CSE214 Data Structures
Heaps

YoungMin Kwon



Priority Queues

" Priority queue by unsorted list
= O(1) to insert
= O(n) to find or remove

" Priority queue by sorted list
= O(n) to insert

= O(1) to find or remove



Priority Queues

= Priority queue by binary heap
* O(log n) to insert
" O(log n) to remove
= O(1) to find

= Binary heap
= Use the structure of a binary tree

= Data is neither entirely unsorted nor perfectly
sorted

@Koreaw ‘



Heap Data Structure

= A heapis a binary tree T that satisfies

= Arelational property and a structural property




Heap Data Structure

= Heap-order property (relational property)

= For every non-root position pinT, the key of p is
greater than or equal to its parent’s key

* The keys encountered in a path from the root is
non-decreasing order

= The minimal key is always stored at the root



Heap Data Structure

= Complete binary tree property (structural

property)
= A heap T with height h is a complete binary tree if

levels O, 1, 2, ..., h-1 of T have the maximal
number of nodes possible (level i has 2! nodes)

" The remaining nodes at level h resides in the
leftmost possible positions at that level



Height of a Heap

= Proposition
= A heap T storing n entries has height h = Llog n|

= Proof

= From the completeness,

= The number of nodes in level 0 through h-1 is
1+2+4+ .. +2h-1=2h—1

= The number of nodes in level h is at least 1 and
at most 20

" Hence,2h-1+1<n<2h—-1+2"h
2h < n <2M1-1

= Take log on both sides: h < log n and h = log(n+1) — 1
= Because h is an integer, h = |_log n| o



Adding to the Heap

" Complete binary tree property

= New node should be placed at just beyond the
rightmost node at the bottom level

= Or the leftmost position of a new level



Adding to the Heap

" Adding the new node may break the heap-
order property

= Up-heap bubbling
= Compare the key of position p and its parent’s key
= |f the parent has a larger key, swap the entries
= Repeat the above until the swapping stops

" The bound of up-heap bubbling is Llog n|



Adding to the Heap




Adding to the Heap




Removing from the Heap

= Removing the entry with the minimal key
= The entry with the smallest key is at the root

= Deleting the root would leave two disconnected
trees

" To maintain complete binary tree property

= After deleting the root, move the rightmost node
at the bottom level to the root

@Koream



Removing from the Heap

" Moving the node may break the heap-order
property

= Down-heap bubbling

= From a position p, find the child ¢ that has the smaller
key

= Compare the key of p and the key of ¢
= |f the p has a larger key, swap the entries

= Repeat the above until the swapping stops or p reaches
the bottom level

" The bound of down-heap bubbling is L/og n|
E)rorea_



Removing from the Heap




Removing from the Heap




Complete Binary Tree by Array

= Array based representation of binary trees
= Especially useful for a complete binary tree

= letindex (p) be the index of position p

" |f pis the root, then
index (p) =0

" |f pisthe left child of g, then
index(p) = 2 - index (g) + 1

" |f pisthe right child of g, then
index (p) = 2 - index (g) + 2



Complete Binary Tree by Array

(4.0)




Complete Binary Tree by Array

" Benefits of using arrays for heaps

= nsert and removeMin need to find the last position of
the heap

" |n array, its position is n-1 if the heap size is n

= Space usage is O( n)
" Time complexity of insert
= O(/log(n) ) for static array, O( n ) for dynamic array

" Time complexity of removeMin
" O(/og(n))

@ Korea_‘_.!.



Java Implementation of Heap

public class HeapPriorityQueue<K extends Comparable<K>, V>
extends AbstractPriorityQueue<K, V> {
protected ArrayList<Entry<K, V>> heap;

//constructors
public HeapPriorityQueue() {
super();
heap = new DynamicArrayList<Entry<K, V>>();
}
public HeapPriorityQueue(Comparator<K> comp) {
super(comp);
heap = new DynamicArrayList<Entry<K, V>>();
}

//protected utilities

protected int parent(int j) { return (j-1)/2; }

protected int left(int j) { return 2*j + 1; }

protected int right(int j) { return 2*j + 2; }

protected boolean hasLeft(int j) { return left(j) < heap.size(); }
protected boolean hasRight(int j) { return right(j) < heap.size(); }

@ Korea_‘_m



//exchange entries

protected void swap(int i, int j) {
Entry<K, V> tmp = heap.get(i);
heap.set(i, heap.get(j));
heap.set(j, tmp);

}

//up-heap
protected void upheap(int j) {
while(j > 0) {
int p = parent(j);
if(compare(heap.get(j), heap.get(p)) >= 0)

break;
swap(J, P);
J =P

@Koreaw ‘



//down-heap
protected void downheap(int j) {
while(hasLeft(j)) {
int 1 = left(j);
int ¢ = 1; //child to compare (smaller of 1 and r)
if(hasRight(j)) {
int r = right(j);
if(compare(heap.get(l), heap.get(r)) > 9)
C =r;

}

if(compare(heap.get(c), heap.get(j)) >= 0)
break;

swap(j, ¢);

J = c;

@Koreaw ‘



//public methods

public int size() { return heap.size(); }
public Entry<K, V> min() {
if(heap.isEmpty())

return null;
return heap.get(9);
}
public Entry<K, V> insert(K key, V value)
throws IllegalArgumentException {
checkKey (key);
Entry<K, V> newest = new PQEntry<K, V>(key, value);
heap.add(heap.size(), newest);
upheap(heap.size() - 1);
return newest;

}

public Entry<K, V> removeMin() {
if(heap.isEmpty())

return null;

Entry<K, V> ret = heap.get(9);
swap(@, heap.size() - 1);
heap.remove(heap.size() - 1);
downheap(9);
return ret;

}

@Koream



//unit test methods
protected static void onFalseThrow(boolean b) {
if(!b)
throw new RuntimeException("Error: unexpected");
}
public static void main(String[] args) {
HeapPriorityQueue<Integer, String> pg = new HeapPriorityQueue<>();
pg.insert(9, "9"); pg.insert(6, "6");
pg.insert(5, "5"); pg.insert(4, "4");
pg.insert(2, "2"); pg.insert(8, "8");
pg.insert(7, "7"); pqg.insert(1, "1");
pg.insert(3, "3"); pg.insert(o, "0");

onFalseThrow(pq.size() == 10);

for(int 1 = 9; i < 10; i++)
onFalseThrow(pq.removeMin().getValue().equals(

onFalseThrow(pq.isEmpty());

System.out.println("Success!");

+1));

@Koreaw ‘



Sorting with a Priority Queue

= Sorting algorithm

" Phase 1: add elements of a list to a priority queue
as keys using insert

" Phase 2: extract elements from the priority queue
and put the keys back to the list using removeMin



Sorting with a Priority Queue

/%% Sorts sequence S, using initially empty priority queue P to produce the order. */
public static <E> void pqSort(PositionalList<E> S, PriorityQueue<E,?> P) {
int n = S.size();
for (int j=0; j < n; j++) {
E element = S.remove(S . first());
P.insert(element, null); // element is key; null value
}
for (int j=0; j < n; j++) {
E element = P.removeMin().getKey( );
S.addLast(element); // the smallest key in P is next placed in S

}
}

@ EORRE =



Selection Sort

= |f priority queue P is implemented as an

unsorted list

Sequence S

Priority Queue P

Input (7.4,8,205, 3,0) 0
Phase 1  (a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7, 4)
(g) () (7,4,8,2,5,3,0)
Phase 2 (a) (2) (7, 4,8,5, 3,9)
(b) (2, 3) (7, 4,8,5,9)
(c) (2, 3, 4) (7, 8, 5, 9)
(d) (2, 3, 4, 5) (7, 8, 9)
(e) (2, 3, 4,5, 7) (8, 9)
® | (2.3, 4,57, 8) (9)
(g)](2 3,45,7,8,9) ()

@ Korea_m



Selection Sort

= Running time
= Phase 1: insert takes O(1) time for each element

" Phase 2: selecting min element in removeMin
takes a time proportional to the number of
elements

On+n—1)+---+2+4+1)=0 (Zr)

i=1

= Selection sort is O(n?)



Insertion Sort

= |f priority queue P is implemented as a sorted

list

Sequence S

Priority Queue P

Input (7. 4, 8, 2, 5, 3, 9) 0
Phase 1 (a) [ (4,8, 2,5,3,9) (7)
(b) (8, 2,5, 3, 9) (4, 7)
(c) (2, 5, 3, 9) (4,7, 8)
(d) (5, 3, 9) (2, 4,7, 8)
() (3, 9) (2, 4,5,7,8)
(f) (9) (2, 3,4,5,7,8)
(2) () (2,3,4,5, 7,8, 9)
Phase 2 (a) (2) (3,4,5,7,8,9)
(b) (2, 3) (4,5, 7, 8,0)
(g) | (2,3,4,5,7,8,9) ()

@ Korea_m



Insertion Sort

= Running time

= Phase 1: inserting an element to its position takes
a time proportional to the number of elements

On+n—1)+---+2+4+1)=0 (Z:)

i=1

= Phase 2: removeMin takes O(1) time for each
element

" |nsertion sort is O(n?)



Heap Sort

= Running time

= Phase 1: the it insert operation takes O(/log i) time
— this phase takes O(n log n) time

= Phase 2: the j'" removeMin operation takes
O(log (n—j + 1)) — this phase takes O(n log n)
time.



Heap Sort In-place

" Heap sort without using extra space

= Redefine heap operations to be maximum-
oriented (root is the maximum element)

= Starting as an empty heap, insert array elements
at 0 ... n-1 to the heap

= Remove elements from the heap and place them
from the end of the array

@Koreaw ‘



(a)

(b)

(c)

(d)

(e)

(f)

[~]
=~
L
)]
~]
\O

Heap Sort
In-place



Assignment 8

" |n this assighment, we will
" Implement key methods of a heap
" Find a shortest path using priority queue
= Play a Pac-Man game

" Download hw8.zip
" Implement all TODO lines
= Zip the java files you modified and submit it

= Due date: TBD

@Koreah ‘



Assignment 8

" Java files to update
" Heap.java: a heap
= HeapQueue.java: a priority queue using Heap

= Path.java: a shorted path algorithm

" The paths with dots are shorter than the paths without
them



Assignment 8

" Find who is the Pac-Man champion




