CSE214 Data Structures Heaps

YoungMin Kwon

Priority Queues

- Priority queue by unsorted list
 - O(1) to insert
 - O(n) to find or remove
- Priority queue by sorted list
 - O(n) to insert
 - O(1) to find or remove

Priority Queues

- Priority queue by binary heap
 - O(log n) to insert
 - O(log n) to remove
 - O(1) to find
- Binary heap
 - Use the structure of a binary tree
 - Data is neither entirely unsorted nor perfectly sorted

Heap Data Structure

- A heap is a binary tree T that satisfies
 - A relational property and a structural property

Heap Data Structure

- Heap-order property (relational property)
 - For every non-root position p in T, the key of p is greater than or equal to its parent's key
 - The keys encountered in a path from the root is non-decreasing order
 - The minimal key is always stored at the root

Heap Data Structure

- Complete binary tree property (structural property)
 - A heap T with height h is a complete binary tree if levels 0, 1, 2, ..., h-1 of T have the maximal number of nodes possible (level i has 2ⁱ nodes)
 - The remaining nodes at level h resides in the leftmost possible positions at that level

Height of a Heap

- Proposition
 - A heap T storing n entries has height $h = \lfloor \log n \rfloor$
- Proof
 - From the completeness,
 - The number of nodes in level 0 through h-1 is $1+2+4+...+2^{h-1}=2^h-1$
 - The number of nodes in level h is at least 1 and at most 2^h
 - Hence, $2^h 1 + 1 \le n \le 2^h 1 + 2^h$ $2^h \le n \le 2^{h+1} - 1$
 - Take log on both sides: $h \le log n$ and $h \ge log(n+1) 1$
 - Because h is an integer, $h = \lfloor log n \rfloor$

- Complete binary tree property
 - New node should be placed at just beyond the rightmost node at the bottom level
 - Or the leftmost position of a new level

- Adding the new node may break the heaporder property
- Up-heap bubbling
 - Compare the key of position p and its parent's key
 - If the parent has a larger key, swap the entries
 - Repeat the above until the swapping stops
- The bound of up-heap bubbling is \[log n \]

- Removing the entry with the minimal key
 - The entry with the smallest key is at the root
 - Deleting the root would leave two disconnected trees
- To maintain complete binary tree property
 - After deleting the root, move the rightmost node at the bottom level to the root

- Moving the node may break the heap-order property
- Down-heap bubbling
 - From a position p, find the child c that has the smaller key
 - Compare the key of p and the key of c
 - If the p has a larger key, swap the entries
 - Repeat the above until the swapping stops or p reaches the bottom level
- The bound of down-heap bubbling is log n

Complete Binary Tree by Array

- Array based representation of binary trees
 - Especially useful for a complete binary tree
- Let index (p) be the index of position p
 - If p is the root, then index (p) = 0
 - If p is the *left child* of q, then $index(p) = 2 \cdot index(q) + 1$
 - If p is the *right child* of q, then $index(p) = 2 \cdot index(q) + 2$

Complete Binary Tree by Array

Complete Binary Tree by Array

- Benefits of using arrays for heaps
 - insert and removeMin need to find the last position of the heap
 - In array, its position is *n*-1 if the heap size is *n*
- Space usage is O(n)
- Time complexity of *insert*
 - O(log(n)) for static array, O(n) for dynamic array
- Time complexity of removeMin
 - O(log(n))

Java Implementation of Heap

```
public class HeapPriorityQueue<K extends Comparable<K>, V>
              extends AbstractPriorityQueue<K, V> {
    protected ArrayList<Entry<K, V>> heap;
    //constructors
    public HeapPriorityQueue() {
        super();
        heap = new DynamicArrayList<Entry<K, V>>();
    public HeapPriorityQueue(Comparator<K> comp) {
        super(comp);
        heap = new DynamicArrayList<Entry<K, V>>();
    //protected utilities
    protected int parent(int j) { return (j-1)/2; }
protected int left(int j) { return 2*j + 1; }
    protected int right(int j) { return 2*j + 2; }
    protected boolean hasLeft(int j) { return left(j) < heap.size(); }</pre>
    protected boolean hasRight(int j) { return right(j) < heap.size(); }</pre>
```

```
//exchange entries
protected void swap(int i, int j) {
    Entry<K, V> tmp = heap.get(i);
   heap.set(i, heap.get(j));
   heap.set(j, tmp);
//up-heap
protected void upheap(int j) {
   while(j > 0) {
        int p = parent(j);
        if(compare(heap.get(j), heap.get(p)) >= 0)
            break;
        swap(j, p);
        j = p;
```



```
//down-heap
protected void downheap(int j) {
   while(hasLeft(j)) {
        int 1 = left(j);
        int c = 1; //child to compare (smaller of 1 and r)
        if(hasRight(j)) {
            int r = right(j);
            if(compare(heap.get(1), heap.get(r)) > 0)
                c = r;
        }
        if(compare(heap.get(c), heap.get(j)) >= 0)
            break;
        swap(j, c);
        j = c;
```



```
//public methods
public int size() { return heap.size(); }
public Entry<K, V> min() {
    if(heap.isEmpty())
        return null;
    return heap.get(0);
}
public Entry<K, V> insert(K key, V value)
                   throws IllegalArgumentException {
    checkKey(key);
    Entry<K, V> newest = new PQEntry<K, V>(key, value);
    heap.add(heap.size(), newest);
    upheap(heap.size() - 1);
    return newest;
public Entry<K, V> removeMin() {
    if(heap.isEmpty())
        return null;
    Entry<K, V> ret = heap.get(0);
    swap(0, heap.size() - 1);
    heap.remove(heap.size() - 1);
    downheap(∅);
    return ret;
```



```
//unit test methods
protected static void onFalseThrow(boolean b) {
    if(!b)
        throw new RuntimeException("Error: unexpected");
public static void main(String[] args) {
    HeapPriorityQueue<Integer, String> pq = new HeapPriorityQueue<>();
    pq.insert(9, "9"); pq.insert(6, "6");
    pq.insert(5, "5"); pq.insert(4, "4");
    pq.insert(2, "2"); pq.insert(8, "8");
    pq.insert(7, "7"); pq.insert(1, "1");
    pq.insert(3, "3"); pq.insert(0, "0");
    onFalseThrow(pq.size() == 10);
    for(int i = 0; i < 10; i++)
        onFalseThrow(pq.removeMin().getValue().equals("" + i));
    onFalseThrow(pq.isEmpty());
    System.out.println("Success!");
```


Sorting with a Priority Queue

- Sorting algorithm
 - Phase 1: add elements of a list to a priority queue as keys using insert
 - Phase 2: extract elements from the priority queue and put the keys back to the list using removeMin

Sorting with a Priority Queue

Selection Sort

 If priority queue P is implemented as an unsorted list

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	()
Phase 1	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(7, 4)
	:	:	:
	(g)	()	(7, 4, 8, 2, 5, 3, 9)
Phase 2	(a)	(2)	(7, 4, 8, 5, 3, 9)
	(b)	(2, 3)	(7, 4, 8, 5, 9)
	(c)	(2, 3, 4)	(7, 8, 5, 9)
	(d)	(2, 3, 4, 5)	(7, 8, 9)
	(e)	(2, 3, 4, 5, 7)	(8, 9)
	(f)	(2, 3, 4, 5, 7, 8)	(9)
	(g)	(2, 3, 4, 5, 7, 8, 9)	()

Selection Sort

- Running time
 - Phase 1: insert takes O(1) time for each element
 - Phase 2: selecting min element in removeMin takes a time proportional to the number of elements

$$O(n+(n-1)+\cdots+2+1) = O\left(\sum_{i=1}^{n} i\right)$$

• Selection sort is $O(n^2)$

Insertion Sort

 If priority queue P is implemented as a sorted list

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	()
Phase 1	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(4, 7)
	(c)	(2, 5, 3, 9)	(4, 7, 8)
	(d)	(5, 3, 9)	(2, 4, 7, 8)
	(e)	(3, 9)	(2, 4, 5, 7, 8)
	(f)	(9)	(2, 3, 4, 5, 7, 8)
	(g)	()	(2, 3, 4, 5, 7, 8, 9)
Phase 2	(a)	(2)	(3, 4, 5, 7, 8, 9)
	(b)	(2, 3)	(4, 5, 7, 8, 9)
	÷	:	:
	(g)	(2, 3, 4, 5, 7, 8, 9)	()

Insertion Sort

- Running time
 - Phase 1: inserting an element to its position takes a time proportional to the number of elements

$$O(n+(n-1)+\cdots+2+1) = O\left(\sum_{i=1}^{n} i\right)$$

- Phase 2: removeMin takes O(1) time for each element
- Insertion sort is $O(n^2)$

Heap Sort

- Running time
 - Phase 1: the i^{th} insert operation takes O(log i) time → this phase takes O(n log n) time
 - Phase 2: the j^{th} removeMin operation takes $O(log(n-j+1)) \rightarrow$ this phase takes O(n log n) time.

Heap Sort In-place

- Heap sort without using extra space
 - Redefine heap operations to be maximumoriented (root is the maximum element)
 - Starting as an empty heap, insert array elements at 0 ... n-1 to the heap
 - Remove elements from the heap and place them from the end of the array

Heap Sort In-place

Assignment 8

- In this assignment, we will
 - Implement key methods of a heap
 - Find a shortest path using priority queue
 - Play a Pac-Man game
- Download hw8.zip
 - Implement all TODO lines
 - Zip the java files you modified and submit it
- Due date: TBD

Assignment 8

- Java files to update
 - Heap.java: a heap
 - HeapQueue.java: a priority queue using Heap
 - Path.java: a shorted path algorithm
 - The paths with dots are shorter than the paths without them

Assignment 8

Find who is the Pac-Man champion

