CSE214 Data Structures

Balanced Trees

YoungMin Kwon

Balanced Search Trees

= Running time of standard binary search tree

= For a random series of insertion and removal,
expected running time is O(log n)

= However, worst-case running time is O(n) when
the tree is unbalanced

Balanced Search Trees

= Given a binary search tree T,

= A position is balanced if the difference between
the height of its children is at most 1; otherwise,
unbalanced

= Balanced search trees reshape the tree structure to
be balanced

Balanced Search Trees

= Rotation operation: rotate(x)

T T5

= Keys in T1 are less than x
= Keysin T2 are in between x and y
= Keys in T3 are greater thany

Balanced Search Trees
" Trinode restructuring

= Combine one or more rotations to provide a broader
rebalancing within a tree

= Given a position x; its parent y; and its grand parent z

= Let g, b, and c be their renamed positions in the
order of their keys = make b the parent of a and c

@ Korea_‘_m

Balanced Search Trees

Trinode restructuring: restructure(x)
= Case 1:y and x are on the same side
" restructure(x) = rotate(y)

(@)

(b)

Balanced Search Trees

Trinode restructuring: : restructure(x)
= Case 2:y and x are on different sides
= restructure(x) = rotate(x) and rotate(x)

(d) @K?fea.ﬂ.

AVL Trees

= Height-balanced property

= For every internal position p of T, the heights of
the children of p differ by at most 1

= AVL tree

= Any binary tree that satisfies the height-balanced
property is an AVL tree

= AVL is named after the initials of its inventors:
Adel’son, Vel’skill, and Landis

@Koreaw

AVL Tree

= Example

* The numbers on nodes are the height of the
subtree rooted at the node

@Koreaw ‘

AVL Trees

® |nsertion

= Atree T was height balanced before adding a new
entry

= Adding an entry to a position p may violate the
height-balanced property

= The only positions that may be unbalanced are
the ancestors of p

@ Korea_‘_m

{a) (b)

" |nsertion example

= (a) after adding 54 to an AVL tree

= 7 is the first position that become unbalanced

= yand x are its child and grand child with greater heights
than their siblings

» (b) Trinode-restructuring on x restores the balance

@ Korea_m

AVL Tree o
Deletion El s

= Removing an entry from a balanced
tree may unbalance the tree
= zis the first unbalanced position
" yis z’s taller child

= x is y’s taller child or if they have the same height the same
sided one as y

= Trinode-restructuring on x restores the balance locally

@ Korea_‘_.m

AVL Tree

= Deletion

" The restructuring may reduce the height of the
subtree and may unbalance ancestors of the tree

= Repeat until the height is not changed or the root is
reached

AVL Trees

= Deletion example
= (a) 32 is deleted from an AVL tree
= (b) after trinode-restructuring on 78 (x)

(a) (b)

AVL Trees

= Proposition

"= The height h of an AVL tree storing n entries is
O(log n)

= Justification

= Let n(h) be the minimum number of internal nodes
of an AVL tree with height h

= We will show that n(h) grows at least exponentially

@ Korea_‘_.!.

AVL Trees

= Justification (continued)
= n(1) =1, n(2) =2,

" n(h)=1+n(h-1)+n(h-2)
" root, subtree with height h-1, subtree with height h-2

= Because n(h-1) > n(h-2)

= nh) > 2-n(h-2)
> 4 -n(h-4)
> 8-n(h-6)

> 2inth=2-i)

AVL Trees

= Justification (continued)

= Pick jsuch thath—2 -i iseitherlor2 (i=|h/2]-1)

= n(h)>2!M21-1 . nh=2[h/2]+2)
> 21h2]-1. (1)
> 2 h/2 -1

= Taking logs on both sides
= log(n(h))>h/2-1
= Hence, h< 2 log(n(h))+ 2

= AVL trees storing n entries have height at most
2logn+2
s

Multiway Search Tree

" Multiway search tree T

= Let w be a node of an ordered tree; wis d-node if w
has d children

= Each internal node of T has at least two children

= Each internal d-node of T has an ordered set of d-1
keys: k; < ... < k4

= Each entry stored at a subtree
rooted at ¢, has keys k
such that k., < k < k;

= A multiway search tree

(2,4)-Trees

= (2,4) tree AKA 2-4 tree or 2-3-4 tree

= A multiway search tree (2-4 tree is a B-tree)

= Sjize property: every internal node has at most 4
children

= Depth property: all external nodes have the same

(2,4)-Trees

® |nsertion

= Add the new entry to an external node

= The depth property is preserved, but the size property
may be violated (overflow)

= Split operation to fix the overflow

(2-4)-Trees

= Split operation on'w

= Replace w with two nodes w’ and w”’
= w'is a 3-node with children c,, c,, c; and keys k; and k,
= w' is a 2-node with children c,, c; and keys k,

= |f wis the root of T, create a new node u;
otherwise, u is the parent of w

= Insert k; into u and make w' and w" children of u

" As a consequence of a split on w, an overflow
may occur on u

= Split u until no more overflow occurs

@Koreaw ‘

(2,4)-Trees

= Split operation

u u u
/@D\ 2 o,
W w ; ' y '
k1 k2 R ki1 k2 Jr:"

C1 C? C3 C4 Cs Cl &) C3 C4 £§ £} C? C3 C4 Cs

(2-4)-Trees

® |nsertion

= (a) before the insertion

= (b) adding 17 causes an overflow

(2,4)-Trees

= (c) split

= (d) after split, a new overflow occurs

(2,4)-Trees

= (e) another split, creating a new root node

= (f) final tree

(2,4)-Trees

= Deletion

= Removing an internal node — removing an
external node

= When removing (k, v,) from z, find the rightmost
external node rooted at the ith child

= Swap (k;, v,) at z with the last entry of w

= Removing an entry preserves the depth property,
but the size property may be violated (underflow)

@ Korea_m

(2,4)-Trees

= To fix underflow at w

" Transfer operation: if an immediate sibling is a 3-
node or 4-node, move a key of the sibling to w

= Fusion operation: otherwise,
" Merge w with a sibling
" Create a new node w’
* Move a key from the parent u of w to w’

(2,4)-Trees

= (a) removal of 4 caused underflow

= (b) a transfer operation

(2,4)-Trees

= (c) after the transfer operation

= (d) removal of 12, causes an underflow at an
external node

@ Korea_‘_.m

(2,4)-Trees

= (e) a fusion operation

= (f) after the fusion operation

(2,4)-Trees

= (g) removal of 13

= (h) after removing 13

(2,4)-Trees

= (a) removal of 14 causes an underflow
= (b) fusion, which causes another underflow

(2,4)-Trees

= (c) second fusion, which causes the root to be removed
= (d) final tree

= Exercise:
= Remove 17, 15, 14, 13 from the first (2,4)-tree example

@ Korea_‘_m

(2,4)-Trees

= Proposition
" The height h of a (2,4)-tree storing n element is O(log n)

= Justification
= We will prove that 0.5 log(n +1) < h < log(n + 1)

= The number of external nodes: at most 4"; at least 2P
= At depth 1: at most 4 nodes; at least 2 nodes
= At depth 2: at most 42 nodes; at least 22 nodes, ...

= A tree with n entries has n + 1 external nodes
= Hence, 2" <n+1 < 4h
= Taking logs: h < log(n +1) < 2h

@ Korea_‘_.!.

Red-Black Trees

= Ared-black tree is a binary tree with nodes
colored in red or black such that

= Root property: the root is black

= Fxternal property: every external node is black

= Red property: the children of a red node is black

= Depth property: all external nodes have the same black

depth

= Black depth: the number of ancestors that are black

@ Korea_‘_m

= Example

Red-Black Trees

Red-Black Trees

= Correspondence between (2,4)-trees and red-
black trees

/()\ (a)
/‘ | '\ (b)

(¢)

Red-Black Trees

= Searching in a red-black tree

= The same as that for a standard binary tree

" Analogy to (2,4)-Trees
= Split operation: recoloring
= Fuse operation: recoloring
= Transfer operation: trinode restructuring + recoloring

= QOrientation of 3 nodes: rotation
= (b) in a previous slide

Red-Black Trees

= |nsertion of x
= |f this is the first entry, x is the root and is black
= Otherwise, we color x red

=" The root and the depth properties are preserved
* The red property (double-red at node x) may be
violated

" In this case, its parent is red and its grand parent is
black

@ Ko rea

Red-Black Trees (Insertion)

= Case 1: x'suncle sis black

= Malformed 4-node

" Trinode restructuring on x and

= Recoloring can fix the problem
= b = blackand a, c = red

Red-Black Trees (Insertion)

= Case 2: x’suncle sis red

= Overflow case

Red-Black Trees (Insertion)

= Case 2: x’sunclesisred (cont’d)

= Recoloring: vy, s = black; z = red unless it is the root

= Black depth is unaffected

= 7 may cause another double-red problem = recursively fix
the double-red problem

Red-Black Trees (Insertion)

"t e, o
@‘%%Mm

(h)

@ Korea_m

Red-Black Trees (Insertion)

@ Korea_m

Red-Black Trees (Insertion)

(m) (n)

(p)

Red-Black Trees (Deletion)

= Deletion of n

= Delete a node like a binary search tree
= If n has two internal children: swap it with its predecessor

" |f nisred = the depth and the red properties are
maintained (shrinking of 4-node or 3-node)

" |f nis black and has one red child = promote
the child and recolor it to black (3-node) =

= |f nis black and both of its children are black
(removal from a 2-node: underflow) = next slides

@ Korea_m

Red-Black Trees (Deletion)
= Case 1: p's sibling is black and has a red child x

= pisthe promoted child of n marked in double-black

" Trinode restructure on x (transfer of 2-4 tree)
= b = 7’s previous color and a, ¢ = black

2 @ < original color

Keep the

Red-Black Trees (Deletion)

" Case 2: p's sibling is black with two black children;
p’s parent is red

= Recoloring (fusion operation of (2,4)-trees)
" v = red, z = black
= The process ends here

= y, z path: same black depth
= p, z path: increased black depth (deficiency is fixed)

@ Koreaw

Red-Black Trees (Deletion)

" Case 2": p’s sibling is black with two black children;
p’s parent is black

-

p v p
. ¥ O - oo
() ©

= Recoloring (fusion operation of (2,4)-trees)
" v = red, z = double-black

= Cascading the problem upward
= vy, z path: same black depth
= p, z path: same black depth (deficiency is NOT fixed)

@ Korea_m

Red-Black Trees (Deletion)

= Case 3: p’ssibling is red

30 p

y <
20

= Rotate y and z (reorientation of a 3-node)
= Recolor:y = black, z = red

= After the rotation, p’s sibling is black

Red-Black Trees (Deletion)

(a) (b)

(C) (d)

Red-Black Trees (Deletion)

(e) ()

(h) (k)

= EXxercise:
" Remove 15, 16, 18, 17, 12, 14,7, 5, 3, 4 from (a) ().

Red-Black Trees

= Proposition

= The height h of a red-black tree storing n entries is
O(log n)

= Justification
= Will prove that log(n +1) < h < 2 log(n + 1)

= Let d be the black depth of all external nodes; let /1’ be
the height of the corresponding (2,4)-tree
= d=h <log(n+1)
= By the red property h < 2d.
= Hence, h < 2 log(n + 1)
= Skipping the other half: it comes from the properties of
binary trees (when (2,4)-tree is a binary tree)

@Koreaw ‘

Assignment 9

" |n this assignment, we will
" Implement key methods of a heap
" Implement key methods of a red-black tree
" Find a shortest path using priority queue
= Play the Pac-Man game

= Download hw9.zip
= Implement all TODO lines
= Zip the java files you modified and submit it

= Due date: 5/26/2022

Assignment 9

" Java files to update
= RBTree.java: a Red-Black tree

= RBTreeQueue.java: a priority queue using an
RBTree

= Path.java: a shorted path algorithm

Assignment 9

= Expected result from RBTree.java

java RBTree

J 1*)

J @*) 2*)

J @ J 2 J 3*J

0, 3, 2%, 4%,

J @ J 3*.’ 2 J 4 J 5*.’

J @ J 3*.’ 2 J 5 J 4*) 6*)

J 1*) e J 2 J 5*) 4 J 6 J 7*)

J 1*) @ J 2 J S*J 4 J 7 J 6*) 8*)

WWWRRRRROO®
o

)1)@.!2)5)4)7*)6)8)9*)
Success: increasing order

Success: decreasing order

Success: random order

@ Korea_‘_m

Assignment 9

" When you are done, enjoy the Pac-Man game

