CSE214 Data Structures
Order of Complexity

YoungMin Kwon

Analysis Tools

= Data structure
= A systematic way of organizing and accessing data

= Algorithm

= A step-by-step procedure for performing some tasks in
a finite amount of time

= Analysis tool

= A measure that can tell how “good” a data structure
or an algorithm is

= Running time
= Space usage

Empirical Analysis

= Record the running time

= currentTimeMiillis(): the number of milliseconds
since 1/1/1970 UTC.

= nanoTime(): for more accurate measurements

long startTime = System.currentTimeMillis(); // record the starting time
/% (run the algorithm) x

long endTime = System.currentTimeMillis(); // record the ending time
long elapsed = endTime — startTime; // compute the elapsed time

@ Korea_‘_m

Empirical Analysis

" Measure the running-time many times

= With respect to varying input size and structure
= Plot the running-time

= Find the best fitting function through statistical analyses

= Challenges of experimental analysis

"= The measured time may vary depending on the

environments (computer’s CPU power, amount of memory,
what other processes are running concurrently)

= Limited set of test inputs
" An algorithm must be fully implemented

@Koreah ‘

Empirical Analysis (Example)

/*x Uses repeated concatenation to compose
a String with n copies of character c. x/

public static String repeatl(char c, int n) {
String answer = "";
for (int j=0; j < n; j++)
answer += ¢,
return answer;

}

/*x Uses StringBuilder to compose a String

with n copies of character c. */
public static String repeat2(char c, int n) {

StringBuilder sb = new StringBuilder();
for (int j=0; j < n; j++)

sb.append(c);
return sb.toString();

}
Emrores

n

repeatl (in ms)

repeat2 (in ms)

50,000 2,884 I
100,000 7.437 I
200,000 39,158 2
400,000 170,173 3
800,000 690,836 7

1,600,000 2.874.968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58
12,800,000 265,696,421 135

= To compose 12,800,000 strings

(ms)

L

Running Tim

10”
10°

o
2

] Oh

S oo o
(B [

32

Empirical Analysis (Example)

—O— repeatl

—#— repeat? /
T
i | i |

=
=

= repeatl takes more than 3 days
= repeat2 takes less than a second

10° 10°

n

107

@ Korea_‘_m

Beyond Experimental Analysis

= Desirable properties
= Independent of h/w or s/w environments
= No need for implementations
= Account for all possible inputs

= Counting primitive operations

= E.g. assignment, following an object reference,
arithmetic operation, indexing an array element,
calling a method, returning from a method

= Associate a function f(n): the count of primitive
operations in terms of the input size n

Beyond Experimental Analysis

" Focusing on the worst-case input

= Average-case analysis: need a probability distribution
on the set of inputs (difficult to obtain)

= Worst-case analysis: if an algorithm works well on the
worst-case, it works well on every input

o 1 L T T e S e —— worst-case time

4 ms .
average-case time?
3 ms
----------------------------- best-case time

2 ms

Running Time

1 ms

A B C D E F G

Input Instance
Korea

Common Mathematical Functions

= Constant function

" fin) = ¢

= E.g. a sequential block of code

" Linear function

" fln)=n

= E.g. finding the max from an array

Common Mathematical Functions

" |Logarithm function
= f(n) =log,n
= x=log,nifand onlyif b*=n
= For CS, base b=2 is typical and we will omit it
= E.g. binary search on a sorted array

" Logarithm rules

" log,(a-c) = log,a+log,c
" log,(a/c) = log,a-log,c
" log,(a°) = c-log,a
" log,a = log,a /log,b
" bAMog,a = a’logyb

Common Mathematical Functions

= N-log-N function
" f(n)=n-logn
= E.g. fast sorting algorithms such as quick sort

Common Mathematical Functions

= Quadratic function

" fin) = n?

= E.g. nested loop
for(1 =0; 1 < n; i++)
for(j =0; j < 1i; j++)
/*do something*/

nn+1) |

142434+ (n=2)+(p—1)+n=——

. 0

1

1

[

A
n+
n
3
2

2 n2
Korea

Common Mathematical Functions

= Cubic function

" fin) = n?

= Polynomials
= fln)=a, + a,n + a,n? + ... + ayzn’
" a, 4, 0d,,..,0a,are coefficientsand a, # 0

" dis the degree of the polynomial

Common Mathematical Functions

" Exponential function
" fin) = b"
= b is a positive constant called base, n is the exponent

= Exponent rules

- (ba)c = poac
m hohc =b(a+c)
[ba/bc = b(CI—C)

= Geometric summation

= 7 art —]
Za’ =TS agdd i Ld® =
i=0 a— |

Comparing Growth Rates

J(n)

constant | logarithm | linear | n-log-n | quadratic | cubic | exponential
2

1 logn n nlogn n- n a"
104 4 — —&— Exponential
10:2 —O0— Cubic
10 O
1032 — —#— Quadratic
108 4 ,,/'(—O— N-Log-N
1024 / f}/c Li
1020 / 10/" —— Linear
1016 / /9/ i —a— Logarithmic
1012 / I —L —— Constant
108
104 A A A r,
10°

10° 10" 102 10° 10* 10° 10° 107 10% 10° 10'° 10" 10" 103 10" 10%5

n

Big-Oh Notation

" Analyze algorithms using a mathematical function
that disregards constant factors

= Each basic step in a pseudocode or a high level
language implementation — a small number of
primitive operations

= Make analyses independent to language-specific or
hardware-specific details

= for(1

=0; 1 < n; i++)
for(j

= 0; j < 1i; j++)
a =1+ j; /*constant part*/

Big-Oh Notation (Definition)

" Let f(n) and g(n) be functions from positive integers to
real numbers.

= We say that f(n) is O(g(n)) if there is a positive real
constant c and an integer constant n, = 1 such that
fln) < c-gln), forn= n,
= c-g(n)isan asymptotic upper bound

Running Time

o Input Size

The function f(n) is O(g(n)), since f(n) < c-g(n) when n > ny. @Korea

Big-Oh Notation
" fln)=0(g(n))

" f(n) is less than or equal to g(n) up to a constant
factor in the asymptotic sense as n grows towards
infinity

= Example

" 8-n+5is0(n)
8-n+5=<c-nforc=9andn,=5

= There can be other choices of c and n, such as
c=13andn,=1

@ Koream_

Big-Oh Notation

" Big-Oh notation allows us to ignore constant
factors and lower-order terms

" |f f(n) is a polynomial of degree d,

fin)=a,+a,n+...+a,n’
then f(n) is O(n)
= g(n)=n°,
" c=|a,| +|a,| +..+|a,l,
"n,=1

Big-Oh Notation

= Use big-Oh notation to characterize a function as
closely as possible
= f(n) =4n3+ 3n? can be O(n>), O(n*), or O(n3), but it is more
accurate to say that f(n) is O(n?)

" |tis considered poor taste to include constant factors
and lower order terms

= |t is not fashionable to say that f(n) = 4n® + 3n?is O(5n3) or
O(4n3 + 4n?)

= The 7 common mathematical functions are the most
commonly used functions for the big-Oh notation

@Koreaw ‘

Big-Omega Notation

= Big-Omega
= Asymptotic way of saying that a function grows at
a rate greater than or equal to that of another

= f(n)is Q(g(n)) if g(n)is O(f(n)): there is a positive
real constant c and an integer constant n, = 1 s.t.
fln) = c-g(n), forn= n,
" c-g(n) is an asymptotic lower bound
= Example
" 3-n-logn—2-nis Q(n -log n)

Big-Theta Notation

= Big-Theta
= f(n)is ®(g(n))if f(n)is both O(g(n)) and Q2 (g(n))

= f(n)is ®(g(n)) if there are positive real constants ¢’
and ¢ and an integer constant n, = 1s.t.

¢’-g(n) < fln) < ¢”-g(n), forn=n,

= Example
3-n-logn—2-nis ®(n -log n)

Comparative Analysis

" Big-Oh notations are widely used for running-
time and space bounds in terms of input size

= Asymptotically slower algorithms are beaten in the
long run by asymptotically faster algorithms

n | logn n nlogn n’ n’ 2"

8 3 8 24 64 512 256

16 4 16 64 256 4. 096 65.536

32 5 32 160 1,024 32,768 4.294.967.296
64 6 64 384 4.096 262. 144 1.84 x 10"
128 7 128 896 16.384 2.097.152 3.40 x 10°®
256 | 8 256 2.048 65.536 16.777.216 1.15 x 1077
512 | 9 512 4,608 262,144 134,217,728 1.34 x 10'>*

@ Ko rea

Comparative Analysis

= |nefficient algorithms
= Draw a line between polynomial time algorithms
and exponential time algorithms

= Exponential time algorithms are not considered
tractable.

= Note: O(n'?) is a polynomial time algorithm, but
should not be considered efficient

Examples of Algorithm Analysis

= O(1): constant-time operations

= Primitive operations

d
d
d

a + 1;
arr[i];
arr.length;

Examples of Algorithm Analysis

" Find the max of an array

/%% Returns the maximum value of a nonempty array of numbers. x/
public static double arrayMax(double[| data) {

int n = data.length;

double currentMax = data[0];// assume first entry is biggest (for now)

for (int j=1;) < n; j+-+) // consider all other entries
if (data[j] > currentMax) // if datalj] is biggest thus far...
currentMax = datalj]; // record it as the current max

return currentMax;

}

Examples of Algorithm Analysis

/%% Returns the maximum value of a nonempty array of numbers. x/
public static double arrayMax(double| | data) {
int n = data.length;

double currentMax = data|0];// assume first entry is biggest (for now)

for (int j=1;j < n; j++) // consider all other entries
if (data[j] > currentMax) // if datalj] is biggest thus far...
currentMax = data[j]; /| record it as the current max
return currentMax;

}

" Find the max of an array

= Variable initializations and return are constants
= Loop runs n-1 times

= Comparison and assignment in the loop are constants

= Running time of arrayMax: c¢’-(n-1) + ¢”” = O(n)

@ Korea_m

Examples of Algorithm Analysis

= How many times currentiVlax is updated in
arrayMax

= Assume that data is randomly distributed (uniform
distribution)

= The probability that datalj] is the largest in
data[0..jlis 1/]

" The expected number of times currentMax is
updatedis H =1+1/2+1/3+...+1/n

= H_is known as the n'" harmonic and is O(log n)

@ Korea_‘_m

Examples of Algorithm Analysis

public static String repeatl(char c, int n) {
String answer = "";
for (int j=0;) < n; j++)
answer += ¢,
return answer;

}

= Strings in Java are immutable

= To concatenate, a buffer for answer and cis allocated
and answer and c are copied to the new buffer

= Qverall time taken for the concatenation is
1+2+...+n

= Hence the running time of repeatl is O(n?)

@ Korea_‘_.!.

Examples of Algorithm Analysis

/*x Returns true if there is no element common to all three arrays. %/
public static boolean disjoint1(int[| groupA, int[| groupB, int[| groupC) {

for (int a : groupA)

for (int b : groupB)
for (int c : groupC)
17 (8 == ke (s ==q)
return false; // we found a common value
return true; / | if we reach this, sets are disjoint

}

" Three-way set disjoints

= Assume that A, B, and C don’t have duplicate
elements

= Check if thereisnosuchxasx& A, x& B,andx & C
= If |A| = |B| = |C| =n, the running time of disjointl is

O(n3)
o

x*x Returns true if there is no element common to all three arrays. x/
public static boolean disjoint2(int[| groupA, int[] groupB, int| | groupC) {
for (int a : groupA)
for (int b : groupB)

if (a'==b) // only check C when we find match from A and B
for (int c : group()
if (@ ==1c) '/ and thus b == ¢ as well
return false: // we found a common value
return true; / /| if we reach this, sets are disjoint

}

" I[mproved disjointl: skip checking c when a+b

= There are n? pairs of (a, b) to consider, but there are at
most n pairs (a, b) such that a ==
= Hence, a == c is checked at most n? times
= 3 == b is checked n? times

= The running time of disjoint2 is O(n?)

@ Korea_‘_m

Examples of Algorithm Analysis

/*% Returns true if there are no duplicate elements in the array. %/
public static boolean uniquel(int[| data) {

int n = data.length;

for (int j=0; j < n—1; j++)

for (int k=j+1; k < n; k++)
if (data[j] == datalk]|)
return false; // found duplicate pair
return true; // if we reach this, elements are unique

}

" Check if there are no duplicate elements

* The number of times datalj] == data[k] is checked
(n-1)+(n-2)+..+2+1

= The running time of uniquel is O(n?)

@ Koream_

/*x Returns true if there are no duplicate elements in the array. *x/
public static boolean unique2(int[| data) {

int n = data.length;

int[| temp = Arrays.copyOf(data, n); // make copy of data

Arrays.sort(temp); // and sort the copy

for (int j=0; j < n—1; j++)

if (temp[j] == temp|j+1])// check neighboring entries
return false; // found duplicate pair
return true; // if we reach this, elements are unique

}

" Improve uniquel by sorting data
= Arrays.copyOf takes O(n) time
= Arrays.sort takes O(n-log n) time
= temp[j]==temp[j+1] runs n-1 times
= Hence, unique?2 is O(n-log n)

@ Koream_

Examples of Algorithm Analysis

= Prefix average

= Given an array X, ..., X;, compute a sequence g, for
j=0, ..., n-1 such that

aj =

!
i=0-Vi

Jj+1

= O(n?) algorithm

public static double| | prefixAveragel(double| | x) {
int n = x.length;

double[| a = new double[n]; // filled with zeros by default
for (int j=0; j < n; j++) {
double total = 0; // begin computing x[0] + ... + x[]]
for (int i=0; i <= j; i++)
total += x]il;
alj] = total / (j+1); // record the average
}
return a;

} @Koreﬁ,ﬂ,ﬂ

Examples of Algorithm Analysis

= Prefix average

= O(n) algorithm

" Reuse total computed from the previous round

public static double|[| prefixAverage2(double[| x) {

}

it n=x Iength
double[| a = new double[n]
double total = 0;
for (int j=0; j < n; j++) {
total += x[j|;
a[j] = total / (j+1);

}

return 3;

/ filled with zeros by default

compute prefix sum as x[0] + x[1] + ...

// update prefix sum to include x[j]
// compute average based on current sum

