# CSE214 Data Structures Order of Complexity

YoungMin Kwon



#### **Analysis Tools**

- Data structure
  - A systematic way of organizing and accessing data
- Algorithm
  - A step-by-step procedure for performing some tasks in a finite amount of time
- Analysis tool
  - A measure that can tell how "good" a data structure or an algorithm is
  - Running time
  - Space usage



#### **Empirical Analysis**

- Record the running time
  - currentTimeMillis(): the number of milliseconds since 1/1/1970 UTC.
  - nanoTime(): for more accurate measurements

```
long startTime = System.currentTimeMillis(); // record the starting time
/* (run the algorithm) */
long endTime = System.currentTimeMillis(); // record the ending time
long elapsed = endTime - startTime; // compute the elapsed time
```



#### **Empirical Analysis**

- Measure the running-time many times
  - With respect to varying input size and structure
  - Plot the running-time
  - Find the best fitting function through statistical analyses
- Challenges of experimental analysis
  - The measured time may vary depending on the environments (computer's CPU power, amount of memory, what other processes are running concurrently)
  - Limited set of test inputs
  - An algorithm must be fully implemented



# Empirical Analysis (Example)

```
/** Uses repeated concatenation to compose
     a String with n copies of character c. */
public static String repeat1(char c, int n) {
 String answer = "";
 for (int j=0; j < n; j++)
   answer += c;
 return answer;
/** Uses StringBuilder to compose a String
            with n copies of character c. */
public static String repeat2(char c, int n) {
 StringBuilder sb = new StringBuilder();
 for (int j=0; j < n; j++)
   sb.append(c);
 return sb.toString();
```



# Empirical Analysis (Example)

| n          | repeat1 (in ms) | repeat2 (in ms) |
|------------|-----------------|-----------------|
| 50,000     | 2,884           | 1               |
| 100,000    | 7,437           | 1               |
| 200,000    | 39,158          | 2               |
| 400,000    | 170,173         | 3               |
| 800,000    | 690,836         | 7               |
| 1,600,000  | 2,874,968       | 13              |
| 3,200,000  | 12,809,631      | 28              |
| 6,400,000  | 59,594,275      | 58              |
| 12,800,000 | 265,696,421     | 135             |



- To compose 12,800,000 strings
  - repeat1 takes more than 3 days
  - repeat2 takes less than a second



#### Beyond Experimental Analysis

- Desirable properties
  - Independent of h/w or s/w environments
  - No need for implementations
  - Account for all possible inputs
- Counting primitive operations
  - E.g. assignment, following an object reference, arithmetic operation, indexing an array element, calling a method, returning from a method
  - Associate a function f(n): the count of primitive operations in terms of the input size n



## Beyond Experimental Analysis

- Focusing on the worst-case input
  - Average-case analysis: need a probability distribution on the set of inputs (difficult to obtain)
  - Worst-case analysis: if an algorithm works well on the worst-case, it works well on every input





- Constant function
  - f(n) = c
  - E.g. a sequential block of code
- Linear function
  - f(n) = n
  - E.g. finding the max from an array



#### Logarithm function

- $f(n) = \log_b n$
- $x = \log_b n$  if and only if  $b^x = n$
- For CS, base b=2 is typical and we will omit it
- E.g. binary search on a sorted array

#### Logarithm rules

- $-\log_b(a/c) = \log_b a \log_b c$
- $-\log_b a = \log_d a / \log_d b$
- $b^{\wedge} \log_d a = a^{\wedge} \log_d b$



- N-log-N function
  - $f(n) = n \cdot \log n$
  - E.g. fast sorting algorithms such as quick sort



#### Quadratic function

$$f(n) = n^2$$

E.g. nested loop

$$1+2+3+\cdots+(n-2)+(n-1)+n=\frac{n(n+1)}{2}$$



- Cubic function
  - $f(n) = n^3$
- Polynomials
  - $f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$
  - $a_0$ ,  $a_1$ ,  $a_2$ , ...,  $a_d$  are coefficients and  $a_d \neq 0$
  - d is the degree of the polynomial



- Exponential function
  - $f(n) = b^n$
  - b is a positive constant called base, n is the exponent
- Exponent rules
  - $(b^a)^c = b^{ac}$
  - $b^a b^c = b^{(a+c)}$
  - $b^a/b^c = b^{(a-c)}$
- Geometric summation

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1}$$



## Comparing Growth Rates

| constant | logarithm | linear | n-log-n    | quadratic | cubic | exponential |
|----------|-----------|--------|------------|-----------|-------|-------------|
| 1        | $\log n$  | n      | $n \log n$ | $n^2$     | $n^3$ | $a^n$       |





- Analyze algorithms using a mathematical function that disregards constant factors
  - Each basic step in a pseudocode or a high level language implementation → a small number of primitive operations
  - Make analyses independent to language-specific or hardware-specific details

```
for( i = 0; i < n; i++ )
    for( j = 0; j < i; j++ )
    a = i + j; /*constant part*/</pre>
```



# Big-Oh Notation (Definition)

- Let f(n) and g(n) be functions from positive integers to real numbers.
- We say that f(n) is O(g(n)) if there is a positive real constant c and an integer constant  $n_0 \ge 1$  such that  $f(n) \le c \cdot g(n)$ , for  $n \ge n_0$ 
  - $c \cdot g(n)$  is an asymptotic upper bound



The function f(n) is O(g(n)), since  $f(n) \le c \cdot g(n)$  when  $n \ge n_0$ .



- $\bullet f(n) = O(g(n))$ 
  - f(n) is less than or equal to g(n) up to a constant factor in the asymptotic sense as n grows towards infinity
- Example
  - $8 \cdot n + 5$  is O(n) $8 \cdot n + 5 \le c \cdot n$  for c = 9 and  $n_0 = 5$
  - There can be other choices of c and  $n_0$  such as c = 13 and  $n_0 = 1$



- Big-Oh notation allows us to ignore constant factors and lower-order terms
- If f(n) is a polynomial of degree d,

$$f(n) = a_0 + a_1 n + ... + a_d n^d$$

then f(n) is  $O(n^d)$ 

- =  $g(n) = n^d$ ,
- $c = |a_0| + |a_1| + ... + |a_d|,$
- $n_0 = 1$



- Use big-Oh notation to characterize a function as closely as possible
  - $f(n) = 4n^3 + 3n^2$  can be  $O(n^5)$ ,  $O(n^4)$ , or  $O(n^3)$ , but it is more accurate to say that f(n) is  $O(n^3)$
- It is considered poor taste to include constant factors and lower order terms
  - It is not fashionable to say that  $f(n) = 4n^3 + 3n^2$  is  $O(5n^3)$  or  $O(4n^3 + 4n^2)$
- The 7 common mathematical functions are the most commonly used functions for the big-Oh notation



#### Big-Omega Notation

- Big-Omega
  - Asymptotic way of saying that a function grows at a rate greater than or equal to that of another
  - f(n) is  $\Omega(g(n))$  if g(n) is O(f(n)): there is a positive real constant c and an integer constant  $n_0 \ge 1$  s.t.

$$f(n) \geq c \cdot g(n)$$
, for  $n \geq n_0$ 

- $c \cdot g(n)$  is an asymptotic lower bound
- Example
  - $3 \cdot n \cdot \log n 2 \cdot n$  is  $\Omega(n \cdot \log n)$



#### **Big-Theta Notation**

- Big-Theta
  - f(n) is  $\Theta(g(n))$  if f(n) is both O(g(n)) and  $\Omega(g(n))$
  - f(n) is  $\Theta(g(n))$  if there are positive real constants c' and c'' and an integer constant  $n_0 \ge 1$  s.t.

$$c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n), \text{ for } n \geq n_0$$

Example

$$3 \cdot n \cdot \log n - 2 \cdot n$$
 is  $\Theta(n \cdot \log n)$ 



## **Comparative Analysis**

- Big-Oh notations are widely used for runningtime and space bounds in terms of input size
  - Asymptotically slower algorithms are beaten in the long run by asymptotically faster algorithms

| n   | $\log n$ | n   | $n \log n$ | $n^2$    | $n^3$       | 2 <sup>n</sup>         |
|-----|----------|-----|------------|----------|-------------|------------------------|
| 8   | 3        | 8   | 24         | 64       | 512         | 256                    |
| 16  | 4        | 16  | 64         | 256      | 4,096       | 65,536                 |
| 32  | 5        | 32  | 160        | 1,024    | 32,768      | 4, 294, 967, 296       |
| 64  | 6        | 64  | 384        | 4,096    | 262, 144    | $1.84 \times 10^{19}$  |
| 128 | 7        | 128 | 896        | 16,384   | 2,097,152   | $3.40 \times 10^{38}$  |
| 256 | 8        | 256 | 2,048      | 65,536   | 16,777,216  | $1.15 \times 10^{77}$  |
| 512 | 9        | 512 | 4,608      | 262, 144 | 134,217,728 | $1.34 \times 10^{154}$ |



#### Comparative Analysis

- Inefficient algorithms
  - Draw a line between polynomial time algorithms and exponential time algorithms
    - Exponential time algorithms are not considered tractable.
  - Note:  $O(n^{100})$  is a polynomial time algorithm, but should not be considered efficient



- O(1): constant-time operations
  - Primitive operations

```
a = a + 1;
a = arr[i];
a = arr.length;
```



Find the max of an array

```
/** Returns the maximum value of a nonempty array of numbers. */
public static double arrayMax(double[] data) {
  int n = data.length;
  double currentMax = data[0];// assume first entry is biggest (for now)
  for (int j=1; j < n; j++) // consider all other entries
    if (data[j] > currentMax) // if data[j] is biggest thus far...
        currentMax = data[j]; // record it as the current max
  return currentMax;
}
```



- Find the max of an array
  - Variable initializations and return are constants
  - Loop runs n-1 times
  - Comparison and assignment in the loop are constants
  - Running time of arrayMax:  $c' \cdot (n-1) + c'' \Rightarrow O(n)$



- How many times currentMax is updated in arrayMax
  - Assume that data is randomly distributed (uniform distribution)
  - The probability that data[j] is the largest in data[0..j] is 1 / j
  - The expected number of times currentMax is updated is  $H_n = 1 + 1/2 + 1/3 + ... + 1/n$
  - $H_n$  is known as the  $n^{th}$  harmonic and is  $O(\log n)$



```
public static String repeat1(char c, int n) {
   String answer = "";
   for (int j=0; j < n; j++)
        answer += c;
   return answer;
}</pre>
```

- Strings in Java are immutable
  - To concatenate, a buffer for answer and c is allocated and answer and c are copied to the new buffer
  - Overall time taken for the concatenation is

• Hence the running time of repeat1 is  $O(n^2)$ 



- Three-way set disjoints
  - Assume that A, B, and C don't have duplicate elements
  - Check if there is no such x as  $x \in A$ ,  $x \in B$ , and  $x \in C$
  - If |A| = |B| = |C| = n, the running time of disjoint1 is  $O(n^3)$

- Improved disjoint1: skip checking c when a≠b
  - There are n² pairs of (a, b) to consider, but there are at most n pairs (a, b) such that a == b
    - Hence, a == c is checked at most n<sup>2</sup> times
  - a == b is checked  $n^2$  times
  - The running time of disjoint2 is  $O(n^2)$



- Check if there are no duplicate elements
  - The number of times data[j] == data[k] is checked (n-1) + (n-2) + ... + 2 + 1
  - The running time of unique1 is  $O(n^2)$



```
/** Returns true if there are no duplicate elements in the array. */
public static boolean unique2(int[] data) {
  int n = data.length;
  int[] temp = Arrays.copyOf(data, n); // make copy of data
  Arrays.sort(temp); // and sort the copy
  for (int j=0; j < n-1; j++)
    if (temp[j] == temp[j+1])// check neighboring entries
        return false; // found duplicate pair
  return true; // if we reach this, elements are unique
}</pre>
```

- Improve unique1 by sorting data
  - Arrays.copyOf takes O(n) time
  - Arrays.sort takes  $O(n \cdot \log n)$  time
  - temp[j]==temp[j+1] runs n-1 times
  - Hence, unique2 is  $O(n \cdot \log n)$



- Prefix average
  - Given an array  $x_0, ..., x_j$ , compute a sequence  $a_j$  for j = 0, ..., n-1 such that  $a_j = \frac{\sum_{i=0}^{j} x_i}{j+1}$
  - $O(n^2)$  algorithm

- Prefix average
  - lacktriangle O(n) algorithm
    - Reuse total computed from the previous round

