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ABSTRACT
Touch point distribution models are important tools for designing
touchscreen interfaces. In this paper, we investigate how the finger
movement direction affects the touch point distribution, and how to
account for it in modeling. We propose the Rotational Dual Gauss-
ian model, a refinement and generalization of the Dual Gaussian
model, to account for the finger movement direction in predicting
touch point distribution. In this model, the major axis of the pre-
diction ellipse of the touch point distribution is along the finger
movement direction, and the minor axis is perpendicular to the
finger movement direction. We also propose using projected tar-
get width and height, in lieu of nominal target width and height
to model touch point distribution. Evaluation on three empirical
datasets shows that the new model reflects the observation that the
touch point distribution is elongated along the finger movement
direction, and outperforms the original Dual Gaussian Model in all
prediction tests. Compared with the original Dual Gaussian model,
the Rotational Dual Gaussian model reduces the RMSE of touch
error rate prediction from 8.49% to 4.95%, and more accurately pre-
dicts the touch point distribution in target acquisition. Using the
Rotational Dual Gaussian model can also improve the soft keyboard
decoding accuracy on smartwatches.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Modeling.
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1 INTRODUCTION
Models for predicting the distribution of touch points have served
as important tools to design touchscreen interfaces and interaction
techniques. One of such models is the Dual Gaussian model [5]
which predicts the touch point distribution in a target acquisition
task with the target width𝑊 and height 𝐻 . It assumes that touch
points follow a bivariate Gaussian distribution, which is the sum
of two Gaussian distributions: one Gaussian is governed by the
width and height of the target, and the other Gaussian represents
the input uncertainty of finger touch. More specifically, the Dual
Gaussian model assumes that the touch point distribution 𝑿 can
be calculated as follows:

𝑿 ∼ N(𝝁, Σ), (1)

where 𝝁 is the center of the target, and Σ is related to the width𝑊
and height 𝐻 of the target:

Σ =

[
𝜎2𝑥 0
0 𝜎2𝑦

]
=

[
𝑎 + 𝑏𝑊 2 0

0 𝑐 + 𝑑𝐻2

]
, (2)

where 𝑎, 𝑏, 𝑐 , and 𝑑 are empirically determined parameters. The
Dual Gaussian model has been used to determine the element sizes
for touchscreen UI design, to determine the intended target in
target acquisition tasks, and serves as the likelihood model in soft
keyboard decoding.

The Dual Gaussian model is simple and easy to use. However,
it ignores an important factor: the finger movement direction. It
is known that the movement direction affects the shape of the dis-
tribution of end points: end points tend to be elongated along the
movement direction [16, 19]. Could we factor in the finger move-
ment direction in modeling the touch point distribution? If we
could, would it improve the model fitness over the existing Dual
Gaussian model? These are the research questions we investigated.
In this paper, we propose to factor in the finger movement direction
𝜃 in the Dual Gaussian model by hypothesizing that the one axis of
the prediction ellipse of the distribution is along the finger move-
ment direction, and the other axis is perpendicular to the finger
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movement direction. The co-variance matrix then becomes:

Σ𝑅 =

[
𝜎2𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎2𝑦

]
(3)

where

𝜎2𝑥 = cos2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + sin2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎𝑥𝑦 = cos𝜃 sin𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) − cos𝜃 sin𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎2𝑦 = sin2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + cos2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

where𝑊𝑝 and 𝐻𝑝 are called projected target width and height,
which are the lengths of the line segments by projecting the target
along the two axes of the prediction ellipse. The coefficients 𝑎, 𝑏, 𝑐 ,
and 𝑑 are empirically determined parameters.

We call the modified model the Rotational Dual Gaussian model.
Our evaluation on three empirical datasets shows that the Rota-
tional Dual Gaussian model outperforms the original Dual Gauss-
ian model in all prediction tests. Compared with the original Dual
Gaussian model, the new model reduces the Root Mean Square
Error (RMSE) of touch error rate prediction in target acquisition
task from 8.49% to 4.95%; it more accurately predicts the touch
point distribution in target acquisition; using the Rotational Dual
Gaussian model reduces the soft keyboard decoding error rates on
both smartwatches and smartphones.

2 RELATEDWORK
Our work builds on previous research on understanding finger
touch, modeling touch point distribution, and keyboard decoding.

2.1 Understanding Finger Touch
As the dominant input modality in mobile computing, touch input
has been widely investigated by a considerable amount of research.
Researchers have investigated soft button user performance com-
pared to hard buttons with different functions of implement (finger
vs. stylus), feedbacks (auditory and tactile-vibrato), and button size
[24]. Holz and Baudisch’s research [18] showed that the touch
points have consistent offsets from the target, and the offsets were
affected by angles (pitch, roll, and yaw) between the finger and
the touch surface. Their subsequent studies [19] showed that users’
perceived contact points were above actual contact points along
the finger’s axis and could be approximated by the center of the
fingernail. Other factors such as the "fat finger" problem, which is
caused by occlusion, also affect touch accuracy [18, 19, 30–32].

2.2 Modeling Touch Point Distribution
A sizable amount of previous research showed touch points fol-
lowed bivariate Gaussian distributions. A study [33] conducted by
Wang and Ren compared the properties of touch input among all
five fingers, showing touch points followed bivariate Gaussian dis-
tributions and the variance differs across fingers. Previous research
[3, 17] also revealed that for text entry on a touch screen keyboard
of a phone-sized device, touch points followed bivariate Gaussian
distributions, and the means of the distributions were close to the
intended key center, but often with small offsets in different direc-
tions. The dual Gaussian hypothesis [5, 6] proposed by Bi and Zhai

identified and separated the two sources of end point variance: one
is the speed-accuracy trade-off in the human motor system, and
the other is the absolute imprecision of finger touch due to the “fat”
finger. Ample empirical evidence [4, 5, 23, 25] has validated that the
dual Gaussian model improves performance in modeling reciprocal
target acquisition tasks.

While pointing models were typically derived to predict the
movement time (𝑀𝑇 ), several previous works also presentedmodels
for predicting success rate (or error rate) in pointing tasks [7, 28,
35, 36, 38]. Meyer et al.’s work [28] first predicted the error rate,
but it did not consider the effect of moving speed on precision
[39]. Wobbrock et al. [35, 36] derived an error model from Fitts’
law to predict the precision for 1D pointing tasks with mouse and
stylus input, which accounted for the speed-accuracy tradeoff in the
human motor system. Bi and Zhai [7] derived a prediction model
from the dual Gaussian hypothesis [5] to predict the success rate for
off-screen-start target acquisition tasks while accounting for both
the speed-accuracy tradeoff and the ambiguity brought by finger
touch. The validity of their work was further extended to predict
success rate for on-screen-start target acquisition tasks [38].

Previous research revealed that touchpoints over a moving tar-
get also follow Gaussian distributions. Huang et al.’s research [21]
showed that endpoints in 1D unidirectional moving target acquisi-
tion tasks followed a Ternary-Gaussian distribution that contains
three Gaussian components: the first reflected the absolute uncer-
tainty of a motor system including the input device; the second was
caused by the motion of the target; the third was governed by target
size. Their subsequent work [22] extended the Ternary-Gaussian
model to model the uncertainty in touchpoint distribution over 2D
moving targets. They also extended their work to a Quaternary-
Gaussian model [20] that measured the endpoint uncertainty in
crossing-based moving target selection.

Building upon previous works, we extended the dual Gaussian
model [5] by considering movement direction and predicted the
error rate for 2D target acquisition tasks with the Rotational Dual
Gaussian model.

3 ROTATIONAL DUAL GAUSSIAN MODEL
We propose a Rotational Dual Gaussian model to factor in the finger
movement direction in predicting the touch point distribution. The
main difference between the Rotational Dual Gaussian and the
original Dual Gaussian model is that the Rotational Dual Gaussian
model reflects the observation that end point distribution is often
elongated along the finger movement direction. In this section, we
first briefly review the Dual Gaussian model, and then describe how
we advance it to become the Rotational Dual Gaussian model.

3.1 Original Dual Gaussian Model
The original Dual Gaussian model assumes that touch point dis-
tribution in a target acquisition task follows a bivariate Gaussian
distribution, along the visual target coordinate of x (horizontal)
and y (vertical) directions. More specifically, it states that the touch
point distribution can be modeled with the following model:

𝑿 ∼ N(𝝁, Σ), (4)
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Figure 1. An illustration of movement angle. 𝜃 is the angle between
themoving direction and the positive x-axis of the screen coordinate
system.

Figure 2. An illustration of using projected target width (𝑊𝑝 ) and
height (𝐻𝑝 ) as amplitude and directional constraints.𝑊𝑝 (in blue) is
the length of the line segment of target size projected on the move-
ment direction.𝐻𝑝 (in green) is the length of the line segment of tar-
get size projected on the direction perpendicular to the movement
direction.

where 𝝁 and Σ are the mean and co-variance matrix of the bivariate
distribution, which can be calculated as:

𝝁 = (𝜇𝑥 , 𝜇𝑦) = (0, 0), (5)

Σ =

[
𝜎2𝑥 0
0 𝜎2𝑦

]
=

[
𝑎 + 𝑏𝑊 2 0

0 𝑐 + 𝑑𝐻2

]
. (6)

As shown in Equation 5 and 6, the Dual Gaussian model assumes
that the variance in 𝑥 and 𝑦 directions are independent, and the
variance in each direction is quadratically related to target width
(or height) with the linear coefficient being 0. It also assumes that
the mean of the distribution is at the center of the target.

3.2 Deriving the Rotational Dual Gaussian
Model

Oneweakness of the original Dual Gaussianmodel is that it assumes
the correlation coefficient between 𝑥 and𝑦 is always 0, regardless of
the finger movement direction. Empirically this is inconsistent with
the observation that the end point distribution tends to be elongated
along the pointer movement direction. Theoretically, the original
Dual Gaussian model is only logical when the movement direction
is aligned with the horizontal x dimension. Recall that the original
Fitts’ law study [12] was on the univariate relationship between
movement time and movement amplitude constraint (W) along the
movement direction. Accot and Zhai’s study [1] shows constraint
orthogonal to the movement direction is much less dominant and
takes on average around 100 ms less time to conform to. However
it is also necessary to keep the UI coordinate in the x and y visual
space rather than in the variable motor control space depending on
the movement direction. We propose the Rotational Dual Gaussian
model to address this conflict.

Similar to the original Dual Gaussian model, the Rotational Dual
Gaussian model assumes that touch points follow a bivariate Gauss-
ian distribution. The main difference is that it assumes that major
axis of the prediction ellipse (e.g. 95% prediction ellipse) points to

the finger movement direction, and the other axis points to the
direction perpendicular to the finger movement direction. This
means that one eigenvector of the co-variance matrix points to the
direction of movement direction of finger, and the other eigenvector
points to the direction perpendicular to the movement direction.

We formally describe the Rotational Dual Gaussian model as
follows. Given the finger movement direction 𝜃 , which is the angle
between the positive 𝑥-axis and the movement direction (Figure 1),
the Rotational Dual Gaussian model assumes that the touch points
followed a bivariate Gaussian distribution 𝑿 :

𝑿 ∼ N(𝝁, Σ𝑅), (7)

where 𝝁 is the same as the mean estimation in the original Dual
Gaussian model (Equation 5), which is the center of the target, and
Σ𝑅 is the covariance matrix, which is calculated as follows.

To calculate Σ𝑅 , we first perform eigendecomposition, which
represents the matrix in terms of its eigenvalues and eigenvectors.
With eigendecomposition, Σ𝑅 becomes:

Σ𝑅 = 𝑉𝐿𝑉 −1 (8)

, where 𝑉 is a 2 × 2 matrix whose two columns are the two eigen-
vectors of Σ𝑅 , and 𝐿 is a 2 × 2 diagonal matrix whose values along
the diagonals are eigenvalues of the two eigenvectors. 𝐿 is also
referred to as scale matrix.

As previously explained, we assume the two eigenvectors point
to the directions along and perpendicular to the finger movement
directions. Therefore, the two eigenvectors can be expressed as:

𝑣𝑥 = [cos𝜃, sin𝜃 ]𝑇 (9)

𝑣𝑦 = [− sin𝜃, cos𝜃 ]𝑇 . (10)
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Figure 3. An illustration of using apparent target width (𝑊𝑎) and
height (𝐻𝑎) as amplitude and directional constraints. 𝑊𝑎 (in blue)
is the length of the line segment intersecting the target size on the
movement direction. 𝐻𝑎 (in green) is the length of the line segment
intersecting the target on the direction perpendicular to the move-
ment direction.

Figure 4. An illustration of using nominal target width (𝑊𝑛) and
height (𝐻𝑛) as amplitude and directional constraints. If the move-
ment direction falls within the grey area, 𝑥-length is 𝑊𝑛 and 𝑦-
length is 𝐻𝑛 ; if the direction is within the white area, 𝑦-length is
𝑊𝑛 and 𝑥-length is 𝐻𝑛 .

The matrix𝑉 , whose columns are the two eigenvectors, can then
be expressed as:

𝑉 = [𝑣𝑥 , 𝑣𝑦] (11)

=

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
(12)

The scale matrix 𝐿 defines the variance of the touch points along
the two axes of the (1−𝛼) prediction ellipse. Similar to the assump-
tion in the original Dual Gaussian model, we assume the variance
along each axis is quadratically related to the size of the target
projected to the axis (Figure 2). More specifically, 𝐿 is defined as:

𝐿 =

[
𝑎 + 𝑏𝑊 2

𝑝 0
0 𝑐 + 𝑑𝐻2

𝑝

]
(13)

where𝑊𝑝 is the projected target widthwhich is the length of the line
segment formed by projecting the target to the finger movement
direction (Figure 2), and 𝐻𝑝 is the projected target height which
is the length of the line segment formed by projecting the target
to the direction perpendicular to the finger movement direction
(Figure 2). The coefficients 𝑎, 𝑏, 𝑐 , and 𝑑 are empirically determined
values.

Replacing 𝑉 , and 𝐿 in Equation 8 with Equations 12, and 13, we
have

Σ𝑅 = 𝑉𝐿𝑉 −1 (14)

=

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

] [
𝑎 + 𝑏𝑊 2

𝑝 0
0 𝑐 + 𝑑𝐻2

𝑝

] [
cos𝜃 sin𝜃
− sin𝜃 cos𝜃

]
(15)

=

[
𝜎2𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎2𝑦

]
(16)

where

𝜎2𝑥 = cos2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + sin2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎𝑥𝑦 = cos𝜃 sin𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) − cos𝜃 sin𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎2𝑦 = sin2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + cos2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

Equation 16 relates the co-variance matrix of the Rotational Dual
Gaussian model to the target width, height, and finger movement
direction.

The Rotational Gaussian model becomes the regular Dual Gauss-
ian models when the 𝜃 is 0°, or 180°. When the 𝜃 = 0°, we have
𝑊𝑝 =𝑊 and 𝐻𝑝 = 𝐻 . Plugging these values into the Equation 16,
the co-variance matrix becomes

Σ𝑅 =

[
𝑎 + 𝑏𝑊 2 0

0 𝑐 + 𝑑𝐻2

]
(17)

which is exactly the same as the covariance matrix defined in the
original Dual Gaussian model (Equation 6).

3.3 Prediction of Correlation Coefficient
The Rotational Dual Gaussian hypothesis models the co-variance
matrix of touch point distribution given target size and movement
direction. Hence, it can also model the Pearson’s correlation coef-
ficient 𝜌 between variable x and y. The following equation shows
another way to express the co-variance matrix in Equation 16

Σ𝑅 =

[
𝜎2𝑥 𝜌𝜎𝑥𝜎𝑦

𝜌𝜎𝑥𝜎𝑦 𝜎2𝑦

]
(18)

Comparing Equation 18 and Equation 16 yields,

𝜌 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
(19)
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Model 𝑎 𝑏 𝑐 𝑑 WAIC RMSE

Original Dual Gaussian Model
2.403

[2.335, 2.469]

0.017

[0.016, 0.018]

2.295

[2.211, 2.379]

0.016

[0.015, 0.017]
500410.01 0.085

Rotational

Dual Gaussian

Model

a)𝑊𝑛 , 𝐻𝑛

2.508

[2.423, 2.597]

0.024

[0.023, 0.025]

1.938

[1.887, 1.988]

0.013

[0.011, 0.012]
496655.82 0.073

b)𝑊𝑎 , 𝐻𝑎

2.105

[2.022, 2.185]

0.026

[0.025, 0.027]

1.723

[1.673, 1.777]

0.013

[0.013, 0.014]
496183.65 0.066

c)𝑾𝒑 , 𝑯𝒑
2.043

[1.976, 2.108]

0.017

[0.017, 0.018]

1.476

[1.434, 1.516]

0.010

[0.010, 0.010]
492654.91 0.049

Table 1:Mean and 95%Credible Interval ofmodel parameters for 4model candidates.WAICmeasures prediction accuracy giving consideration
of model complexity. The smaller the value, the better a model. RMSE of error rate shows the Rotational Dual Gaussian model with projected
widths and heights performed the best in predicting accuracy of target acquisition tasks.

where

𝜎𝑥 =

√
cos2 𝜃 (𝑎 + 𝑏𝑊 2

𝑝 ) + sin2 𝜃 (𝑐 + 𝑑𝐻2
𝑝 )

𝜎𝑦 =

√
sin2 𝜃 (𝑎 + 𝑏𝑊 2

𝑝 ) + cos2 𝜃 (𝑐 + 𝑑𝐻2
𝑝 )

𝜎𝑥𝑦 = cos𝜃 sin𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) − cos𝜃 sin𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

Equation 19 predicts the correlation (𝜌) between x and y.

3.4 Two alternatives of Rotational Dual
Gaussian Model

In addition to using projected target width𝑊𝑝 and height 𝐻𝑝 in
Equation 16, we also propose the following two alternatives of
defining the variance of the touch points, as they have been used
to represent the finger movement constraints in the previous work
[2, 23].

• Apparent Target Width and Height (Figure 3). This option
is to use the apparent width𝑊𝑎 and height 𝐻𝑎 to replace
𝑊𝑝 and 𝐻𝑝 in Equation 16. Apparent width𝑊𝑎 is the length
of the line segment intersected within the target along the
line parallel to the finger movement direction and crossing
the target center, and the apparent height 𝐻𝑎 is the length
of the line segment perpendicular to the finger movement
direction and crossing the target center. This definition is
the same as the apparent width and height definition used
in the previous work [2, 23]

• Nominal Width and Height (Figure 4). As another baseline or
approximation, this option is to use nominal width (𝑥-length)
and height (𝑦-length) of a target to replace𝑊𝑝 and 𝐻𝑝 in
Equation 16. The width and height defined with this option
are referred to as𝑊𝑛 and 𝐻𝑛 , respectively. More specifically,
if 𝜃 falls within the ranges of [0°, 45°], [135°, 225°], [315°,
360°], we use 𝑥-length to replace𝑊𝑝 (i.e.,𝑊𝑛 = 𝑥-length),
and 𝑦-length to replace 𝐻𝑝 (i.e., 𝐻𝑛 = 𝑦-length). If 𝜃 is with
[45°, 135°] and [225°, 315°], we use 𝑦-length to replace𝑊𝑝

(i.e.,𝑊𝑛 = 𝑦-length) and 𝑥-length to replace 𝐻𝑝 (i.e., 𝐻𝑛 = 𝑥-
length). This option essentially simplifies the𝑊𝑝 and 𝐻𝑝

calculation of angled conditions to their nearest vertical or
horizontal conditions.

In sum, the main difference between the Rotational Dual Gauss-
ian and the original Dual Gaussian model is that the Rotational
Dual Gaussian model replaces the co-variance matrix Σ (Equation
6) with the new co-variance matrix Σ𝑅 (Equation 16). We have
proposed three options of calculating the co-variance matrix of the
distribution, namely using (1) projected width𝑊𝑝 and height 𝐻𝑝 ,
(2) apparent width𝑊𝑎 and height 𝐻𝑎 , or (3) nominal width𝑊𝑛 and
height 𝐻𝑛 . Other part of the Rotational Dual Gaussian model stays
the same with the original Dual Gaussian Model.

Next, we evaluate the proposed Rotational Dual Gaussian model
in target acquisition tasks [23], in typing tasks on smartphone [3],
and typing tasks on smartwatches.

4 EVALUATION ON 2D TARGET
ACQUISITION TASKS

We first evaluated whether the Rotational Dual Gaussian model
improved the accuracy in predicting the distribution of touch points
and target selection accuracy over the original Dual Gaussian model
in 2D target acquisition tasks. We conducted the evaluation on a
publicly available dataset about 2D target acquisition with finger
touch – Ko et al’s Dataset [23].

4.1 Ko et al’s dataset
The empirical 2D touch pointing dataset was collected by Ko et
al. [23]. It had 3 distances, 16 finger movement directions, and 21
different target sizes (width × height). The experiment included
target acquisition data from 18 participants, and each participant
contributed 3301 trials on average. In total, it included 59427 target
selection trials. Following the practice of Ko et al., we excluded
trials whose selection time fell beyond 3 std (1.08% of total trials),
and we ended up having 58785 trials. We performed the Mardia’s
Multivariate Normality test [27] for the 336 (width× height× angle)
conditions. Mardia’s test showed that the touch points in 69% of
the conditions followed Gaussian distribution. Touch points in 98%
of the conditions passed either the Skewness test or the Kurtosis
test, indicating that their skewness or Kurtosis measure was close
to a Gaussian distribution.
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Figure 5. Prediction of 95% density contours for two conditions. Left: target size is 6 × 4 and themovement angle to the enlarged target is 112.5◦.
Right: target size is 4 × 6 and the movement angle to the enlarged target is 135◦. This figure shows the predicted contours by the Rotational
Dual Gaussianmodel (in orange) revealed that touch points tend to be elongated along themovement direction, which resembled the observed
touch point distribution (in blue). The predictions made by the original Dual Gaussian model (in green) remained the same across different
movement angles, resulting in poor fitting compared to the Rotation Dual Gaussian model.

4.2 Model Candidates
There were four model candidates:

(1) Original Dual Gaussian model (Equation 6),
(2) Rotational Dual Gaussian model with projected width𝑊𝑝

and height 𝐻𝑝 (Equation 16).
(3) Rotational Dual Gaussian model with apparent width𝑊𝑎

and height 𝐻𝑎 .
(4) Rotational Dual Gaussian model with nominal width𝑊𝑛 and

height 𝐻𝑛 .

4.3 Fitting Models
We employed a Bayesian computational method to estimate pa-
rameters a, b, c, and d of both model candidates. We used Stan
[8], a probabilistic programming language for Bayesian modeling

and statistical inference, to implement the models and obtain the
estimation of parameter distributions.

We constructed the two models as follows. After we defined
the models and passed the data, Stan inferred the posterior dis-
tribution of model parameters through Hamiltonian Monte Carlo
(HMC), which is a Markov Chain Monte Carlo (MCMC) sampling
method. Since we did not possess prior knowledge of parameters,
we assumed uniform distributions as priors for all parameters. We
used the default setting of Stan to fit the model, which employed
4 chains, and each chain included 1000 iterations in sampling. All
R-hat convergence diagnostics were close to 1.0, indicating that
between and within estimates for parameters agree so that the
Markov chain converged to the estimated distributions. We sum-
marized the means of posterior distributions of model parameters
in Table 1.
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Figure 6. Prediction on x-y correlations (𝜌) vs. movement angles (𝜃 ) in 3 target size (width × height) conditions. The Rotational Dual Gaussian
model successfully predicts the effect ofmovement angle onx-y correlations. Rotationalmodelwith projectedwidths andheights outperforms
its alternatives. The originalDualGaussianmodel assumes 𝜌 is 0,which does not capture the changes of 𝜌 as themovement direction𝜃 changes.

Model Original Dual Gaussian Model
Rotational Dual Gaussian Model

𝑊𝑝 , 𝐻𝑝 𝑊𝑎, 𝐻𝑎 𝑊𝑛, 𝐻𝑛

RMSE of predicted 𝜌 0.218 0.159 0.218 0.243
Table 2: Root Mean Square Error of predicted 𝜌 . The Rotational Dual Gaussian Model with projected widths and heights outperforms three
other model candidates.

4.4 Model Comparison
We examined the prediction accuracy of the four model candidates
with the following four metrics.

Information Criteria.We first compared the prediction accu-
racy of the Rotational Dual Gaussian model with the original Dual
Gaussian model using the Widely Applicable Information Crite-
rion (WAIC) [14]. Table 1 shows that the Rotational Dual Gaussian
model with projected widths and heights has the lowest WAIC,
indicating that it has the strongest predictive power of touch point
distribution among the four model candidates.

Error rate.We used the means of the posterior parameter dis-
tributions as parameters and calculated the observed and predicted
error rates for 21 target sizes. More specifically, we calculated the
predicted error rate using a samplingmethod. Given a target and the
estimated touch point distribution, we first generated 10000 touch
points from the estimated distribution and calculated the error rate
as the percentage of touch points falling outside the boundaries of
the target. We repeated this process 10 times for each target and
used the average value over these 10 times as the predicted error
rate for a given target. In 19 out of 21 width × height conditions, the
Rotational Dual Gaussian model with projected widths and heights
outperforms the original Dual Gaussian model by predicting an
error rate closer to the observed error rate. We also calculated the
Root Mean Square Error (RMSE) between the predicted and ob-
served error rates for the four model candidates. Table 1 shows
that the Rotational Dual Gaussian model with projected widths
and heights has the lowest RMSE of error rate in target acquisition
tasks.

Prediction onTouchPointDistributions.We further inspected
the performance of the Rotational Dual Gaussian model with pro-
jected widths and heights and the original Dual Gaussian model by
comparing the 95% density contours predicted by both models with

the observed 95% density contours. We first simulated data from
both models and calculated the probability density function (PDF)
for the simulated and the observed data. Then, we obtained the
95% density contours from the PDFs. We generated the observed
PDF using kernel density estimation (KDE) [11], which is a non-
parametric method of estimating the PDF of a random variable. The
simulated 95% density contours of touch points should resemble
the observed ones if the model fits. We visually evaluated the two
models by comparing the 95% density contours of touch points
across (width, height, angle) tuples, as shown in Figure 5.

More specifically, for each width × height × angle condition,
we draw 2000 sample points using each of the two models and
plotted the 95% density contours against the 95% density contour
of the observed touch points. Figure 5 shows the results for two
conditions: (a) width = 6, height = 4 and (b) width = 4, height = 6.
Compared to the original Dual Gaussian model, the Rotational Dual
Gaussian model successfully predicts the orientation of the ellipse.
It captures the tendency of touch points distributions elongated
along the finger movement direction, and hence better predicts the
shape of touch point distribution.

Prediction on x-y Correlations 𝝆. Additionally, we also eval-
uated the four model candidates by examining their prediction of
Pearson’s correlation coefficient between x and y coordinates of
touch points over targets with different sizes. We followed Equation
19 to predict the x-y correlation coefficient and plotted it against
the movement angle for 336 width × height × angle conditions in
Ko et al’s dataset [23]. Figure 6 shows three representative cases
where (a) width = 20, height = 10, (b) width = 8, height = 20, and
(c) width = 10, height = 20. As seen in the figure, x and y coordi-
nates of touch points tend to present a positive correlation when
𝜃 ∈ (0◦, 90◦) or 𝜃 ∈ (180◦, 270◦) and a negative correlation when
𝜃 ∈ (90◦, 180◦) or 𝜃 ∈ (270◦, 360◦). The target width and height
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affect how the x-y correlation changes with angle. Figure 6 shows
that all three forms of the Rotational Dual Gaussian model success-
fully captured how the x-y correlations changes with the movement
direction, but the magnitude of the changes is predicted differently.
The correlation curves of the Rotational Dual Gaussian model with
projected widths and heights better captured the trend of observed
correlations relating to the movement angle than its two alterna-
tives. Table 2 summarized the Root Mean Square Error (RMSE) of
𝜌 prediction. As shown, Rotaional Dual Gaussian model with𝑊𝑝

and 𝐻𝑝 has lowest RMSE.

5 EVALUATION ON SMARTWATCH-BASED
TYPING TASKS

To further evaluate the models, we tested them on a smartwatch
typing dataset, as typing action can be viewed as a sequence of
target acquisitions. We used each model in a statistical decoder, to
test which model performed the best in decoding. Because of the
shape (three rows of up to 10 keys) and letter arrangement (left
and right alternation) on Qwerty keyboards, movements directions
of one finger typing on such a layout tend to only slightly deviate
from the horizontal axis. We therefore should expect small but still
significant improvement of the Rotational Dual Gaussian model
as the spatial model of decoding. To provide unbiased evaluation,
we used the parameter values estimated on Ko et al’s dataset [23]
for each model (Table 1), and the typing dataset was viewed as a
testing dataset.

5.1 Participants and Apparatus
We recruited 14 participants (4 females) aged from 23 to 32 (mean
= 27.2, std = 2.9). All participants were right-handed and had ex-
perience with typing on a touchscreen keyboard. Participants per-
formed typing tasks on a TicWatch S with Android API 28. The
smartwatch is 44.958 mm in diameter and 12.954 mm thick. Par-
ticipants wore the smartwatch on their non-dominant hand and
typed with their index finger of the dominant hand throughout the
experiment.

Figure 7. Left: a participant in the study. Right: a screenshot of the
typing tasks.

Similar to the previous study [3], we designed a typing task
where participants typed short phrases on a custom Android appli-
cation. We randomly selected short and shortened phrases from the
phrase set designed by MacKenzie and Soukoreff (M&S) [26, 37] for
this study. As shown in Figure 7, we implemented an Android ap-
plication that displayed a sequence of phrases, a simple QWERTY

soft keyboard, a NEXT button, and a CANCEL button. The key
width was 3 millimeters for letters and 9 millimeters for the space
key, while the key height was 4 millimeters. We preferred a simple
interface to avoid complex visual elements having a positive or
negative impact on the user’s behavior. We recorded the positions
of touch points that can be easily aligned with target characters.

This application displayed one short phrase at a time. Users
completed typing a phrase by clicking on each letter key that ap-
peared in the phrase, including the space key. After typing the
entire phrase, users were required to click on the NEXT button to
proceed to the next phrase. If users realized that they had input the
wrong word in the middle of a phrase, they were allowed to retype
the whole phrase by clicking on the CANCEL button. Meanwhile,
this application logged the x and y coordinates of each touch point
in millimeters along with the intended character in the presented
phrase, including space, the NEXT button, and the CANCEL button.
We also recorded the time that each touch appeared. The appli-
cation logged touch points on "touch down" events. When users
touched the soft keyboard, an asterisk appeared on the screen to
provide limited feedback since we wanted to eliminate the influence
of using a character detection algorithm, which was required to
display the input character, on users’ behavior.

5.2 Design and Procedure
Participants completed the study in 30 minutes on average and
entered 110 short phrases while seated in an office environment.
We divided the 110 phrases into 11 blocks, each containing 10
short phrases. Participants could take optional short breaks up
to 2 minutes after each block, and the first block was a warm-up
block. Similar to the previous study [3], before the study started,
we instructed the participants to type "as accurately and naturally
as possible." We collected a total of 29673 labeled touch points,
excluding touch points from warm-up phases.

5.3 Results
As touch point distribution models also serve as spatial models in
the statistical decoder of a soft keyboard, we compared the perfor-
mance of four models in decoding accuracy.

Statistical Decoding Principle. The statistical decoder [6, 13,
15, 29, 34] works as follows. Given a set of 𝑛 independent touch
points on the keyboard 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} and the lexicon 𝐿, the
decoder will determine the best word𝑊 ∗ based on:

𝑊 ∗ = argmax
𝑊 ∈𝐿

𝑃 (𝑊 |𝑠1, 𝑠2, ..., 𝑠𝑛) (20)

Applying the Bayes’ rule yields,

𝑃 (𝑊 |𝑠1, 𝑠2, ..., 𝑠𝑛) =
𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛 |𝑊 )𝑃 (𝑊 )

𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛)
(21)

where 𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛) is invariant across words. Therefore, substi-
tuting Equation 21 to Equation 20 is equivalent to the following:

𝑊 ∗ = argmax
𝑊 ∈𝐿

𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛 |𝑊 )𝑃 (𝑊 ) (22)

where 𝑃 (𝑊 ) is estimated from a language model that in the current
study is a unigram model trained from COCA Corpus [9, 10], and
𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛 |𝑊 ) is calculated as follows.



Modeling Touch Point Distribution with Rotational Dual Gaussian Model UIST ’21, October 10–14, 2021, Virtual Event, USA

Model Original Dual Gaussian Model
Rotational Dual Gaussian Model

Literal Strings
𝑾𝒑 , 𝑯𝒑 𝑊𝑎, 𝐻𝑎 𝑊𝑛, 𝐻𝑛

Mean of WER (SD) 28.89% (0.093) 28.54% (0.094) 28.62% (0.096) 28.71% (0.094) 80.31% (0.110)
Table 3: The mean (SD) of word-level error rates using the four model candidates and the literal strings in typing tasks on a smartwatch.

Participant
WER of Using the

Original Dual Gaussian Model

WER of Using the

Rotational Dual Gaussian Model WER of Literal Strings

𝑾𝒑 , 𝑯𝒑 𝑊𝑎, 𝐻𝑎 𝑊𝑛, 𝐻𝑛

1 9.91% 9.45% 9.45% 9.45% 76.27%

2 11.97% 11.44% 11.44% 11.97% 58.78%

3 40.32% 40.55% 40.55% 40.78% 92.86%

4 22.81% 22.58% 22.58% 22.58% 88.40%

5 32.87% 32.64% 32.64% 32.87% 71.26%

6 26.04% 25.35% 25.58% 25.58% 79.03%

7 36.55% 36.29% 36.55% 36.29% 84.77%

8 29.95% 29.72% 29.72% 29.95% 76.50%

9 34.56% 34.33% 34.56% 34.56% 93.55%

10 35.48% 35.48% 35.48% 35.48% 86.87%

11 23.50% 23.04% 23.04% 23.04% 61.29%

12 37.10% 37.10% 37.56% 37.56% 91.01%

13 35.71% 34.56% 34.56% 34.79% 87.33%

14 27.65% 26.96% 27.19% 27.19% 76.50%
Table 4: Word error rates per user on the smartwatch dataset collected by us. Literal strings use only key boundaries to determine which letter
is typed without using any language model in decoding.

Model Original Dual Gaussian Model
Rotational Dual Gaussian Model

Literal Strings
𝑾𝒑 , 𝑯𝒑 𝑊𝑎, 𝐻𝑎 𝑊𝑛, 𝐻𝑛

Mean of WER (SD) 3.35% (0.016) 3.21% (0.016) 3.23% (0.016) 3.33% (0.016) 30.06% (0.178)
Table 5: The mean (SD) of word-level error rates using the four model candidates and the literal strings in typing tasks on smartphone.

Assume the word𝑊 is composed of a sequence of 𝑛 characters
{𝑐1, 𝑐2, ..., 𝑐𝑛}. Since we assume 𝑠1, 𝑠2, ..., 𝑠𝑛 are independent, we
obtain:

𝑃 (𝑠1, 𝑠2, ..., 𝑠𝑛 |𝑊 ) =
𝑛∏
𝑖=1

𝑃 (𝑠𝑖 |𝑐𝑖 ) (23)

The model that predicts 𝑃 (𝑠𝑖 |𝑐𝑖 ) is also referred to as a spatial
model, which can be approximated by each of the four touch point
distribution models.

Using original Dual Guassian model to calculate 𝑃 (𝑠𝑖 |𝑐𝑖 ).
Let (𝑥𝑖 , 𝑦𝑖 ) denotes the coordinates of 𝑠𝑖 and (𝜇𝑖𝑥 , 𝜇𝑖 𝑦) denotes the
center of key 𝑐𝑖 on the soft keyboard.𝑊𝑖 and𝐻𝑖 represent the width
and height of key 𝑐𝑖 on the keyboard. Applying the original Dual
Gaussian model in Equation 5 and Equation 6, we have

𝑃 (𝑠𝑖 |𝑐𝑖 ) =
1

2𝜋
√
(𝑎 + 𝑏𝑊 2

𝑖
)
√
(𝑐 + 𝑑𝐻2

𝑖
)
exp

[
−𝑧
2

]
(24)

where

𝑧 ≡
(𝑥𝑖 − 𝜇𝑖𝑥 )2

𝑎 + 𝑏𝑊 2
𝑖

+
(𝑦𝑖 − 𝜇𝑖 𝑦)2

𝑐 + 𝑑𝐻2
𝑖

UsingRotationalDualGaussianmodel to calculate 𝑃 (𝑠𝑖 |𝑐𝑖 ).
Let (𝑥𝑖 , 𝑦𝑖 ) denotes the coordinates of 𝑠𝑖 and (𝜇𝑖𝑥 , 𝜇𝑖 𝑦) denotes the
center of key 𝑐𝑖 on the soft keyboard.𝑊 𝑖

𝑝 and 𝐻 𝑖
𝑝 represent the pro-

jected width and height of key 𝑐𝑖 on the keyboard. Let 𝜃𝑖 denotes
the angle of the movement from the previous touch point 𝑠𝑖−1 to
the current target key center (𝜇𝑖𝑥 , 𝜇𝑖 𝑦). Applying the Rotational
Dual Gaussian model in Equation 16, we have

𝑃 (𝑠𝑖 |𝑐𝑖 ) =
1

2𝜋𝜎𝑖𝑥𝜎𝑖 𝑦
√
1 − 𝜌2

𝑖

exp

[
− 𝑧

2(1 − 𝜌2
𝑖
)

]
(25)
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Participant
WER of Using the

Original Dual Gaussian Model

WER of Using the

Rotational Dual Gaussian Model WER of Literal Strings

𝑾𝒑 , 𝑯𝒑 𝑊𝑎, 𝐻𝑎 𝑊𝑛, 𝐻𝑛

1 5.26% 4.97% 4.97% 4.97% 39.18%

2 1.77% 1.77% 2.06% 2.06% 11.50%

3 3.19% 2.98% 2.98% 3.40% 18.09%

4 2.31% 1.73% 2.31% 2.31% 14.12%

5 0.79% 0.79% 0.39% 0.39% 10.63%

6 5.03% 5.03% 4.86% 5.03% 43.38%

7 4.43% 4.06% 4.06% 4.43% 55.13%

8 1.86% 1.86% 1.69% 1.69% 19.49%

9 5.20% 5.20% 5.20% 5.20% 57.20%

10 3.76% 3.76% 3.76% 3.94% 31.84%
Table 6: Word-level error rates per user using the four model candidates and the literal strings in typing tasks on a smartphone.

where

𝑧 ≡
(𝑥𝑖 − 𝜇𝑖𝑥 )2

𝜎𝑖
2
𝑥

−
2𝜌𝑖 (𝑥𝑖 − 𝜇𝑖𝑥 ) (𝑦𝑖 − 𝜇𝑖 𝑦)

𝜎𝑖𝑥𝜎𝑖 𝑦
+
(𝑦𝑖 − 𝜇𝑖 𝑦)2

𝜎𝑖
2
𝑦

𝜌𝑖 =
cos𝜃𝑖 sin𝜃𝑖 (𝑎 + 𝑏𝑊 𝑖

𝑝
2) − cos𝜃𝑖 sin𝜃𝑖 (𝑐 + 𝑑𝐻 𝑖

𝑝
2)
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√
cos2 𝜃𝑖 (𝑎 + 𝑏𝑊 𝑖

𝑝
2) + sin2 𝜃𝑖 (𝑐 + 𝑑𝐻 𝑖

𝑝
2)

𝜎𝑖 𝑦 =

√
sin2 𝜃𝑖 (𝑎 + 𝑏𝑊 𝑖

𝑝
2) + cos2 𝜃𝑖 (𝑐 + 𝑑𝐻 𝑖

𝑝
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Figure 8. A comparison of WER for different models on a smart-
watch. The gray error bars show 95% confidence intervals.

Word error rate (WER) [13] is a standard way of measuring
decoding accuracy in a word-based task. Table 3 and Figure 8 show
the decoding accuracy measured by word error rate of using four
models, and also the literal string error rate [13] which uses only key
boundaries to determine which letter is typed and used no language
model in decoding. As shown, the meanWER across all participants
was 28.54% (SD = 0.09) for the Rotational Dual Gaussian model with
projected widths and heights, 28.89% (SD =0.09) for the original
Dual Gaussian model, and 80.31% (SD = 0.11) for the literal strings.

The Rotational Dual Gaussian model further reduced the decoding
error rate than the original Dual Gaussian model. Table 4 shows the
decoding error rates for each user with the four model candidates.
The Rotational Dual Gaussian model with projected widths and
heights reduced the WER for 11 out of 14 users. For 2 out of 14
users, the WER stayed the same, and the WER slightly increased for
only 1 user. The increase in decoding accuracy was small because
the language model contributed to correct most errors. Repeated-
measures ANOVA showed the decoding method had a main effect
on edit distance (𝐹 (3, 39) = 7.409, 𝑝 = 0.0005). Pairwise comparison
with Bonferroni adjustment showed the difference between error
rates of using the Rotational Dual Gaussian model with projected
widths and heights and the original Dual Gaussian model were
significant (𝑝 < 0.05).

6 EVALUATION ON A SMARTPHONE TYPING
DATASET

Besides testing models on smartwatch-based typing tasks, we also
tested them on a smartphone-based typing dataset, the Azenkot
and Zhai’s Dataset [3].

6.1 Azenkot and Zhai’s Dataset
This empirical text entry dataset was collected to investigate touch
behavior with different postures on virtual smartphone keyboards
by Azenkot and Zhai [3]. They recruited 32 participants for a
between-subjects study, where 11 subjects entered text with two
thumbs, 11 with one thumb, and 10 with one index finger. They
collected x and y pixel coordinates of touch points during text entry
on a custom Android application, which they called the Keyboard
Touch Collector (KTC). KTC displayed a sequence of short phrases
and a simple keyboard. When a user clicked on the KTC keyboard,
an asterisk appeared on the screen as limited visual feedback. They
collected 86888 labeled touch points in total, excluding touch points
from warm-up phases. We used their 24126 labeled touch points
collected from one index finger in this evaluation.
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6.2 Results
We followed the same procedures to evaluate the performance
of the four model candidates in a statistical decoder on Azenkot
and Zhai’s Dataset [3]. Table 5 shows the decoding accuracy of
using four model candidates and the literal string accuracy. The
mean of WERs across all participants was 3.21% (SD = 0.016) for
the Rotational Dual Gaussian model with projected widths and
heights, 3.35% (SD = 0.016) for the original Dual Gaussian model,
and 30.06% (SD = 0.178) for the literal strings. Table 6 and Figure 9
show the decoding error rates for each user using the four model
candidates. The Rotational Dual Gaussian model with projected
widths and heights reduced the WER for 4 out of 10 participants,
and the WER remained unchanged for the rest 6 participants. The
differences between error rates using the Rotational Dual Gaussian
model and the original Dual Gaussian model were not significant
(𝐹 (3, 27) = 1.851, 𝑝 = 0.162). The result was not significant since
the language model and the original Dual Gaussian model were
capable of correcting most of the errors.

Figure 9. A comparison of WER for different models on a smart-
phone. The gray error bar shows 95% confidence intervals.

7 GENERAL DISCUSSION
As a key enabler to modern mobile computing and a main difference
from the desktop interface technologies, touch input has attracted
significant empirical and theoretical studies in HCI literature [e.g.
6, 19, 33]. Finger touch input has the advantage of being direct
therefore intuitive, but suffers from the lack of mouse pointer level
precision. The most rigorous model accounting for the “fat finger”
imprecision to date is the Dual Gaussian model of finger touch
[5, 6]. However, the original Dual Gaussian model did not consider
the case therefore weakened its prediction when the movement
direction is misaligned with the primary target constraint dimen-
sion. The model’s independent variables were the nominal target
width𝑊 in the horizontal x dimension and nominal target height
𝐻 in the vertical y dimension only, regardless of the movement
direction 𝜃 . We generalize this line of modelling work with the
Rotational Dual Gaussian model whose independent variables also
include movement direction 𝜃 . Through mathematical derivation
and empirical testing on several data sets, we demonstrated the
value and validity of the generalized model, particularly along the
following three aspects.

7.1 Modeling distribution of touch points
The Rotational Dual Gaussian model with projected widths and
heights performs the best in modeling touch point distribution. Its
prediction accuracy on Ko et al’s dataset [23] measured by WAIC
is the strongest among all the four model candidates including
the original Dual Gaussian model and the two alternatives of the
Rotational Dual Gaussian model. Compared to the original Dual
Gaussian model, it reduces the Root Mean Square Error of predic-
tion error rate from 8.49% to 4.95% in on-screen-starting target
acquisition tasks.

7.2 Applications of the Rotational Dual
Gaussian model

The Rotational Dual Gaussian model proposed in this paper ad-
vances the Dual Gaussian Distribution model by factoring in the
finger movement direction. It also advances the previous research
frommodeling 1D or circular targets tomodeling 2D rectangular tar-
gets. Such an advancement has high practical value as rectangular
targets are more commonly seen on current touchscreen interfaces
than 1D or circular targets. Examples of 2D rectangular targets
include buttons, icons, hyperlinks, and menu items. The proposed
model benefits the following applications. First, given target widths
and heights, the Rotational Dual Gaussian model more accurately
predicts the finger touch accuracy than the existing Dual Gaussian
model. Therefore, it can be used by UI designers in designing and
evaluating touchscreen user interfaces.

Second, using the Rotational Dual Gaussian model as the likeli-
hood model in soft keyboard decoding can improve the decoding
accuracy. Replacing the original Dual Gaussian model with the
selected Rotational Dual Gaussian model in a statistical decoder
reduces the mean decoding error rate from 28.89% to 28.54% on
smartwatches and from 3.35% to 3.21% on smartphones. The im-
provements in decoding accuracy are small for two types of reasons.
The first is due to the Qwerty layout on which movement direc-
tions do not vary much away from the horizontal direction. The
second reason is due to the use of the language model that has a
significant contribution to reducing the error rate and the original
Dual Gaussian model is already able to correct most errors. When
applying the Rotational and the original Dual Gaussian model to
smartwatches, the differences in decoding accuracy are still statisti-
cally significant. Using the Rotational Dual Gaussian model on a
smartwatch reduced the decoding error rates for 11 out of 14 users,
and kept the error rate unchanged for 2 out of 14 users. Although
the magnitude of improvement is small, it is generalizable, and
using the Rotational Dual Gaussian model to replace the original
Dual Gaussian model has almost no cost. As text entry is a vital
task of touchscreen interaction, any improvements in the error rate
will positively affect the user’s experience. The promising results
showed it is worth adopting the Rotational Dual Gaussian model
to decoding, especially for small soft keyboards (e.g., keyboards on
smartwatches).

Third, it can be used to predict the touch accuracy for on-screen-
starting pointing actions: moving finger from one place on the
screen to select a target located at another place on the screen. The
on-screen-starting pointing is an important part of smartphone
interaction [38], such as (1) moving finger from the bottom (or top)
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of a screen to tap a ’Like’ button after scrolling through a social
networking service feed, or (2) successively inputting check marks
on a questionnaire.

7.3 Effects of finger movement direction on
distribution

Parameter estimation showed that 𝑎 = 2.043 is larger than 𝑏 =

1.476 and 𝑐 = 0.017 is larger than 𝑑 = 0.010 in the Rotational
Dual Gaussian model. This is consistent with previous findings
where end points tend to vary along the movement direction. In the
Rotational Dual Gaussian model, 𝑎 and 𝑏 are parameters factoring
variation along the movement direction, while 𝑐 and 𝑑 account for
the direction perpendicular to the movement direction. A larger 𝑎
and 𝑏 enables the Rotational Dual Gaussian model to better capture
the shape of touch point distribution.

Another implication of the Rotational Dual Gaussian model is
that projected target size (𝑊𝑝 model), which is obtained from pro-
jecting the target onto the moving direction and the direction per-
pendicular to the moving direction, has a good performance in
modeling touch point distribution. Both𝑊𝑝 and𝑊𝑎 models convert
target width and height into constraints along and perpendicular
to the movement direction. However,𝑊𝑝 and 𝐻𝑝 values are always
greater than or equal to the corresponding𝑊𝑎 and 𝐻𝑎 values. It
shows that𝑊𝑎 and 𝐻𝑎 underestimate both directional and ampli-
tude constraints, compared with𝑊𝑝 and 𝐻𝑝 . Nevertheless, the𝑊𝑎

model still outperforms the𝑊𝑛 and the original Dual Gaussian
models, indicating it is a good approximation for modeling touch
pointing.

Our investigation shows that finger movement direction leads
to the rotation of the touch point distribution such that the two
symmetrical axes of the prediction ellipse approximately fall onto
the movement direction and the direction perpendicular to the
movement direction. Effects of the movement direction on the
orientation of touch points distribution also explain the observation
that the x-y correlation 𝜌 of touch points changes with movement
angle. When the angle falls into the first or the third quadrant, the
x-y correlation of touch points is positive; a movement angle in
the second or the fourth quadrant implies a negative correlation
between x and y coordinates of touch points. The Rotational Dual
Gaussian model is able to capture how 𝜌 will change as the finger
movement direction 𝜃 changes.

7.4 Limitations of the Rotational Dual
Gaussian model

The Rotational Dual Gaussian model works under the assumption
that the movement direction 𝜃 is known. Cases where 𝜃 is unknown
are beyond the scope of this model and should be handled by the
original Dual Gaussian model. Nevertheless, the Rotational Dual
Gaussian model as the latest refinement of the Dual Gaussian fam-
ily of finger touch models is conceptually more logical because
it handles movement amplitude and directional errors separately.
As such our first research task was to prove it was indeed more
accurate than the original Dual Gaussian models. We also went
beyond that by examining its increased power in soft keyboard
decoding, which the motor control model is just a part of the total
decoding process.

The proposed Rotational Dual Gaussian model was trained for
the index finger only, but generalizing it to different fingers is
straightforward since the process of deriving the model has no de-
pendence on the input finger type. When generalizing the model to
other fingers, the parameters (𝑎, 𝑏, 𝑐 , and 𝑑 in Equation 3) should be
re-estimated with empirical data to account for the different levels
of ambiguity caused by different input fingers. Previous research
[6] shows that the touch point distributions between index finger
and thumb have only small differences. We expect the difference
in model parameters of the Rotational Dual Gaussian model for
different fingers would also be small. If the input finger is unknown,
one possible option is to use the parameters estimated from data
aggregated across different input fingers.

8 CONCLUSION
We propose the Rotational Dual Gaussian model, a model that
predicts the distribution of touch points in target acquisition tasks.
It advances the original Dual Gaussian model [5] by taking into
account the finger movement direction 𝜃 . The main difference from
the original Dual Gaussian model is that the co-variance matrix
becomes:

Σ𝑅 =

[
𝜎2𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎2𝑦

]
(26)

where

𝜎2𝑥 = cos2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + sin2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎𝑥𝑦 = cos𝜃 sin𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) − cos𝜃 sin𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

𝜎2𝑦 = sin2 𝜃 (𝑎 + 𝑏𝑊 2
𝑝 ) + cos2 𝜃 (𝑐 + 𝑑𝐻2

𝑝 )

where 𝜃 is the finger movement direction,𝑊𝑝 and 𝐻𝑝 are projected
target width and height along the finger movement direction, and
the direction perpendicular to the finger movement direction.

The evaluation on three datasets shows that the Rotational Dual
Gaussian model is more accurate than the original Dual Gaussian
model. In target acquisition tasks, the Rotational Dual Gaussian
model reduces the Root Mean Square Error of error rate prediction
from 8.49% to 4.95% over the original Dual Gaussian Model; it also
more accurately predicts the correlation coefficient 𝜌 between x and
y coordinates of touch points. Using the Rotational Dual Gaussian
model also improves the soft keyboard decoding accuracy than
using the original Dual Gaussian model for typing on smartwatches,
and the difference between using these two models is statistically
significant.
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