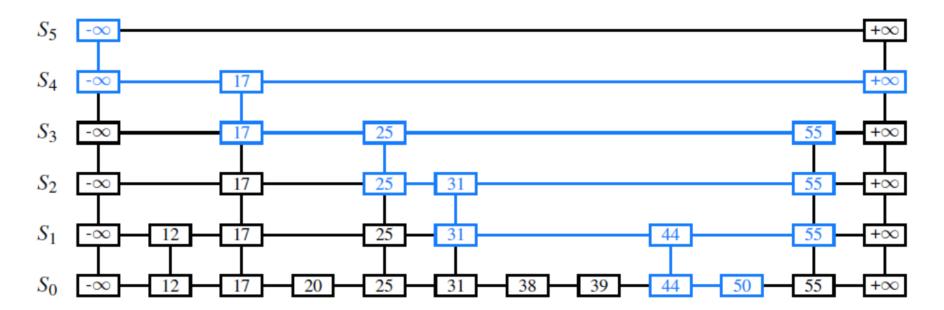
- Intuitively, S_{i+1} contains roughly alternate entries of S_i
- Randomization: for each entry in S_i, we flip a coin and add it to S_{i+1} if head comes up

- Representation
 - Two dimensional collection of positions (levels and towers)
 - Each level is a list S_i
 - Each tower contains positions storing the same entry

Positions in a skip list

```
prev(p): Returns the position following p on the same level. prev(p): Returns the position preceding p on the same level. prev(p): Returns the position above p in the same tower. prev(p): Returns the position below p in the same tower.
```


- Search
 - E.g. searching for 50



Search

```
Algorithm SkipSearch(k):

Input: A search key k

Output: Position p in the bottom list S_0 with the largest key having \text{key}(p) \leq k

p = s {begin at start position}

while \text{below}(p) \neq \text{null do}

p = \text{below}(p) {drop down}

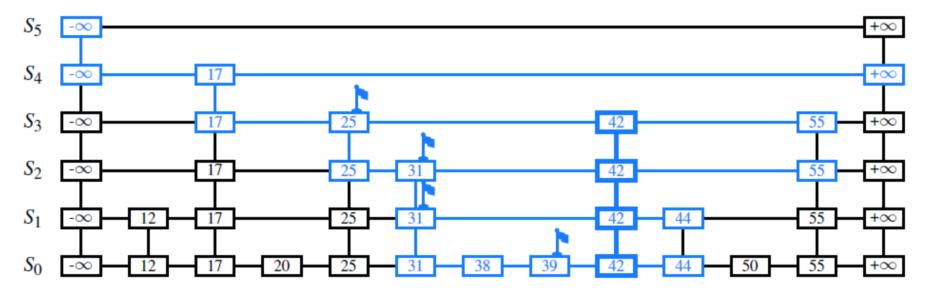
while k \geq \text{key}(\text{next}(p)) do

p = \text{next}(p) {scan forward}

return p
```

Expected running time: O(log n)

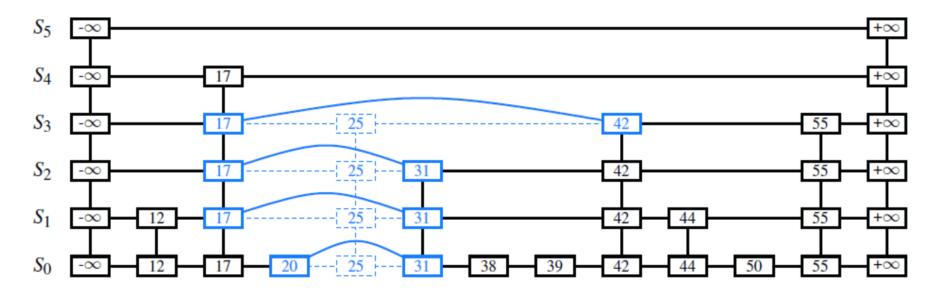
- Insertion
 - E.g. Inserting 42



- New entries are in thick lines; their preceding entries are flagged
- Expected running time: O(log n)


```
Algorithm SkipInsert(k, v):
   Input: Key k and value v
    Output: Topmost position of the entry inserted in the skip list
    p = \mathsf{SkipSearch}(k)
                                {position in bottom list with largest key less than k}
    q = \text{null}
                                                 {current node of new entry's tower}
                                                {current height of new entry's tower}
    i = -1
    repeat
      i = i + 1
                                               {increase height of new entry's tower}
       if i \ge h then
                          s: top of the first tower
                                                     {add a new level to the skip list}
                          t: top of the last tower
         s = \text{insertAfterAbove(null}, s, (-\infty, \text{null}))
                                                               {grow leftmost tower}
                                                              {grow rightmost tower}
          insertAfterAbove(s, t, (+\infty, null))
       q = insertAfterAbove(p, q, (k, v))
                                                     {add node to new entry's tower}
       while above(p) == null do
          p = \operatorname{prev}(p)
                                                                      {scan backward}
                                   Add (k,v) after p
       p = above(p)
                                                             {jump up to higher level}
                                   and above q
    until coinFlip() == tails
    n = n + 1
                                                     {top node of new entry's tower}
    return q
```

- Removal
 - E.g. Removing 25



Expected running time: O(log n)

