CSE214 Data Structures
Object-Oriented Design

YoungMin Kwon

Object-Oriented Design Goals

= Robustness

= Correctness: correct outputs for all anticipated
correct inputs

= Robustness: handling unexpected inputs

= E.g.) A program expecting a positive integer
should be able to recover gracefully when a
negative integer is given

@ Korea_m

Object-Oriented Design Goals

= Adaptability
= Software needs to be able to evolve over time to
cope with changing environments

= E.g.) Web browsers, Internet search engines are used
for many years while evolving over time.

= Portability: ability of software to run with minimal
change on different platforms (hardware and
operating system)

@ Korea_‘_m

Object-Oriented Design Goals

= Reusability

" The same code should be usable as a component
of different systems in various applications

= Developing quality software can be expensive

" The cost can be offset if the software is designed
to be reused

@ Koream_

Object-Oriented Design Principles

= Abstraction

= Hide unwanted details and provide the most

essential information

.....

Application

Programming Language

e~

Assembly Language

Machine Code

Devices (Transistors)

Layers of Abstraction

@ Koream_

Object-Oriented Design Principles

= Abstract Data Type (ADT)

= Abstraction in the design of data structures
= Type of data stored
= Operations supported on them (what but not how)
" Type of the parameters of the operations

" |n Java, interfaces can provide ADT

= Classes realize ADTs by implementing interfaces

@ Korea_‘_m

Object-Oriented Design Principles

= Encapsulation

" Provides a protection by hiding implementation
details from other components

= The only constraint a programmer should
maintain is the public interfaces

" Frees a programmer from the concern that others may
depend on his/her implementations

= |t yields the robustness and the adaptability

@ Korea_‘_m

Object-Oriented Design Principles

= Modularity

= Organizing principle in which different
components of a software system are divided into
separate functional units

= Robustness can be improved

= Easier to test and debug separate components before
they are integrated into a larger software system

@ Korea_‘_.m

Design Patterns

= Design Pattern

= Pattern provides a general template for a solution that
can be applied in many different situations

= Algorithm design = Software engineering
patterns design patterns
= Recursion = Template method
= Amortization = Factory method
" Divide-and-conquer = Composition
* Prune-and-search = Adapter (aka wrapper)
= Brute force = Position
"= Greedy method " |terator
®= Dynamic Programming = Comparator

@Koreah ‘

Inheritance

" |nheritance

= Define a new class based upon an existing class as
a starting point

= Organize software components in a hierarchy

ANIMAL CLASS

AN N

DOG CAT cow
CLASS CLASS CLASS

d W

Inheritance

" Terminology
= Existing class: base class, parent class, super class
= New class: subclass, child class
= Subclass extends super class

= "js a" relation: subclass is a superclass

= Subclass can augment superclass by adding new fields
or new methods

= Subclass can specialize existing behaviors by overriding
existing methods

@Koreaw ‘

public class Animal {
public String sound() {
throw new UnsupportedOperationException("Not implemented");

}

public static class Dog extends Animal { ”
public String sound() { return "Bow Bow"; } //specialize
public String swim() { return "Like"; } //augment

}

public static class Cat extends Animal {
public String sound() { return "Meow Meow"; } //specialize

public String swim() { return "Hate"; } //augment

}

public static class Duck extends Animal { ‘
public String sound() { return "Quack Quack"; } //specialize
public String swim() { return "Love"; } //augment

}

public static void main(String[] args) {
Animal a = new Dog(); //a is a Dog
System.out.println(a.sound()); //Bow Bow

System.out.println(((Dog)a).swim()); //Need casting

} G

Polymorphism

" Polymorphism (many forms)
= Ability of a reference variable to take different forms

= |iskov substitution principle: a variable of a class can
be assigned an instance of its subclasses

Animal a = new Cat(); //Liskov substitution

a = new Dog(); //Liskov substitution
Dog d = (Dog) a; //need to cast

= instanceof operator: whether "is a" relation is true

a instanceof Animal //true
a instanceof Dog //true
a instanceof Cat //false

@ Korea_m

Polymorphism

= Polymorphism

= Dynamic dispatch: the method that is closest to
the actual instance is decided at runtime

sound()

-
Bow
r Bow

meaow
meow

Animal a = new Dog();
a.sound(); //Bow Bow

@ Korea_m

Application Programming Interface (API)

= AP|
= For two objects to interact, they know _—
the messages that each will accept

" |n object-oriented design, the knowledge M;JEIM
about the messages is specified as an API

= ADTs can provide API

= An interface defining an ADT is specified as
= A type definition
= A collection of methods for this type

= Strong typing: at compile time or at runtime, the
types of the parameters actually passed are rigorously
checked

Interfaces

= Interface
= A main structural element in Java that enforces AP

= A concrete class has bodies of all of the methods of
the interfaces it implements

= |Interfaces enforce that an implemented class has methods
with certain specified signatures

" |nJava, multiple inheritance is
= Allowed for interfaces

= Not allowed for classes

= Diamond inheritance: confusion can arise if two base classes
have fields/methods with the same name/signature
@Koream

Interfaces (multiple inheritance)

public interface Ring {
public Ring add(Ring a);
public Ring addIdentity();
public Ring addInverse();
public Ring mul(Ring a);

}

public interface Ordered {
public boolean ge(Ordered a); //greater than or equal to

}

public interface OrderedField extends Ring, Ordered {
public Ring mulldentity();
public Ring mullInverse() throws ArithmeticException;

@ Korea_‘_.m

Abstract Classes

= Abstract classes

= Serves a role in between classes and interfaces

= Can
= Can

= Sing

nave fields and some implemented methods
nave unimplemented methods

e inheritance only

public abstract class Container {//abstract class
//load in percent of volume
protected double percentlLoad;

//abstract methods
public abstract double volume();
public abstract Container create();

public double load() {
//template method pattern
return percentLoad / 100 * volume();

}

public Container split() {
//factory method pattern
Container c = create(); //create the same container
double newLoad = percentlLoad / 2;
percentlLoad = newlLoad;
c.percentLoad = newlLoad;
return c;

@ Korea_m

public static class Box extends Container {
protected double h, w, 1;

public Box(double h, double w, double 1) {
this.h = h; this.w = w; this.1 = 1;
}

public double volume() {
return h * w * 1;

}

public Box create() { //factory pattern
return new Box(h, w, 1);

}

public String toString() {
return String.format("Box: h:%f, w: %f, 1: %f, load: %f",
h, w, 1, load());

@Koreaw

public static class Cylinder extends Container {
protected double r, 1;

public Cylinder(double r, double 1) {
this.r = r; this.1 = 1;

} e
I\

public double volume() {
return 3.141592 * p * pr *]1;

}

public Cylinder create() { //factory pattern
return new Cylinder(r, 1);

}

public String toString() {
return String.format("Cylinder: r:%f, 1: %f, load: %f",
r, 1, load());

@ Ko rea

public static void main(String[] args) {
Container c = new Box(1/*h*/, 2/*w*/, 3/*1*/);
c.percentLoad = 100;
Container d = c.split();
System.out.println(c);
System.out.println(d);

c = new Cylinder(1/*r*/, 2/*1%*/);
c.percentLoad = 100;
d = c.split();

System.out.println(c);
System.out.println(d);

Result

Box: h:1.000000, w: 2.000000, 1: 3.000000, load: 3.000000
Box: h:1.000000, w: 2.000000, 1: 3.000000, load: 3.000000
Cylinder: r:1.00000, 1: 2.00000, load: 3.14159
Cylinder: r:1.00000, 1: 2.00000, load: 3.14159

@Koreaw ‘

Design Patterns

= Template method pattern

= Container uses volume() that will be implemented
by Container’s subclasses

= Factory method pattern

= Container uses create() that creates an instance of
a subclass type

Exceptions

= Exceptions

" Unexpected events that occurred (unavailable resource,
unexpected input, program error,...)

= Exceptions in Java

" Exceptions are an Object that can be thrown by
= the code or
= the Java Virtual Machine (run out of memory)
= Exceptions can be caught by a surrounding block of code

= Exception can be caught by the method caller’s surrounding
block

= Uncaught exceptions cause Java virtual machine to stop
running the program

@Koreah ‘

Exceptions

" Errors

= Errors are typically thrown by JVMs for situations unlikely
to be recoverable.

= Unchecked exceptions
= Subtypes of RuntimeException
= Due to programming logic errors
= No need to be declared in the signature

= Checked exceptions

= All checked exceptions that might propagate upwards from
a method must be declared in its signature

@Koreaw

public class Container {
//load in percent of volume
protected double percentlLoad;

//unchecked exception
public double volume() {
throw new UnsupportedOperationException("not implemented");

}

//checked exception
public double load() throws IllegalAccessException {
throw new IllegalAccessException("you don’t have access");

}

public boolean isOverloaded() throws IllegalAccessException {
return load() > volume();

}

@ Ko rea

public Container add(double amount) {
percentLoad += amount / volume() * 100;

try {
if(isOverloaded())

return split();
} catch(IllegalAccessException e) {
e.printStackTrace();
return null;
} catch(Exception e) {
e.printStackTrace();
throw e;

}

return null;

@Koream

‘ Throwable I

i

Error

|

|

Exception

VirtualMachineError

IOError

4

OutofMemoryError

—

H | RuntimeException I IOException
|

|

IndexOutOfBoundsException

IllegalArgumentException

|

FileNotFoundException

EOFException

|

| NumberFomiatException I ‘ NullPointerException '
| ArraylndexOutOfBoundsException I

|NoSuchEIementExceptionI | ClassCastException I

Casting (type conversion)

= Suppose that P is a super class (parent class) of C

= Widening conversion: type C — type P

= Needs for no explicit casting
Container c¢ = new Box();

= Narrowing conversion: type P — type C
= Needs an explicit casting

= May throw a ClassCastException when unsuccessful

void foo(Container c) {
Box b = (Box) c; ..
}

" instanceof operator can check if an object is a certain type
= if(c instanceof Box) .. <:>

Generics

" Java supports generic classes and methods

= Operating on a variety of types while avoiding
explicit casting

= Use formal type parameters

" The type parameters are used when declaring
variables, parameters, and return values

" The type parameters are specified when using the
generic classes

@Koream

public class ObjectPair { //without generics
private Object first, second;
public ObjectPair(Object a, Object b) {
first = a; second = b;
}
public Object getFirst() { return first; }
public Object getSecond() { return second; }

}

public ObjectPair foo() {
return new ObjectPair("YM", 10); //composition pattern

}

public void print() {
ObjectPair p = foo();
String name = (String) p.getFirst(); //explicit casting
int id = (Integer) p.getSecond(); //explicit casting
System.out.format("%s: %s\n", name, id);

}

= Composition design pattern

= To return multiple values, define a class that can hold
those values @

public class Pair<F,S> { //generic class: type parameters F and S
private F first;
private S second;
public Pair(F a, S b) { first = a; second = b; }
public F getFirst() { return first; }
public S getSecond() { return second; }

}

public Pair<String,Integer> foo() {
//return new Pair<String,Integer>("YM", 10);
return new Pair<>("YM", 10);

}

public void print() {
Pair<String,Integer> p = foo();
String name = p.getFirst();
int id = p.getSecond();
System.out.format("%s: %s\n", name, id);

@ Korea_‘_m

//generic function: F and S are type parameters

public static <F,S> String toStr(
Pair<? extends F /*subclass of F*/, ? super S /*superclass of S*/> pair) {
F name = pair.getFirst();
Object id = pair.getSecond(); //Object is a superclass of all classes
return String.format("%s: %s", name.toString(), id.toString());

}

public void print() {
Pair<String,Integer> p = foo();

//String s = Pair.<String,Integer>toStr(p);

String s = toStr(p); //types of F, S are inferred from p
System.out.println(s);

@ Korea_‘_.m

Nested Classes

= Nested class
= A class defined within the definition of another class
" |ncrease encapsulation

= static nested class
= Similar to traditional classes

" |ts instance has no association with any specific instance of
the outer class

= Non-static nested class (inner class)

= Can be created from within a non-static method of an
outer class

®" |nner class instance is associated with the outer class
instance that creates it

@Koreaw ‘

public class Outer {

static int count;

int c;

public static class A { //nested class
public void foo() { count++; }

}

public static class B { //nested class
public static void foo() { count++; }

}

public class C { //inner class
public void foo() { c++; }

}

public C newC() { return new C(); }
public static void main(String[] args) {
A a = new A();
a.foo();
B.foo();
System.out.println("count:
//C ¢ = new C(); error
Outer o = new Outer();
C cl = o.newC();
C c2 = o.new C();
cl.foo();
c2.foo();
System.out.println("o.c:

+ count);

+ 0.C);

}
} G

Programming Assignment 2

A polynomial over a ring is a ring. For this appointment,
implement the following three classes

= PolyDbl (polynomial of double): easier one of the two
= Poly (polynomial of fields)
" CRC (Cyclic Redundancy Check)

Unit test cases are provided and your implementation
should pass all test cases (you still need IntMod.java,
Rat.java, and Euclidean.java from the previous assignment)

Zip PolyDbl.java, Poly.java, and CRC.java and submit the zip
file through blackboard

Due date: 3/10/2022, 11:59 pm

@Koream

Programming Assignment 2

= A polynomial is represented by a coef array s.t. coef[i]
is the coefficient for X'

= E.g. 2x3+ 5x?+ x + 7 is represented as
coef[0]=7, coef[1l]=1, coef[2]=5, coef[3]=2

= |Leading Os in the coefficient array should be trimmed out
(from constructors): [7,1,5,2,0,0,0] —» [7, 1, 5, 2]

" For the remainder and quotient, use the long division

algorithm
x — 10

z? — 2z + 1)z — 1222 + 0z — 42
— 22’4+ w

~10z% - 2z —42

—10z% + 20z — 10

—21x — 32 @Korea_,...,.

Programming Assignment 2

= Ordered: for polynomials pand q, p > q iff
= p equals g OR
= E.g.:[1,2, 3] > [1,2,3]
" The degree of p is larger than the degree of g OR
= E.g.:[1,2,3,4] > [1,2, 3]
= |f their degrees are equal, compare the

coefficients from the highest degree term

" Let cp and cq are the first coefficients that differ, then
p = qiffcp > cq

= Eg.:[1,2,3,4] = [1,0, 3,4]

@ Korea_m

public class App {
public static void main(String[] args) {
UnitTest.testPolyDbl();
UnitTest.testPolyRat();
UnitTest.testPolyIntMod();

}

}
public class UnitTest {

public static void testPolyRat() {
System.out.println("testPolyRat...");
Poly a = new Poly(new Rat[] {
new Rat(1,1), new Rat(2,1), new Rat(1,1)});

Poly b = new Poly(new Rat[] {
new Rat(-1,1), new Rat(®,1), new Rat(1,1)});
Poly ¢ = new Poly(new Rat[] {

new Rat(1,1), new Rat(1,1), new Rat(1,1)});
testOrdered(a, b, c);
testRing(a, b, c);
testEuclidean(a, b, c);
System.out.println("testPolyRat done");

@Koream

public class PolyDbl implements Ring, Modulo, Ordered {
//X"2 + 2*x + 3 1is stored in coef array as [3, 2, 1]
private double[] coef;

public PolyDbl(double[] coef) {
//TODO: implement the constructor
//unnecessary zero terms should be trimmed off:
//i.e. [3, 2, 1, @, @] should be [3, 2, 1]

public class Poly implements Ring, Modulo, Ordered {
// X2 + 2*¥x + 3 is stored in coef array as [3, 2, 1]
private Field[] coef;

public Poly(Field[] coef) {

//TODO: implement the constructor

//unnecessary zero terms should be trimmed off

int n = coef.length;

while(n >= 2 && Comp.eq(coef[n-1], coef[0].addIdentity()))
n--;

this.coef = (Field[])new Field[n];

for(int 1 = 9; i < n; i++)
this.coef[i] = coef[i];

@ Korea_‘_m

Optional: CRC

= Cyclic Redundancy Check
= Checks whether transmitted message has an error

\' ;“_T
Packets —p» CAC —Pp Tx —){ CRC —}packets

Encoder Check
only

= Polynomial code

= bit strings — polynomials with coefficients of 0 and 1
=Eg.:1,1,0,0,0,1 > x> +x*+xY

: Polynomial arithmetic is done modulo 2

= +,-, %, /onmodulo 2 system
= 0: IntMod(0, 2), 1:IntMod(1, 2)

@Koreaw ‘

Optional: CRC
packetsnt € |yl 7, j *PT_ 5 _+ R |y ot

Encoder Check
_ only

= Sender and Receiver agree on a generator polynomial G(x)
" G(x) begins with x"and ends with 1: x"+ ... + 1
= Given a G(x) a shift S(x) is x"

= Sender: to send a message M(x)
= Checksum C(x) =S(x) * M(x) mod G(x)
= Transmit T(x) =S(x) * M(x) - C(x) such that T(x) mod G(x) =0

= Receiver: receive T(x)
= Check if T(x) mod G(x) =0
= M(x) = T(x) quo S(x)

@ Korea_‘_m

//Cyclic Redundancy Check
public class CRC {
static final IntMod I
static final IntMod O

new IntMod(1, 2);
new IntMod(©@, 2);

public static Poly sendMessage(Poly msg, Poly gen) {..}
public static boolean checkMessage(Poly rxMsg, Poly gen) {..}

public static Poly receiveMessage(Poly rxMsg, Poly gen) {..}

protected static Poly shiftPoly(Poly gen) {..}

protected static void checkPoly(Poly poly) {..}

public static void testCRC() {
/* expected output

msg: [1%2, 1%2, 0%2, 1%2, 1%2, 0%2,
gen: [1%2, 1%2, ©0%2, 0%2, 1%2,]
shift: [0%2, 0%2, 0%2, 0%2, 1%2,]

shiftMsg: [0%2, 0%2, 0%2, 0%2, 1%2, 1%2,
checksum: [0%2, 1%2, 1%2, 1%2,]

txMsg: [0%2, 1%2, 1%2, 1%2, 1%2, 1%2,
rem: [0%2,]
shift: [0%2, ©0%2, 0%2, 0%2, 1%2,]
msg: [1%2, 1%2, 0%2, 1%2, 1%2, 0%2,
testCRC Success!

*/

}

public static void main(String[] args) {..}

1%2,

0%2,

0%2,

1%2,

0%2,

1%2,

1%2,

0%2,

1%2,

1%2,

1%2,

1%2,

1%2,

0%2,

0%2,

1%2,

1%2, 0%2, 1%2, 1%2,]

1%2, 0%2, 1%2, 1%2,]

@ Koream_

