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ABSTRACT
Steering law reveals a linear relationship between the movement
time (𝑀𝑇 ) and the index of difficulty (𝐼𝐷) in trajectory-based steer-
ing tasks. However, it does not relate the variance or distribution
of 𝑀𝑇 to 𝐼𝐷 . In this paper, we propose and evaluate models that
predict the variance and distribution of𝑀𝑇 based on 𝐼𝐷 for steering
tasks. We first propose a quadratic variance model which reveals
that the variance of 𝑀𝑇 is quadratically related to 𝐼𝐷 with the
linear coefficient being 0. Empirical evaluation on a new and a pre-
viously collected dataset show that the quadratic variance model
accounts for between 78% and 97% of variance of observed 𝑀𝑇

variances; it outperforms other model candidates such as linear and
constant models; adding the linear coefficient leads to no improve-
ment on the model fitness. The variance model enables predicting
the distribution of 𝑀𝑇 given 𝐼𝐷 : we can use the variance model
to predict the variance parameter and Steering law to predict the
mean parameter of a distribution. We have evaluated six types of
distributions for predicting the distribution of𝑀𝑇 . Our investiga-
tion also shows that positively skewed distribution such as Gamma,
Lognormal, Exponentially Modified Gaussian (ExGaussian), and Ex-
treme value distributions outperformed the symmetric distribution
such as Gaussian and truncated Gaussian distribution in predicting
the 𝑀𝑇 distribution, and Gamma distribution performed slightly
better than other positively skewed distributions. Overall, our re-
search advances the𝑀𝑇 prediction of steering tasks from a point
estimate to variance and distribution estimates, which provides a
more complete understanding of steering behavior and quantifies
the uncertainty of𝑀𝑇 prediction.
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1 INTRODUCTION
Steering law [1] predicts that the movement time (𝑀𝑇 ) for steering
a pointer through a tunnel with width𝑊 and length𝐴 is determined
by the ratio of 𝐴

𝑊
, that is:

𝑀𝑇 = 𝑎 + 𝑏 ·
( 𝐴
𝑊

)
, (1)

where 𝑎 and 𝑏 are empirically determined parameters. Past re-
search [1] has shown that Steering law well predicts𝑀𝑇 in a wide
range of trajectory-based HCI tasks including steering through
straight, circular, or narrowing tunnels. Steering law has also been
widely used in interface and interaction design such as modeling
the selection time in hierarchical menus [1], and game-playing
behaviors [4].

Despite its success, however, one limitation of Steering law is
that it provides only a point estimate on𝑀𝑇 – namely the mean of
𝑀𝑇 . While there is no doubt that the mean is an important statistic,
it reflects only the central tendency and provides no information
on the dispersion of the data. Summarizing a distribution into one
statistic inevitably introduces information loss. To provide a more
complete understanding of steering movement, could we also es-
timate the variance of 𝑀𝑇 , and then predict the full distribution
of 𝑀𝑇 ? In addition to deepening our understanding on steering
movement behavior, variance and distribution estimates can predict
the probability of observing a particular 𝑀𝑇 value or range, and
quantify the uncertainty of the𝑀𝑇 estimate.

Modeling the variance and distribution of interaction time has
gained attention as it provides a more complete understanding of
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Figure 1: (a) An example of 𝑀𝑇 variance vs. 𝐼𝐷 Regression using quadratic variance model (Equation 2), evaluated on the
steering task data collected in our user study. (b) and (c): one example of predicting 𝑀𝑇 distribution selected from the red
circle in (a). The blue curve in (b) represents the observed probability density function (PDF) of 𝑀𝑇 under a particular (𝐴,𝑊 )
condition, and the green curve is the predicted PDF using the quadratic variance model (Equation 2) in a Gamma distribution.
The blue curve in (c) represents the observed cumulative distribution function (CDF), and the green curve is the predicted CDF.

users’ behaviors and quantifies the prediction uncertainty. For ex-
ample, past research [23] has shown that the variance of 𝑀𝑇 in
pointing tasks increases as the index of difficulty (𝐼𝐷) of a pointing
task increases, and the 𝑀𝑇 distribution of pointing tasks can be
modeled by Lognormal [20], Gamma [14], Extreme value [6], and
Exponentially Modified Gaussian (exGaussian) [11, 12] distribu-
tions.

However, in contrast to Fitts’ law, our understanding of the
variance and distribution of 𝑀𝑇 of steering law tasks is limited.
Is the variance of𝑀𝑇 of steering law tasks also related to 𝐼𝐷 of a
task? Is it constant or does it increase as 𝐼𝐷 increases? What is the
distribution of𝑀𝑇 ? Can we also develop mathematical models that
can predict the variance and distribution of𝑀𝑇 based on 𝐼𝐷? We
aim to answer these questions in this research.

In this paper, we have proposed models for predicting the vari-
ance and full distribution of𝑀𝑇 in trajectory-based movements [1].
We first propose a quadratic variance model, which predicts that
the variance of𝑀𝑇 is quadratically related to the index of difficulty
𝐼𝐷 :

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2, (2)

where 𝑐 , and 𝑑 are empirically determined parameters. The 𝐼𝐷 is
defined as 𝐼𝐷 = 𝐴

𝑊
[1]. We refer it as quadratic variance model,

which reveals that the variance of𝑀𝑇 is quadratically related to 𝐼𝐷
with the linear coefficient being 0. Our evaluation on two steering
law datasets shows that this variance model can well predict the
variance of𝑀𝑇 in different types of steering tasks including steering
through straight , narrowing and circular tunnels. It accounts for
78% to 97% of variance of observed𝑀𝑇 variances, and outperforms
other models including constant, linear, and quadratic models with
a linear term.

Second, we combine the quadratic variance model with the typi-
cal Steering law to predict the distribution of𝑀𝑇 . We use Steering
law to predict the mean parameter, and the quadratic variance
model to predict the variance of 𝑀𝑇 distribution. We evaluated
six types of distributions, including Gaussian, truncated Gaussian,
Lognormal, Gamma, Extreme Value, and Exponentially Modified

Gaussian (exGaussian) distributions. These distributions have been
used to model 𝑀𝑇 distributions in pointing tasks. In the present
research, we extend them to model the variance and distribution
of𝑀𝑇 in steering tasks. Our investigation showed that using the
quadratic variance model and Steering law can well predict the
distribution of 𝑀𝑇 , and positively skewed distributions such as
Gamma, exGaussian, Lognormal, and Extreme value distributions
better model the𝑀𝑇 distributions than other types of distributions
such as Gaussian and Truncated Gaussian distributions. Next, we
will review the literature, and discuss the explanation and validation
of the quadratic variance and distribution models.

2 RELATEDWORK
We review previous research on Steering law and probabilistic
modeling, and discuss how our work is built on and contrasts with
them.

2.1 Steering Law Research in General
Steering law [1, 8, 22] has played an important role in interface
design, optimization, and evaluation along with the Fitts’ law [9]
in which Steering law is derived from. It has been proposed three
separate times by Rashevsky [22] on automobile driving, Drury [8]
on drawing tasks, and Accot and Zhai [1] on trajectory-based tasks
on computer interfaces. Because the steering tasks are crucial in the
interaction on graphical user interfaces, understanding, evaluating,
and predicting the steering performance is of great interest to HCI
practitioners and researchers. Steering law has various applications,
for example: to help navigate through immersive virtual environ-
ments [18, 30], to design and evaluate input devices [2, 16, 24], to
optimize user interfaces [3] and so on.

Researchers [15, 17, 19, 25, 31] have provided various refinements
and interpretations of 𝐼𝐷 . For example, by accounting for the subjec-
tive operational biases, Zhou [31] suggested 𝐼𝐷 = 𝐴

𝑆𝐷
for a standard

deviation of sample points 𝑆𝐷 . Furthermore, Kulikov [15] intro-
duced an effective index of difficulty 𝐼𝐷𝑐 that includes the spatial
variability in steering law models to replace the original index of
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difficulty 𝐼𝐷 . Nancel and Lank [19] recently combined Steering law
with path curvature radius 𝑅 and they showed that steering speed
increases when 𝑅 increases. This result is different from Montazer
et al’s [17] findings which state that the movement speed increases
as 1/𝑅 decreases. These different results are solved by Yamanaka
and Miyashita [25] through integrating different formulas to be
a united one. As customary, we have adopted Accot and Zhai’s
formulation of 𝐼𝐷 [1], which is 𝐴

𝑊
, since it is the most widely used

in HCI.
Some other researchers [21] have provided various models to

accommodate different path shapes. For example, models are pro-
posed for steering through a corner [21], narrowing and widening
paths [26, 27], and constrained path segments [28, 29].

Although the models mentioned above explain why𝑀𝑇 is lin-
early related to 𝐼𝐷 , they do not reveal the relationship between
variance and distribution of𝑀𝑇 with 𝐼𝐷 . Our research built upon
Accot’s steering model [1], extending it to reveal the relationship
between variance and distribution of𝑀𝑇 and 𝐼𝐷 .

2.2 Variance and Distribution of Movement
Time in Motor Control Tasks

Although there is a sizable amount of work investigating how the
mean of 𝑀𝑇 relates to the 𝐼𝐷 , the investigation on the variance
and distribution of𝑀𝑇 is sparse. One of the relevant works was the
research conducted by Zhou and Ren [31], which showed that the
standard deviation of𝑀𝑇 increases as𝐴 and𝑊 increases. However,
Zhou and Ren [31] did not investigate how the distribution of𝑀𝑇

related to the task parameters.
Although the literature on variance and distribution of Steering

law is sparse, there has been a sizeable amount of interest in un-
derstanding and modeling the variance and distribution of𝑀𝑇 in
other motor control tasks, such as Fitts’ law. Our research is partic-
ularly related to the previous research investigating the variance
and distribution of 𝑀𝑇 in Fitts’ law tasks because both Fitts’ law
and Steering law reflect the regularity of the human motor control
system.

Regarding Fitts’ law, it has been observed that the variance of
𝑀𝑇 is not constant across 𝐼𝐷𝑠 (e.g., [6, 11, 14]). In contrast, it is
positively related to the 𝐼𝐷 of the tasks: the higher the 𝐼𝐷 , the
wide the dispersion of𝑀𝑇 . It coincides with many psychophysics
observations that the standard deviation of a quantity increases
with its mean value [23]. Our quadratic variance model reveals that
the variance of𝑀𝑇 on steering task is quadratically related to 𝐼𝐷 ,
which is similar to previous findings on Fitts’ law.

There is also plenty of research investigating the distribution of
𝑀𝑇 in Fitts’ law. Previous research (e.g., [6, 11, 14, 20]) suggested
that the distribution of𝑀𝑇 in Fitts’ law tasks tends to have a positive
skew: it has a long tail in the positive direction. To account for both
characteristics, a number of possible models including Gamma [14],
Log-normal [20], Generalized Extreme Value [6], or exponentially
modified Gaussian (called exGaussian) distributions [11] have been
suggested.

Inspired by the aforementioned previous research on Fitts’ law,
this research investigated whether these distributions can be ap-
plied to model𝑀𝑇 distribution in Steering tasks. Next, we describe
the intuition-driven explanation of the quadratic-variance model

and distribution models for steering tasks, followed by model eval-
uation.

3 MODELING THE VARIANCE OF
MOVEMENT TIME

We first investigated how to model the variance 𝜎2 of𝑀𝑇 given 𝐼𝐷

of a steering task. Our intuition-driven explanation shows that 𝜎2
is likely quadratically related to 𝐼𝐷 :

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2, (3)

where 𝑐 and 𝑑 are empirically determined parameters. Equation 3
is also referred to as quadratic variance model.

3.1 Explanation of Quadratic Variance Model
We hypothesize this quadratic relationship by assuming that (1) the
movement of the pointer in the steering task consists of multiple
sub-movements and (2) each sub-movement takes a unit time which
is a random variable 𝑡 with a fixed mean (𝜇𝑡 ) and variance (𝜎𝑡 2)
across all sub-movements. The first assumption is consistent with
the observation in other motor control tasks (e.g., Fitts’ law) that
the pointer movement can be broken into multiple sub-movements.

Based on these two assumptions, we can obtain the quadratic
variance model (Equation 3) as follows. First, it is straightforward
to obtain that the number of sub-movements is proportional to
𝐼𝐷 (explained later). Second, as the variance of submovements
accumulates during the process, the variance of𝑀𝑇 will increase
if 𝐼𝐷 increases. If the duration of submovement is represented
by a random variable 𝑡 with a fixed mean (𝜇𝑡 ) and variance (𝜎𝑡 2),
simple analysis as shown below reveals that the variance of𝑀𝑇 is
quadratically related to 𝐼𝐷 .

Take the constant tunnel as an example. The instantaneous speed
form of steering law [1] specifies that the instantaneous speed 𝑣 of
the pointer is proportional to the tunnel width𝑊 :

𝑣 =
𝑊

𝑏
(4)

where 𝑏 is a constant. Under the aforementioned assumptions, the
average travel distance of the pointer in each sub-movement (de-
noted by Δ) is calculated as follows:

Δ = 𝜇𝑡 · 𝑣 = 𝜇𝑡 ·
𝑊

𝑏
, (5)

where 𝜇𝑡 is the mean duration of each sub-movement,𝑊 is the
width of the tunnel and𝑏 is an empirically determined constant. The
number of sub-movements (denoted by 𝑛) a user needs to complete
the steering task is calculated as:

𝑛 =
𝐴

Δ
=

𝐴 · 𝑏
𝑊 · 𝜇𝑡

= 𝐼𝐷 · 𝑏

𝜇𝑡
, (6)

where 𝐴 is the length of the tunnel. Equation 6 indicates that the
number of sub-movements 𝑛 is proportional to 𝐼𝐷 . Therefore, the
total time𝑀𝑇 for completing the task is

𝑀𝑇 = 𝑛 · 𝑡, (7)

where 𝑡 is a random variable, representing the duration of each
submovement.

Equation 7 shows that𝑀𝑇 is the product of a random variable
𝑡 and the number of sub-movements 𝑛. It implies that variance of
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𝑀𝑇 will be 𝑛2 · 𝜎2𝑡 , where 𝜎2𝑡 is the variance of 𝑡 , regardless of the
distribution type of 𝑡 . Plugging in Equation 6, we can calculate 𝜎2
as:

𝜎2 = 𝑛2 · 𝜎𝑡 2 = ( 𝐴 · 𝑏
𝑊 · 𝜇𝑡

)2 · 𝜎𝑡 2 = 𝐼𝐷2 · 𝑏
2 · 𝜎𝑡 2
𝜇𝑡

2 . (8)

where 𝑏, 𝜇𝑡 , and 𝜎𝑡 are all constant. Equation 8 shows that 𝜎2 is
proportional to 𝐼𝐷2.

If it is assumed that the initial sub-movement takes some extra
time to activate the movement, this extra time should be added to
𝑀𝑇 . 𝑀𝑇 then becomes the summation of two random variables.
The 𝜇 is expressed as the summation of the means containing two
random variables and the 𝜎2 is the summation of the variances of
these two random variables:

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2, (9)

where 𝑐 and 𝑑 are all constants. Equation 9 implies that variance of
𝑀𝑇 is quadratically related to 𝐼𝐷 .

Extending quadratic variance model to non-constant tunnels. For
non-constant tunnel, the instantaneous speed of the pointer at the
location 𝑠 is expressed in Equation 10:

𝑣 (𝑠) = 𝑑𝑠

𝑑𝑇
=
𝑊 (𝑠)
𝑏

, (10)

where 𝑣 (𝑠) is the instantaneous speed of a pointer at position 𝑠

along the tunnel,𝑊 (𝑠) is the width of the tunnel at point 𝑠 , and 𝑏 is
a constant. The mean travel distance in a sub-movement at location
𝑠 (denoted by Δ(𝑠)) then becomes:

Δ(𝑠) = 𝜇𝑡 · 𝑣 (𝑠) = 𝜇𝑡 ·
𝑊 (𝑠)
𝑏

, (11)

where𝑊 (𝑠) is the width of tunnel at location 𝑠 . The number of
sub-movements then becomes:

𝑛 =

∫
𝐶

𝑑𝑠

Δ(𝑠) =

∫
𝐶

𝑑𝑠

𝜇𝑡 · 𝑊 (𝑠)
𝑏

=
𝑏

𝜇𝑡
·
∫
𝐶

𝑑𝑠

𝑊 (𝑠) =
𝑏

𝜇𝑡
· 𝐼𝐷 (12)

As shown in Equation 12, the number of submovements will also
be linearly related to 𝐼𝐷 for non-constant tunnels. Simple derivation
as shown from Equations 7 to 9 reveals that the variance of𝑀𝑇 is
quadratically related to 𝐼𝐷 .

Alternative Explanation of Quadratic Variance Model. We can
alternatively explain the quadratic relationship between variance
of 𝑀𝑇 and 𝐼𝐷 based on the common observation in psychology
experiments that the variability of response time increases with
task difficulty increases [11, 23].

More specifically, previous research [23] shows that the standard
deviation of response time is often linearly related to its mean. A
greater mean results in greater variability. The𝑀𝑇 in steering task
is one type of such response times and we expect it will also follow
this relationship. Therefore, it implies that the standard deviation
of 𝑀𝑇 is linearly related to the mean of 𝑀𝑇 . Because variance is
the square of standard deviation, it implies that the variance of
𝑀𝑇 is quadratically related to the mean of 𝑀𝑇 . As mean of 𝑀𝑇

is linearly related to 𝐼𝐷 (Steering law, Equation 1), it implies that
variance of𝑀𝑇 is quadratically related to 𝐼𝐷 . A similar explanation
was made about the variance of Fitts’ law tasks in the previous
research [11]. We expect the variability of 𝑀𝑇 in steering tasks
conforms to this relationship too, drawing on the findings from
previous work [11, 23]. This simple alternative explanation also lead

to a similar conclusion as the quadratic variance model (Equation 3),
confirming the validity of explanation in the previous section.

3.2 Other Variance Model Candidates.
Besides the quadratic variance model, we also introduce 5 other
candidates to model variances. They are constant, linear, and qua-
dratic forms with different complexity levels. All of the six model
candidates are listed in Table 1. Among these 6 candidates, con-
stant (#1) and linear (#3) models are used to investigate whether
quadratic term would help to improve the fitting accuracy while #2,
#5 and #6 models are compared with quadratic variance model #4
to see whether a candidate with higher or lower complexity would
benefit model fitness.

Candidate Number Variance Model

#1 𝜎2 = 𝑐

#2 𝜎2 = (𝑐 · 𝐼𝐷)2

#3 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

#4 𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2

#5 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

#6 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Table 1: Six variancemodel candidates, all of which are used
for predicting variance of 𝑀𝑇 based on 𝐼𝐷 where 𝑐, 𝑑 , and 𝑒

are empirically determined parameters. The quadratic vari-
ance model (Equations 9) is #4.

4 MODELING THE DISTRIBUTION OF
MOVEMENT TIME

Combining variance models and Steering law, we can predict the
distribution of 𝑀𝑇 according to different 𝐼𝐷 . We introduced six
kinds of distributions which are Gaussian, Truncated Gaussian
with lower bound 0, Lognormal [20], Gamma [14], Extreme value
(GEV) [6], and Exponentially modified Gaussian (ExGaussian) [11,
12] distributions.

The reasons why we bring these models into comparison are as
follows. The Gaussian distribution is the model with a maximum
entropy given a mean and variance. And it is usually a good candi-
date as the least-informative default [13]. While truncated Gaussian
reflect that 𝑀𝑇 has a natural lower bound. So, we proposed both
Gaussian and truncated Gaussian models. In addition, the distribu-
tion of𝑀𝑇 in Fitts’ law is suggested as positively skewed. Previous
work showed that the distribution of Lognormal [20], Gamma [14],
Extreme value (GEV) [6], and Exponentially modified Gaussian (ex-
Gaussian) [11, 12] can be used to model the𝑀𝑇 distribution in Fitts’
law. Since Fitts’ law and Steering law both reflect the regularity
of the human motor control system, we included the models that
have been used to model Fitts’ law𝑀𝑇 distributions as candidates
for 𝑀𝑇 distribution in Steering tasks too. Among three types of
Extreme value distributions, we chose Extreme value type I, the one
with a shape parameter as zero. In the previous Fitts’ law study [6],
the shape parameter fitted was approximately 0 (ranging between
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Distribution type Models and parameters
Predicting model parameters based on 𝐼𝐷

using quadratic variance model as an example
(M: mean, V: variance)

Empirically determined
parameters

Gaussian X ∼ N(𝑀,
√
𝑉 )

𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2 𝑎,𝑏, 𝑐,𝑑

Truncated Gaussian
with lower bound 0

X ∼ N(𝜇, 𝜎) [0, ]
𝜇 : location
𝜎 : scale

𝜇 = 𝑎 + 𝑏 · 𝐼𝐷
𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

𝛼 = − 𝜇

𝜎

𝜙 (𝛼) : PDF, 𝜙 (𝛼) = 1√
2·𝜋 · exp(− 1

2 · 𝛼2)
Φ(𝛼) : CDF, Φ(𝛼) = 1

2 · (1 + erf ( 𝛼√
2
))

𝑍 = 1 − Φ(𝛼)
𝑀 = 𝜇 + 𝜎 · 𝜙 (𝛼 )

𝑍

𝑉 = 𝜎2 · (1 + 𝛼 · 𝜙 (𝛼 )
𝑍

− ( 𝜙 (𝛼 )
𝑍

)2)

𝑎,𝑏, 𝑐,𝑑

Lognormal
X ∼ Lognormal(𝜇, 𝜎)

𝜇 : location
𝜎 : scale

𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2

𝜇 = ln( 𝑀2
√
𝑀2+𝑉

)

𝜎 =

√
𝑙𝑛 (1 + 𝑉

𝑀2 )

𝑎,𝑏, 𝑐,𝑑

Gamma
X ∼ Γ (𝛼, 𝛽)
𝛼 : shape

𝛽 : inverse scale

𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2

𝛼 = 𝑀2
𝑉

𝛽 = 𝑀
𝑉

𝑎,𝑏, 𝑐,𝑑

Extreme value
X ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (𝜇, 𝛽)

𝜇 : location
𝛽 : scale

𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2

𝜇 = 𝑀 − 𝛽 · 𝛾
𝛽 =

√
6 · 𝑉

𝜋2

𝛾 : Euler-Mascheroni constant

𝑎,𝑏, 𝑐,𝑑

ExGaussian

X ∼ 𝐸𝑀𝐺 (𝜇, 𝜎, 𝜆)
𝜇 : location
𝜎 : scale
𝜆 : shape

𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2

𝜇 = 𝑀 − 1
𝜆

𝜎 =

√
𝑉 − 1

𝜆2

𝜆 = 𝑘
𝐼𝐷

[11]

𝑎,𝑏, 𝑐,𝑑, 𝑘

Table 2: Models adopted to predict the distribution of𝑀𝑇 given 𝐼𝐷 . We used the quadratic variance model with constant term
(Equation 9) as an example to explain parameter derivation. Each of the variance models listed in Table 1 can be used to
substitute quadratic variance model to predict 𝑀𝑇 variance of the distribution. M and V stand for the mean and variance. In
truncated Gaussian, 𝜙 (𝑥) and Φ(𝑥) stands for probability density function (PDF) and cumulative distribution function (CDF).

0 and 0.4) when the authors used Generalized Extreme value dis-
tribution to model distribution of 𝑀𝑇 . This suggested that type I
could serve as a suitable candidate. All the distributions mentioned
above are described in Table 2.

We constructed a distribution model in three steps. (1) Give a
distribution type 𝑓 (Θ) parameterized by a vector Θ, we expressed
its mean (𝑀) using Steering law:𝑀 = 𝑎 + 𝑏 · 𝐼𝐷 , and expressed its

variance (𝑉 ) using one of the six variance models in Table 1. For
example, if we adopt the quadratic variance model, it means𝑉 = 𝑐 +
𝑑 ·𝐼𝐷2. (2)We expressed the parameter vectorΘ using𝑀 and𝑉 . Take
the Gamma distribution as an example. As a Gamma distribution
can be parameterized as 𝑋 ∼ Γ(𝛼, 𝛽), we used𝑀 and 𝑉 to express
the parameters 𝛼 and 𝛽 as 𝛼 = 𝑀2

𝑉
, and 𝛽 = 𝑀

𝑉
. Table 2 shows how

the parameter vector Θ of each distribution is expressed using𝑀
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and 𝑉 . (3) We matched the distribution model with the empirical
𝑀𝑇 data to estimate the parameter values, such as 𝑎, 𝑏, 𝑐, and 𝑑 in
the aforementioned Gamma distribution example. This procedure
was also called model fitting. We achieve so using the probabilistic
modeling language Stan [5]. Stan used a Bayesian method to fit
the model. After we described the model and provided the data,
Stan calculated the posterior distribution of the model parameters
using the Hamiltonian Monte Carlo (MCMC) sampling method.
Please refer to Appendix B for sample Stan code of describing the
Gamma model. Note that for a truncated Gaussian distribution we
used the Steering law and a variance model to predict the mean and
variance for the original Gaussian distribution before the truncation
(which are also called location and scale parameters in the truncated
Gaussian), because (a) we view a truncated Gaussian is a simple
modification of the original Gaussian distribution by reflecting
the natural lower bound of movement time (i.e., 0), (b) there is no
analytical form to express the parameters of a truncated Gaussian
(i.e., location 𝜇 and scale 𝜎) using𝑀 and 𝑉 .

In total we have 31 distribution model candidates. For 5 distri-
bution types, namely Gaussian, Truncated Gaussian, Lognormal,
Gamma, and Extreme value distributions, each of the 6 variance
models in Table 1 can be used to predict the variance parameters.
For the ExGaussian distribution, previous research [11] shows that
it naturally implies a quadratic relationship between variance and
𝐼𝐷 , so we use only the quadratic variance model for this distribution
as shown in Table 2. Therefor we have 31 models in total:

6 variance models × 5 distribution types + 1 ExGaussian model =
31 distribution models

Next, we evaluate the variance models and distribution mod-
els using a stylus-based steering task data set (Zhou and Ren’s
dataset [31]), and a mouse cursor-based steering law data set col-
lected in the present research.

5 EVALUATION ON A STYLUS-BASED
STEERING LAW DATASET

We first evaluate the variance and distribution models on a stylus-
based steering law data set collected by Zhou and Ren [31].

5.1 Zhou and Ren’s Steering Law Dataset
This Zhou and Ren’s dataset [31] was collected from 10 participants
who were divided into two groups randomly. The participants in
each of the groups were required to perform a straight tunnel
and a circular tunnel steering task with a stylus. Both tasks had 9
conditions with 3 amplitude (66.1, 92.6, 119.1 mm) and 3 width (2.6,
6.6, 10.6 mm) pairs with 9 distinct 𝐼𝐷𝑠 . We only choose the operation
strategy with neutral (N) because neutral instruction means the
experiment accuracy and speed have the same level of importance
in our study while other strategies would result in bias. There were
9 trials for each participant under each 𝐼𝐷 condition. Therefore, in
each task, we obtained 810 trials (10 · 9 · 9 = 810) totally. Zhou and
Ren’s steering law dataset was a stylus-based mouse movement,
complementing our dataset (explained later) which was based on
mouse steering movement. Evaluating this data set would help us
further identify the fitness of variance and distribution models.

5.2 Evaluating Variance Models
In order to model the𝑀𝑇 variance, we introduced six model candi-
dates (Table 1). In each condition of the two tasks, we calculated
the 𝑀𝑇 variance and used a typical MLE method to fit these six
candidates. Table 3 shows model parameters, 𝑅2 value, leave-one-
(𝐴,𝑊 )-out cross-validation Rootmean square error (RMSE), Akaike
information criterion (AIC), and Widely Applicable Information
Criterion (WAIC) for the three tasks. For the leave-one(𝐴,𝑊 )-out
cross-validation, we separated the dataset into testing data and
training data. The testing data contained one (𝐴,𝑊 ) condition
while the training data contained the rest of them. We fitted the
training data to get the model parameter and calculated the RMSE
based on the testing data. We repeated this procedure 12 times
since each of the (𝐴,𝑊 ) conditions was chosen as testing data once.
We calculated the mean and standard deviation of RMSE based on
12 cross-validations to verify whether the overfitting occurred in
the variance model candidates. AIC and WAIC metrics are widely
adopted as information criteria to compare the fitness of the dataset
and the complexity of the model (i.e., the number of parameters)
between different models. Figures 2 - 3 visualizes variance predic-
tion against observed variance of𝑀𝑇 of six variance candidates in
each of the straight, and circular tasks.

As shown in Table 3 and Figures 2 - 3, the quadratic-variance
model (Model #4 in Table 1) proposed according to the instanta-
neous form of Steering law performs well in modeling variance.
This model outperforms other variance model candidates in AIC,
WAIC, and leave-one-(𝐴,𝑊 )-out cross-validation in both straight
tunnel and circular tunnel tasks. In the observed𝑀𝑇 variance, al-
though the quadratic variance model (#4) accounts for around 78.5%
variation for the straight task and 84.4% for the circular task which
are lower than or equal to the quadratic variancemodel with a linear
coefficient (78.8% variation for the straight task and 84.4% variation
for the circular task) correspondingly, the latter one (Model #6 in
Table 1) overfits the data in both tasks since the RMSE of leave-one-
(𝐴,𝑊 )-out cross-validation increases compared with the quadratic
variance model (#4). Besides, the AIC andWAIC results also suggest
that the quadratic variance model (#4) in both straight and circular
tunnel performs the best among all variance candidates within its
task after taking the model complexity into account.

We also compared the quadratic variance model (Model #4 in
Table 1) with models that use𝐴 or𝑊 only to predict variance. Zhou
and Ren [31] observed that standard deviation of𝑀𝑇 increased as𝐴
or𝑊 increased, and further proposed to model 𝜎 by 𝜎 = 𝑐 +𝑑 ·𝐴, or
𝜎 = 𝑐 +𝑑 ·𝑊 . Their models indicated that variance can be modeled
as:

𝜎2 = (𝑐 + 𝑑 · 𝐴)2, (13)

or

𝜎2 = (𝑐 + 𝑑 ·𝑊 )2, (14)

where 𝑐 and 𝑑 are all constant. We evaluated these two models
on this data set. The 𝑅2 value for Equation 13 were 0.248 (straight
tunnel), and 0.268 (circular tunnel), and for Equation 14 were 0.053
(straight tunnel) and 0.093 (circular tunnel). All of them were much
lower than the quadratic variance model. It indicates that it is more
appropriate to use 𝐼𝐷 , rather than 𝐴 or𝑊 to model variance.
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Conditions Variance Models c d e 𝑅2 RMSE [SD] AIC WAIC

Straight

𝜎2 = 𝑐
0.228

[0.1 , 0.353] N/A N/A 0 128.54 [107.87] 246.37 245.2

𝜎2 = (𝑐 · 𝐼𝐷)2 0.017
[0.012, 0.021] N/A N/A 0.382 100.38 [63.56] 242.34 239.66

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 0.03
[-0.1, 1.7]

0.01
[0.004, 0.016] N/A 0.735 95.37 [67.32] 238.11 234.96

𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2 0.121
[0.034 ,0.208]

0.0002
[0.0001, 0.0003] N/A 0.785 83.08 [48.10] 236.20 232.72

𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2 0.23
[0.2, 0.4]

0.01
[0.009, 0.02] N/A 0.752 98.28 [77.12] 237.43 234.38

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2 0.156
[-0.149, 0.47]

-0.0038
[-0.037, 0.027]

0.0003
[-0.0003, 0.0009] 0.788 117.10 [100.84] 240.17 235.96

Circular

𝜎2 = 𝑐
0.593

[ 0.368 ,0.802] N/A N/A 0 225.82 [174.39] 255.92 254.12

𝜎2 = (𝑐 · 𝐼𝐷)2 0.025
[0.016, 0.032] N/A N/A 0 318.13 [146.48] 260.79 257.9

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 0.241
[0.013, 0.445]

0.018
[0.009, 0.028] N/A 0.808 130.88 [80.87] 244.92 241.24

𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2 0.4
[0.273 ,0.522]

0.0003
[0.0002, 0.0005] N/A 0.844 105.70 [60.04] 242.87 239.08

𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2 0.54
[0.39, 0.66]

0.01
[0.006, 0.02] N/A 0.827 126.21 [76.33] 243.95 240.26

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2 0.393
[-0.176, 0.889]

0.0009
[-0.051, 0.058]

0.0003
[-0.0008, 0.0014] 0.844 136.62 [84.80] 247.48 243.04

Table 3: Model parameters, evaluation results, and WAIC metrics for 6 variance models (Table 1) on Zhou and Ren’s steering
law dataset. As shown, the quadratic-variance model outperformed other models in both straight and circular tasks, after
taking into account the complexity of the model (i.e., the number of parameters).

Figure 2: 𝜎2 vs. 𝐼𝐷 regression for 6 variance models on the Zhou and Ren’s straight tunnel dataset. As shown, the quadratic-
variance model (Model #4 in Table 1) accounts for 78.5% of variance in the observed variance of 𝑀𝑇 . It performs the best
according to AIC, WAIC, and leave-one-(𝐴,𝑊 )-out cross-validation. Model #6 in Table 1 has the highest 𝑅2, but overfits the
data because it has higher RMSE in leave-one-(𝐴,𝑊 )-out cross-validation compared with quadratic variance model.
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Figure 3: 𝜎2 vs. 𝐼𝐷 regression for 6 variance models on the Zhou and Ren’s circular tunnel dataset. As shown, the quadratic-
variance model (Model #4 in Table 1) accounts for 84.4% of variance in the observed variance of 𝑀𝑇 . It performs the best
according to AIC, WAIC, and leave-one-(𝐴,𝑊 )-out cross-validation. The 𝑅2 value of Model #6 in Table 1 is the same with
Model #4, but Model #6 overfits the data because it has higher RMSE in leave-one-(𝐴,𝑊 )-out cross-validation compared with
quadratic variance model.

5.3 Evaluating Distribution Models
In addition, we introduced 6 distribution model candidates (Table 2)
to model the distribution of 𝑀𝑇 . As explained in Section 4, we
used Steering law (Equation 1) to predict its mean (or location
parameter) and variance models (Table 1) to predict its variance (or
scale parameter). As a result, we end up having 31 model candidates

Fitting Models. We calculated the parameters for 31 model
candidates using the Bayesian method. We used Stan [5] to fit these
models and obtained the distribution of their parameters. Since we
have no prior knowledge of the parameters, We set the parameters
priors as uniform distribution. We adopted the default setting that
used 4 chains in Markov chain sampling. Each chain contained
1000 iterations. The Rhat values were often used as an indicator
to measure whether chains had converged or not. These values in
our models were all close to 1.0, meaning the Markov chains had
converged. Table 4 described the distribution of model parameters
(mean and 95% credible interval).

We compared the prediction accuracy of 31 model candidates on
probability𝑀𝑇 distribution to evaluate these models. Concretely,
we used the three following metrics to investigate prediction accu-
racy. The results of 31 model candidates were showed in Tables 8
- 9 from Appendix.

Information Criteria.We used WAIC (Widely Applicable In-
formation Criterion) and AIC (Akaike Information Criterion) [10]
to compare prediction accuracy for 31 distribution model candi-
dates regarding𝑀𝑇 distribution. For WAIC and AIC, a lower value

indicated better prediction accuracy of the model. These two met-
rics also took the penalty of the number of parameters, over-fitting
control, and model complexity into account.

Tables 4 shows the fitting results for quadratic variance mod-
els (Model #4 in Table 1) in both straight and circular tasks on
Zhou and Ren’s steering law dataset. As shown in both tasks, the
Gamma, Lognormal, Extreme value and exGaussian distributions
outperformed Gaussian and truncated Gaussian distributions.

Posterior PredictiveChecking onProbabilityDensity Func-
tion.We also provided further evaluation for 6 model candidates
by performing posterior predictive checking on Probability Density
Function (PDF) of𝑀𝑇 . In straight and circular tunnel tasks, the vari-
ance predicted by the quadratic variance model (Table 4) performed
best (or second-best) among all distribution types in both tasks. We
draw simulated curves from the posterior predictive distribution
from randomly generated variables according to the parameters
learned from each dataset and compared the simulated curve with
the observed curve. In order to estimate a random variable’s PDF,
we used kernel density estimation (a.k.a Parzen–Rosenblatt window
method) [7] to simulate the observed probability density function.
The simulated curve and observed curve should be similar to each
other if the model fits well. This method showed the degree of simi-
larity between the predicted PDFs and the observed PDFs regarding
𝑀𝑇 distributions.

In each of the two tasks, posterior predictive checks on PDF
of 𝑀𝑇 a cross (𝐴,𝑊 ) pairs were simulated. Concretely, we first
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Distribution Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑘 AIC WAIC

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

(Straight tunnel)

Gaussian
0.53

[0.47, 0.59]
0.029

[0.026, 0.032]
0.133

[0.111, 0.158]
0.0002

[0.0002, 0.0003]
N/A 12252.0 12249.2

Truncated Gaussian
0.492

[0.424, 0.557]
0.029

[0.026, 0.033]
0.162

[0.13, 0.201]
0.0002

[0.0001, 0.0003]
N/A 12223.2 12220.7

Lognormal
0.526

[0.465, 0.589]
0.029

[0.026, 0.033]
0.14

[0.102, 0.182]
0.0003

[0.0002, 0.0005]
N/A 12128.4 12124.3

Gamma
0.532

[0.475, 0.587]
0.029

[0.025, 0.032]
0.12

[0.097, 0.146]
0.0002

[0.0002, 0.0003]
N/A 12120.5 12116.2

Extreme value
0.512

[0.452, 0.569]
0.03

[0.026, 0.033]
0.111

[0.088, 0.137]
0.0003

[0.0002, 0.0004]
N/A 12129.4 12124.9

exGaussian
0.44

[0.377, 0.5]
0.035

[0.031, 0.04]
0.06

[0.037, 0.086]
0.00006

[0.00004, 0.00008]
0.04

[0.04, 0.05]
12193.7 12194.7

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

(Circular tunnel)

Gaussian
0.646

[0.552, 0.74]
0.085

[0.08, 0.09]
0.419

[0.356, 0.489]
0.0004

[0.0003, 0.0006]
N/A 13058.7 13055.4

Truncated Gaussian
0.587

[0.48, 0.69]
0.086

[0.081, 0.092]
0.483

[0.406, 0.574]
0.0003

[0.0002, 0.0005]
N/A 13040.1 13039.9

Lognormal
0.608

[0.509, 0.71]
0.087

[0.081, 0.093]
0.36

[0.274, 0.463]
0.0008

[0.0005, 0.0011]
N/A 12959.3 12957.5

Gamma
0.637

[0.545, 0.73]
0.085

[0.08, 0.091]
0.344

[0.276, 0.417]
0.0006

[0.0004, 0.0008]
N/A 12954.4 12951.5

Extreme value
0.55

[0.46, 0.65]
0.091

[0.085, 0.097]
0.258

[0.196, 0.327]
0.0011

[0.0009, 0.0014]
N/A 12974.1 12971.1

exGaussian
0.342

[0.131, 0.652]
0.107

[0.085, 0.124]
0.119

[0.001, 0.369]
0.0002

[0.00006, 0.0004]
0.03

[0.02, 0.05]
13039.6 13074.5

Table 4: Fitting results for quadratic variance models (Model #4 in Table 1) in both straight and circular tunnel tasks on Zhou
and Ren’s steering law dataset. For each type of distribution, we use Steering law (Equation 1) to predict the mean (or location)
parameter, and quadratic variance model (#4) to predict the variance (or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are
parameters of Steering law, and 𝑐, and 𝑑 are parameters of variance models. Parameter estimations are shown in mean and
95% credible interval of posterior distributions. Fitness results are reported in AIC and WAIC metrics.

generated 100 samples based on model parameters’ posterior dis-
tributions, providing 100 sample models. Then, for each model
generated, we sampled 2000 data points and used these points to
plot the probability density functions (PDF) against the observed
PDF regarding𝑀𝑇 . As a result, 100 predicted PDFs were presented
for each (𝐴,𝑊 ) condition using each distribution model. We in-
cluded all the predicted PDFs associated with the observed 𝑀𝑇

PDF (Figure 4). The simulated curve and observed curve should be
similar to each other if the model fits well.

Figure 4 shows the results for 3 conditions in each of the straight
and circular tunnel tasks. As shown, the predicted PDFs from
Gamma, lognormal, Extreme value , and exGaussian models re-
sembled the observed data, indicating a strong fit.

Next, we carried out an experiment to evaluate 6 variance models
and 31 distribution models on our newly collected steering law
dataset.

6 EVALUATING VARIANCE AND
DISTRIBUTION MODELS VIA A TUNNEL
STEERING EXPERIMENT

In order to further evaluate the variance and distribution models
introduced, we conducted a mouse cursor-based steering law study.

6.1 Participants and Apparatus
Twelve participants (5 females, 7 males) aged from 21 to 44 (mean
= 28.9, std = 6.2) participated in our user study. All of them claimed
that they used GUI on a daily basis and had laptops using experience.
An ASUS Q551L laptop computer with a Windows 10 operating
system was adopted as the main device to run the user study. It had
a screen size of 15.4 inches and a resolution of 1920 × 1080. Before
the study, we turned off the mouse acceleration and adjusted the
cursor speed to the midpoint (10/20) in the system settings.

6.2 Procedure and Design
Three steering tasks were considered in our study: a straight tunnel
task, a narrowing tunnel task, and a circular tunnel task. Each of
them contained 12 (𝐴,𝑊 ) pairs with 12 unique 𝐼𝐷𝑠 due to unre-
peatable 𝐼𝐷 . Table 5 shows the amplitude (𝐴) and width (𝑊 ) chosen
for each of the three tasks. In each (𝐴,𝑊 ) condition, the participant
was instructed to steer the cursor through the tunnel as quickly and
accurately as possible. The order of three types of tunnels (straight,
narrowing, and circular tunnels) were fully counter-balanced across
participants. The orders of 12 (𝐴,𝑊 ) conditions in each task were
randomly chosen for each subject.
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Figure 4: Posterior Predictive Checking on Probability Density Functions (PDF) of𝑀𝑇 in 3 amplitude-width (𝐴,𝑊 ) conditions
in each of the straight and circular tunnel tasks on the Zhou and Ren’s steering law dataset. The blue curves are the observed
PDF and the light blue bars are observed histogram. The other colored curves are predictions made by different models. All
the predictions were drawn from 100 simulations. The narrow bands represent the uncertainty. As shown, the Lognormal
(green), Gamma (violet), Extreme value (yellow), and exGaussian (red) looked very similar to the observed PDF (blue), and
outperformed models with Gaussian and truncated Gaussian (black and grey).

Task Amplitude and Width Pairs (𝐴,𝑊 )

Straight tunnel

(150, 10), (150, 15), (150, 20), (150, 22.5),

(250, 10), (250, 15), (250, 20), (250, 22.5),

(350, 10), (350, 15), (350, 20), (350, 22.5)

Narrowing tunnel

(150, 20), (150, 40), (150, 60), (150, 80),

(250, 20), (250, 40), (250, 60), (250, 80),

(350, 20), (350, 40), (350, 60), (350, 80)

Circular tunnel

(127.3, 22.8), (135.7, 20), (151.3, 15), (167, 10),

(206.6, 22.8), (215.1, 20), (230.7, 15), (246.3, 10),

(286, 22.8), (294.5, 20), (310.1, 15), (325.7, 10)

Table 5: Amplitude and width pairs (𝐴,𝑊 ) chosen for each
of the three tasks. All the values are in mm.

At the beginning of a trial, one of the three types of tunnels
was displayed in grey on the computer screen (Figure 5). A par-
ticipant was instructed to move the cursor across the starting line
to start the trial. Upon crossing the starting line, the tunnel turns
in green, indicating that the trails started. The mouse trajectory

Figure 5: Left: a participant is doing the study. Right: a
screenshot of a straight tunnel steering task.

was displayed in blue once the trial started. After the cursor was
steered through the tunnel and crossed the ending line, the trail
ended successfully and a new trial appeared. If the cursor crossed
the boundary of the tunnel in the middle of the trial, the tunnel
turned red, indicating a failure. The participant was then required
to re-do the trial. For a narrowing tunnel (Figure 6(b)), the width
instantaneous changed at each position along the tunnel, which
resulted in a shrinking width from the left to the right. For both
straight and narrowing tunnels (Figure 6(a, b)), participants were
instructed to steer from left to right, and for a circular tunnel (Fig-
ure 6(c)), the subject steered in the counter-clockwise direction. A
participant was required to successfully complete 10 trials in each
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Figure 6: (a): a straight tunnel. (b): a narrowing tunnel. (c): a circular tunnel.

Figure 7: Steering law mean prediction against observed𝑀𝑇 in straight, narrowing and circular tunnel tasks.

Figure 8: Steering law variance prediction against observed variance of𝑀𝑇 using quadratic variancemodel (Model #4 in Table 1)
in each of straight, narrowing and circular tunnel tasks.

(𝐴,𝑊 ) condition for a specific type of tunnel, in order to move to
the next (𝐴,𝑊 ) condition.

In total, our study included:
3 tunnel types × 12 (𝐴,𝑊 ) combinations × 10 successful trials

× 12 users = 4320 successful trials.

6.3 Data
In the three tasks, we collected 1511 trials for the straight tunnel,
1559 trials for the narrowing tunnel, and 1700 trials for the circular
tunnel. After removing unsuccessful trials, we ended up with 1440

(12 · 12 · 10 = 1440) trials for each tunnel. In each condition, the data
points outside the 5 standard deviations were considered as outliers.
Only one trial in the narrowing tunnel was removed according to
this criterion. We ended up with 4319 successful trials. The error
rate for the straight tunnel, narrowing tunnel and circular tunnel
were 4.7%, 7.6% and 15.3%.

We first ran steering law regression of collected data for each
type of tunnel. As shown in Figure 7, the mean of𝑀𝑇 under each
(𝐴,𝑊 ) can be well modeled by steering law (Equation 1).
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Conditions Variance Models c d e 𝑅2 RMSE [SD] AIC WAIC

Straight tunnel

𝜎2 = 𝑐
0.979

[0.344, 1.627] N/A N/A 0 767.0 [655.0] 370.05 368.76

𝜎2 = (𝑐 · 𝐼𝐷)2 0.054
[0.051, 0.056] N/A N/A 0.966 148.2 [178.0] 329.4 329.68

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 -0.899
[-1.275, -0.519]

0.115
[0.095, 0.136] N/A 0.948 239.0 [138.7] 338.09 334.64

𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2 0.052
[-0.126 ,0.229]

0.003
[0.002, 0.003] N/A 0.968 163.3 [139.0] 332.06 330.12

𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2 0.068
[-0.11, 0.24]

0.051
[0.045, 0.058] N/A 0.970 185.2 [212.5] 331.57 329.82

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2 -0.237
[-0.871, 0.398]

0.034
[-0.037, 0.106]

0.002
[0.0003, 0.004] 0.972 206.6 [241.9] 333.91 330.42

Narrowing tunnel

𝜎2 = 𝑐
0.694

[0.283 ,1.075] N/A N/A 0 444.3 [435.5] 358.50 358.72

𝜎2 = (𝑐 · 𝐼𝐷)2 0.058
[0.054, 0.061] N/A N/A 0.918 152.3 [82.5] 328.62 326.06

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 -0.405
[-0.77, -0.067]

0.089
[0.064, 0.115] N/A 0.869 233.8 [238.3] 337.47 335.66

𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2 0.135
[0.0008 ,0.273]

0.003
[0.002, 0.003] N/A 0.946 147.6 [141.2] 326.91 323.84

𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2 0.142
[-0.048, 0.315]

0.05
[0.041, 0.06] N/A 0.939 176.4 [174.5] 328.47 325.72

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2 0.329
[-0.191, 0.876]

-0.029
[-0.109, 0.049]

0.004
[0.001, 0.006] 0.950 196.5 [227.8] 329.39 325.14

Circular tunnel

𝜎2 = 𝑐
1.853

[0.576 ,3.215] N/A N/A 0 1517.1 [1581.3] 388.6 389

𝜎2 = (𝑐 · 𝐼𝐷)2 0.085
[0.08, 0.089] N/A N/A 0.950 431.2 [543.8] 352.62 353.4

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 -1.873
[-3.088, -0.647]

0.257
[0.177, 0.337] N/A 0.863 830.9 [933.6] 368.26 367.76

𝝈2 = 𝒄 + 𝒅 · 𝑰𝑫2 -0.076
[-0.544 ,0.424]

0.007
[0.006, 0.009] N/A 0.951 530.4 [644.6] 355.96 354.68

𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2 -0.177
[-0.694, 0.185]

0.092
[0.076, 0.112] N/A 0.953 552.4 [708.5] 355.37 354.22

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2 0.821
[-0.778, 2.346]

-0.118
[-0.316, 0.088]

0.01
[0.005, 0.02] 0.960 613.6 [901.3] 356.92 353.8

Table 6: Model parameters, evaluation results, and WAIC metrics for 6 variance models (Table 1) of each task on our dataset.
As shown, although there is no clear winner, the quadratic-variancemodel (Model #4 in Table 1) performed the best (or second-
best) in three tasks, after taking into account the complexity of the model (i.e., the number of parameters).

As shown in Figure 7, the offsets of some models are negative.
These negative offsets were the outcome of the fitting process,
which are common in steering regressions. For example, negative
offsets were observed in the steering law regressions in the Accot
and Zhai’s seminal work (e.g., Equations 8 and 11 in [1]).

6.4 Evaluating Variance Models
Similar to the previous experiment, We first introduced 6 variance
model candidates (Table 1) to model𝑀𝑇 variance on both straight,
narrowing, and circular tunnel tasks, and then compared the model
fitness within each task. The results of 𝑅2, Root mean square error
(RMSE) of leave-one-(𝐴,𝑊 )-out cross-validation, AIC, and WAIC
metrics are shown in Table 6. Also, Figure 8 visualizes variance
prediction against observed variance of𝑀𝑇 using quadratic vari-
ance model (Model #4 in Table 1) in each of straight, narrowing
and circular tunnel tasks.

Although no single model performed the best across all con-
ditions, the results (Table 6 and Fig 8) showed that the quadratic
variance model (Model #4 in Table 1) proposed according to the
instantaneous form of Steering law [1] performs well in modeling
variance. This model performs the best (or second-best) among the
three tasks in 𝑅2, RMSE, AIC, and WAIC. In each task, the corre-
sponding quadratic variance model accounts for more than 94%
variation in the observed variance of𝑀𝑇 . Although it improves 𝑅2
value by adding linear coefficient (Model #6 in Table 1), the results
of quadratic variance model with a linear coefficient (#6) in RMSE,
AIC, and WAIC are higher compared to quadratic variance model
(#4), indicating overfitting regarding the variance of𝑀𝑇 .

Similar to the analysis of Zhou and Ren’s dataset [31], we also
compared the quadratic variance model (Model #4 in Table 1) with
models that use 𝐴 or𝑊 only to predict variance. The 𝑅2 value for
Equation 13 were 0.145 (straight tunnel), 0.293 (narrowing tunnel),
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Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑘 AIC WAIC

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

(Straight tunnel)

Gaussian
-0.1

[-0.2, -0.03]
0.08

[ 0.08, 0.09]
-0.019

[-0.05, 0.016]
0.003

[0.003, 0.004]
N/A 23371.9 23368.4

Truncated Gaussian
-0.448

[-1.059, 0.031]
0.047

[0.008, 0.081]
0.121

[-0.106, 0.371]
0.007

[0.005, 0.009]
N/A 22896.4 22891.7

Lognormal
-0.14

[-0.23, -0.028]
0.088

[0.08, 0.097]
-0.053

[-0.165, 0.118]
0.005

[0.004, 0.006]
N/A 22713.5 22709.0

Gamma
-0.112

[-0.183, -0.034]
0.084

[0.078, 0.091]
-0.022

[-0.061, 0.026]
0.003

[0.003, 0.003]
N/A 22732.1 22727.4

Extreme value
-0.108

[-0.175, -0.04]
0.082

[0.076, 0.088]
-0.016

[-0.045, 0.018]
0.002

[0.002, 0.003]
N/A 22909.5 22905.1

exGaussian
-0.056

[-0.092, -0.022]
0.08

[0.076, 0.084]
0.0004

[0.00001, 0.001]
0.004

[0.0003, 0.004]
0.02

[0.02, 0.002]
22692.1 22685.9

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

(Narrowing tunnel)

Gaussian
0.365

[0.282, 0.45]
0.078

[0.07, 0.086]
0.158

[0.109, 0.209]
0.003

[0.003, 0.004]
N/A 23179.9 23176.1

Truncated Gaussian
0.257

[0.08, 0.422]
0.066

[0.048, 0.082]
0.26

[0.156, 0.395]
0.005

[0.003, 0.006]
N/A 22955.6 22951.2

Lognormal
0.453

[0.338, 0.575]
0.074

[0.064, 0.085]
0.565

[0.354, 0.789]
0.003

[0.002, 0.005]
N/A 22956.1 22951.7

Gamma
0.378

[0.289, 0.47]
0.077

[0.068, 0.086]
0.226

[0.157, 0.302]
0.003

[0.002, 0.004]
N/A 22866.0 22861.2

Extreme value
0.372

[0.281, 0.457]
0.077

[0.068, 0.085]
0.19

[0.134, 0.249]
0.003

[0.002, 0.003]
N/A 22948.3 22943.6

exGaussian
0.223

[0.153, 0.298]
0.092

[0.084, 0.1]
0.055

[0.037, 0.075]
0.005

[0.005, 0.006]
0.01

[0.01, 0.01]
22943.5 22937.3

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2

(Circular tunnel)

Gaussian
-0.005

[-0.11, 0.099]
0.277

[0.267, 0.286]
0.032

[-0.026, 0.102]
0.007

[0.006, 0.007]
N/A 24253.4 24249.7

Truncated Gaussian
-0.01

[-0.122, 0.097]
0.277

[0.267, 0.287]
0.035

[-0.021, 0.103]
0.007

[0.006, 0.007]
N/A 24252.2 24248.3

Lognormal
-0.008

[-0.104, 0.095]
0.278

[0.268, 0.287]
0.002

[-0.065, 0.077]
0.007

[0.007, 0.008]
N/A 24177.5 24172.9

Gamma
-0.006

[-0.11, 0.097]
0.277

[0.267, 0.287]
0.012

[-0.043, 0.075]
0.007

[0.006, 0.008]
N/A 24166.3 24161.8

Extreme value
-0.009

[-0.115, 0.098]
0.278

[0.269, 0.289]
-0.006

[-0.074, 0.067]
0.008

[0.007, 0.009]
N/A 24197.0 24192.4

exGaussian
-0.012

[-0.112, 0.09]
0.277

[0.268, 0.287]
0.023

[0.0008, 0.067]
0.007

[0.006, 0.008]
0.02

[0.02, 0.02]
24210.8 24204.7

Table 7: Fitting results for quadratic variance model (Model #4 in Table 1) for each of our straight, narrowing, and circular
tunnel tasks. For each type of distribution, we use Steering law 1 to predict mean (or location) parameter, and quadratic vari-
ance model(Model #4 in Table 1) to predict the variance (or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of
Steering law, and 𝑐 and 𝑑 are parameters of variance models. Parameter estimations are shown in mean and 95% credible inter-
val of posterior distributions. Fitness results are reported in AIC andWAIC metrics. As shown in the three tasks, the Gamma,
Lognormal, Extreme value and exGaussian distributions outperformed Gaussian and truncated Gaussian distributions.

and 0.037 (circular tunnel), and for Equation 14 were 0.513 (straight
tunnel), 0.152 (narrowing tunnel), and 0.517 (circular tunnel). All of
them are much lower than the 𝑅2 values of the quadratic variance
models, confirming the finding that it is more appropriate to use
𝐼𝐷 , rather than 𝐴 or𝑊 to model variance.

6.5 Evaluating Distribution Models
Likewise, 31 distribution model candidates were adopted to predict
the distribution of 𝑀𝑇 . Stan [5] was used to perform Bayesian
modeling without informative priors as parameters. The process for

building models was the same as our previous experiment. Table 7
showed the posterior distribution generated frommodel parameters
of three tasks using quadratic variance model (Model #4 in Table 1).

As in our previous experiment, the same method was used to
evaluate model performance by AIC and WAIC metrics and the
results of 31 distributionmodel candidates were showed in Tables 10
- 12 from Appendix. Then posterior predictive checks on probability
density functions (PDFs) were introduced to compare distribution
model candidates.

Information Criteria. Similarly, we used AIC and WAIC infor-
mation criteria to compare prediction accuracy for 31 distribution
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Figure 9: Posterior Predictive Checking on Probability Density Functions (PDF) of𝑀𝑇 in 3 amplitude-width (𝐴,𝑊 ) conditions
for each of the three tasks. The blue curves are the observed PDF and the light blue bars are observed histogram. The other
colored curves are predictions made by different models. All the predictions were drawn from 100 simulations. The narrow
bands represent the uncertainty. As shown, the Lognormal (green), Gamma (violet), Extreme value (yellow), and exGaussian
(red) looked very similar to the observed PDF (blue), and outperformed models with Gaussian and truncated Gaussian (black
and grey) across all the 9 examples.

model candidates. As shown in Table 7, Lognormal, Gamma, ex-
Gaussian, and Extreme value outperform Gaussian and truncated
Gaussian in predicting the𝑀𝑇 distribution.

Posterior PredictiveChecking onProbabilityDensity Func-
tion. Adopting previous experimental methodology, we extracted
100 samples from the posterior distribution of model parameters,
and used the extracted samples to plot the probability density func-
tion (PDF) of𝑀𝑇 predicted by the model. Next, we compared the
predicted PDF with the PDF of𝑀𝑇 observed in Figure 9. As shown,
the PDF simulated by the quadratic variance Lognormal, Gamma,
Extreme value, and exGaussian models looks more similar to the
observed data while other models show a discrepancy.

7 GENERAL DISCUSSION AND FUTURE
WORK

7.1 Modeling Variance of𝑀𝑇

Our investigation on two steering law datasets shows that the
quadratic variance model (Equation 9, Model #4 in Table 1) perform
wells in predicting the𝑀𝑇 variance across different steering tasks.
On Zhou and Ren’s dataset [31], the quadratic variance model (#4)
performs the best. It has the lowest in AIC, WAIC, and RMSE of
leave-one-(𝐴,𝑊 )-out cross-validation values among the six model
candidates, and can account for more than 78% of the variation
in the observed 𝑀𝑇 variance. On our cursor-based dataset, the
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quadratic variance model (#4) performs the best (or second-best)
among 6 variance models in three types of steering tasks. It also
accounts for more than 94% of variance in observed𝑀𝑇 variance,
showing a strongmodel fitness. Adding the linear coefficient (Model
#6 in Table 1) increases the RMSE in leave-one-(𝐴,𝑊 )-out cross-
validation, indicating that further increasing the complexity of the
quadratic variance model causes overfitting. This provided further
validation that the quadratic variance model (#4) is an appropriate
candidate for modeling the variance of𝑀𝑇 .

7.2 Modeling Distribution of𝑀𝑇

Our results indicates that a combination of quadratic variancemodel
(Equation 9, Model #4 in Table 1) and Steering law (Equation 1) can
well predict𝑀𝑇 distribution, especially when assuming that the𝑀𝑇

distributions follow positively skewed distributions such as Gamma,
Lognormal, Extreme value, and exGaussian distributions. The poste-
rior predict check on Probability Density Function (PDF) prediction
shows that the predicted PDF under these distributions well re-
sembled the observed PDF. They especially performed better than
Gaussian and Truncated Gaussian distributions. The AIC andWAIC
metrics, which reflect the prediction accuracy, also showed that
Gamma, Lognormal, Extreme value and exGaussian distributions
performed better than other distributions. The Gamma distribution
performs slightly better than Lognormal, Extreme value in most
of the steering tasks.. These findings are similar to the previous
findings on 𝑀𝑇 distribution for Fitts’ law that 𝑀𝑇 is positively
skewed (e.g., [6, 11, 14, 20]).

7.3 The Source of Variance and Dynamics of
Steering Tasks.

Variability is commonly observed in response times in psychology
experiments [23]. There is no exception in 𝑀𝑇 of steering tasks.
Variability in 𝑀𝑇 could be caused by (1) different motor control
abilities across users, and (2) neuromotor noises in the perceptual
and motor systems. Take the steering task on the straight tunnel
(in mm) with 𝐴 = 350 and𝑊 = 10 as an example. The mean𝑀𝑇 (in
second) ranges from 1.175 to 6.676 across 12 users, indicating that
users’ abilities of steering are different. Additionally, as the steering
action involves perceptual and motor systems, the neuromotor
noises in these systems could contribute to the variability in MT too.
Previous research(e.g., [23]) has shown that variability has widely
existed in task completion time in psychological experiments, and
we expect steering tasks to conform.

We also analyzed the dynamics of the steering movement includ-
ing speed, acceleration, and traveling distance. The analysis showed
there are variances in these measures. Take the steering task on the
straight tunnel (in mm) with 𝐴 = 250 and𝑊 = 20 as an example.
The mean (std) of travel distance (in mm) is 316.4 (3.97); the mean
(std dev) of moving speed (mm per second) is 352 (339); the mean
(std dev) of acceleration (mm per second squared) is 53 (10583). It
showed that variability widely exists in the steering process.

7.4 Applications of Variance and Distribution
Models.

The variance and distribution models advance the 𝑀𝑇 prediction
from a point estimate to variance and distribution estimates, which

offers the following benefits. First, the results’ uncertainty can
be predicted through distribution models. For instance, given an
amplitude-width (𝐴,𝑊 ) condition’s distribution, we can calculate
the probability of𝑀𝑇 occurring in any range.

Second, the distribution model of𝑀𝑇 could lay the cornerstone
for establishing probabilistic models for interactions of higher-level
in consideration of the key role Steering law serves in behavior
modeling. For instance, selecting a target from a nested menu can
be regarded as a sequence of steering tasks and can be modeled by
Steering law. The distribution of target selection speed could be
known based on the distribution of steering time. This is more in-
formative compared with estimating the mean speed from Steering
law only.

7.5 Limitation and Future Work
The quadratic variance model accounts for between 78% and 97%
of variation in observed 𝜎2 on two tested datasets. Such prediction
accuracy is lower than the prediction on the mean of𝑀𝑇 which is
typically higher than 95% [1]. Figures 8 shows the error of prediction
increases when 𝐼𝐷 increases. As shown, the observed variance close
to the ending position of the curve increases faster than predicted,
which suggests that there might exist other factors affecting the
variance. The quadratic variance model is just the starting point
to study the distribution of𝑀𝑇 variance and it is worth exploring
what these factors are in future research.

8 CONCLUSION
We propose and evaluate models that predict the variance and
distribution of 𝑀𝑇 in steering tasks. Our investigation led to the
following contributions.

First, we have proposed the quadratic-variance model, which
reveals that the variance of𝑀𝑇 of the steering task is quadratically
related to the index of difficulty of the task (𝐼𝐷 = 𝐴

𝑊
), with the

linear coefficient being 0:

𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷2, (15)

where 𝑐 and 𝑑 are empirically determined parameters. We proposed
this model according to the instantaneous form of steering law,
assuming that the steering movement is comprised of multiple
sub-movements.

The evaluation on two steering law datasets, one for stylus-
based and the other for cursor-based input, show that the quadratic
variance model (Equation 15) can account for between 78% and
97% of variance of observed𝑀𝑇 variances, and outperforms other
model candidates such as the constant and linear models. Further
increasing the complexity of the model, such as adding the linear
coefficient, does not improve the fitness of the model.

Second, combining the quadratic variance model (Equation 15)
and Steering law, we are able to predict the𝑀𝑇 distribution given
𝐼𝐷 : we use the quadratic variance model (Equation 15) to predict
the variance and use Steering law to predict the mean (or loca-
tion) parameters of a distribution. Among six types of distribution,
positively skewed distributions such as Lognormal, Gamma, and
Extreme value, and exGaussian distributions have better prediction
accuracy than Gaussian and Truncated Gaussian (lower bound is 0)
distributions. The Gamma distribution performs slightly better than
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other models in most of the steering tasks. Overall, our research
advances the𝑀𝑇 prediction from a mean estimate to variance and
distribution estimates for steering tasks.
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A APPENDIX

Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑒 𝑘 AIC WAIC

#1. 𝜎2 = 𝑐

Gaussian 0.529
[0.467, 0.59]

0.029
[0.026, 0.031]

0.24
[0.218, 0.265] N/A N/A N/A 12336.8 12335.9

Truncated Gaussian 0.402
[0.31, 0.485]

0.032
[0.029, 0.035]

0.293
[0.258, 0.334] N/A N/A N/A 12271.1 12270.3

Lognormal 0.704
[0.652, 0.756]

0.021
[0.019, 0.023]

0.319
[0.276, 0.37] N/A N/A N/A 12186.8 12184.9

Gamma 0.681
[0.628, 0.734]

0.022
[0.02, 0.024]

0.25
[0.223, 0.28] N/A N/A N/A 12203.4 12201.5

Extreme value 0.721
[0.669, 0.773]

0.019
[0.017, 0.021]

0.262
[0.235, 0.292] N/A N/A N/A 12248.0 12246.7

#2. 𝜎2 = (𝑐 · 𝐼𝐷)2

Gaussian 0.469
[0.417, 0.522]

0.033
[0.028, 0.037]

0.033
[0.031, 0.035] N/A N/A N/A 12439.5 12437.5

Truncated Gaussian 0.564
[0.496, 0.639]

0.02
[0.013, 0.027]

0.037
[0.035, 0.04] N/A N/A N/A 12357.4 12355.1

Lognormal 0.32
[0.279, 0.359]

0.045
[0.042, 0.049]

0.036
[0.034, 0.039] N/A N/A N/A 12203.0 12200.1

Gamma 0.324
[0.281, 0.366]

0.045
[0.042, 0.049]

0.033
[0.031, 0.035] N/A N/A N/A 12246.4 12243.5

Extreme value 0.292
[0.252, 0.329]

0.046
[0.042, 0.049]

0.032
[0.03, 0.033] N/A N/A N/A 12262.0 12259.1

#3. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

Gaussian 0.519
[0.465, 0.573]

0.029
[0.026, 0.032]

0.046
[0.009, 0.084]

0.01
[0.008, 0.013] N/A N/A 12245.1 12242.2

Truncated Gaussian 0.489
[0.426, 0.547]

0.029
[0.026, 0.033]

0.067
[0.017, 0.12]

0.011
[0.007, 0.014] N/A N/A 12218.0 12215.3

Lognormal 0.527
[0.466, 0.59]

0.029
[0.026, 0.033]

0.046
[-0.01, 0.104]

0.013
[0.009, 0.018] N/A N/A 12131.4 12127.4

Gamma 0.522
[0.468, 0.58]

0.029
[0.026, 0.032]

0.038
[0.0001, 0.052]

0.011
[0.008, 0.014] N/A N/A 12119.7 12115.6

Extreme value 0.511
[0.456, 0.567]

0.03
[0.026, 0.033]

0.023
[-0.012, 0.061]

0.012
[0.01, 0.015] N/A N/A 12131.4 12124.6

#4. 𝜎2 = c + d ·ID2

Gaussian 0.531
[0.473, 0.587]

0.029
[0.026, 0.032]

0.133
[0.111, 0.158]

0.0002
[0.0001, 0.0003] N/A N/A 12252.0 12249.2

Truncated Gaussian 0.492
[0.424, 0.557]

0.029
[0.026, 0.033]

0.162
[0.13, 0.201]

0.0002
[0.0001, 0.0003] N/A N/A 12223.2 12220.7

Lognormal 0.526
[0.465, 0.589]

0.029
[0.026, 0.033]

0.14
[0.102, 0.182]

0.324
[0.211, 0.462] N/A N/A 12128.4 12124.3

Gamma 0.533
[0.475, 0.587]

0.029
[0.025, 0.032]

0.12
[0.097, 0.146]

0.0002
[0.0002, 0.0003] N/A N/A 12120.5 12116.2

Extreme value 0.512
[0.452, 0.569]

0.03
[0.026, 0.033]

0.111
[0.088, 0.137]

0.0003
[0.0002, 0.0004] N/A N/A 12129.4 12124.9

exGaussian 0.44
[0.377, 0.5]

0.035
[0.031, 0.04]

0.06
[0.037, 0.086]

0.00006
[0.00004, 0.00008] N/A 0.04

[0.04, 0.05] 12193.7 12194.7

#5. 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

Gaussian 0.524
[0.47, 0.582]

0.029
[0.026, 0.032]

0.291
[0.252, 0.332]

0.01
[0.007, 0.012] N/A N/A 12247.1 12244.3

Truncated Gaussian 0.491
[0.427, 0.553]

0.029
[0.026, 0.033]

0.325
[0.274, 0.379]

0.009
[0.007, 0.012] N/A N/A 12219.6 12216.9

Lognormal 0.52
[0.458, 0.579]

0.03
[0.026, 0.033]

0.286
[0.222, 0.348]

0.013
[0.009, 0.017] N/A N/A 12128.5 12124.4

Gamma 0.523
[0.471, 0.579]

0.029
[0.026, 0.032]

0.269
[0.224, 0.315]

0.011
[0.008, 0.014] N/A N/A 12118.5 12114.3

Extreme value 0.508
[0.456, 0.564]

0.03
[0.027, 0.033]

0.252
[0.212, 0.298]

0.012
[0.01, 0.015] N/A N/A 12127.9 12123.8

#6. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Gaussian 0.522
[0.465, 0.578]

0.029
[0.026, 0.032]

0.069
[0.023, 0.134]

0.007
[0.0001, 0.01]

0.00007
[0.000002, 0.0002] N/A 12248.5 12243.8

Truncated Gaussian 0.49
[0.424, 0.553]

0.029
[0.026, 0.033]

0.099
[0.031, 0.188]

0.007
[-0.002, 0.013]

0.00008
[0.000003, 0.0003] N/A 12221.9 12217.8

Lognormal 0.525
[0.462, 0.588]

0.03
[0.026, 0.033]

0.123
[0.028, 0.228]

0.002
[-0.01, 0.014]

0.0003
[0.000009, 0.0006] N/A 12131.2 12126.1

Gamma 0.525
[0.469, 0.581]

0.029
[0.026, 0.032]

0.082
[0.022, 0.156]

0.005
[-0.004, 0.011]

0.0001
[0.00001, 0.0003] N/A 12121.5 12116.1

Extreme value 0.509
[0.453, 0.565]

0.03
[0.027, 0.033]

0.077
[0.013,0.151]

0.005
[-0.005, 0.013]

0.0002
[0.000002, 0.0004] N/A 12131.1 12125.4

Table 8: Fitting results for 31 distributing models on Zhou and Ren’s straight tunnel dataset. As explained in Section 4, we use
Steering law (Equation 1) to predict the mean (or location) parameter, and one of the six variance models (Table 1) to predict
the variance (or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of Steering law, and 𝑐, 𝑑 and 𝑒 are parameters
of variance models. Parameter estimations are shown in mean and 95% credible interval of posterior distributions. Fitness
results are reported in AIC and WAIC metrics. As shown, the quadratic variance model (Model #4 in Table 1) has the best (or
second-best) fitting results across all distribution types, measured by AIC, and WAIC.
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Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑒 𝑘 AIC WAIC

#1. 𝜎2 = 𝑐

Gaussian 0.65
[0.55, 0.75]

0.084
[0.08, 0.089]

0.617
[0.559, 0.681] N/A N/A N/A 13103.7 13102.0

Truncated Gaussian 0.538
[0.421, 0.65]

0.088
[0.083, 0.092]

0.69
[0.617, 0.771] N/A N/A N/A 13066.4 13064.3

Lognormal 0.88
[0.80, 0.97]

0.075
[0.071, 0.079]

0.825
[0.722, 0.941] N/A N/A N/A 13022.3 13022.8

Gamma 0.84
[0.76, 0.93]

0.076
[0.072, 0.080]

0.665
[0.595, 0.742] N/A N/A N/A 13025.3 13024.3

Extreme value 1.024
[0.928, 1.123]

0.68
[0.063, 0.072]

0.901
[0.815, 0.996] N/A N/A N/A 13154.4 13157.9

#2. 𝜎2 = (𝑐 · 𝐼𝐷)2

Gaussian 0.56
[0.46, 0.65]

0.090
[0.082, 0.099]

0.058
[0.056, 0.061] N/A N/A N/A 13356.1 13354.9

Truncated Gaussian 0.612
[0.507, 0.716]

0.083
[0.073, 0.092]

0.062
[0.058, 0.066] N/A N/A N/A 13322.9 13321.5

Lognormal 0.24
[0.17, 0.31]

0.12
[0.11, 0.12]

0.056
[0.053, 0.060] N/A N/A N/A 13077.3 13074.8

Gamma 0.27
[0.20, 0.35]

0.11
[0.11, 0.12]

0.054
[0.052, 0.058] N/A N/A N/A 13140.9 13138.5

Extreme value 0.22
[0.159, 0.282]

0.114
[0.109, 0.12]

0.052
[0.049, 0.054] N/A N/A N/A 13081.6 12078.9

#3. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

Gaussian 0.64
[0.54, 0.73]

0.085
[0.080, 0.90]

0.269
[0.179, 0.362]

0.02
[0.01, 0.03] N/A N/A 13057.2 13053.7

Truncated Gaussian 0.583
[0.48, 0.68]

0.087
[0.082, 0.092]

0.345
[0.233, 0.469]

0.016
[0.01, 0.023] N/A N/A 13040.2 13037.0

Lognormal 0.62
[0.53, 0.72]

0.086
[0.081, 0.092]

0.166
[ 0.0445, 0.306]

0.03
[0.02, 0.04] N/A N/A 12965.4 12963.3

Gamma 0.63
[0.54, 0.72]

0.085
[0.080, 0.091]

0.171
[0.0781, 0.273]

0.02
[0.175, 0.031] N/A N/A 12956.8 12953.8

Extreme value 0.578
[0.487, 0.67]

0.089
[0.084, 0.095]

0.003
[-0.081, 0.093]

0.042
[0.035, 0.049] N/A N/A 12985.3 12985.1

#4. 𝜎2 = c + d ·ID2

Gaussian 0.65
[0.55, 0.74]

0.085
[0.080, 0.090]

0.419
[0.356, 0.489]

0.0004
[0.0003, 0.0006] N/A N/A 13058.7 13055.4

Truncated Gaussian 0.587
[0.48, 0.69]

0.086
[0.081, 0.092]

0.483
[0.406, 0.574]

0.0003
[0.0002, 0.0005] N/A N/A 13040.1 13036.9

Lognormal 0.61
[0.51, 0.71]

0.087
[0.081, 0.093]

0.360
[0.274, 0.463]

0.0008
[0.0006, 0.001] N/A N/A 12959.3 12957.5

Gamma 0.64
[0.54, 0.73]

0.085
[0.080, 0.091]

0.344
[0.276, 0.417]

0.0006
[0.0004, 0.0008] N/A N/A 12954.4 12951.5

Extreme value 0.55
[0.46, 0.65]

0.091
[0.085, 0.097]

0.258
[0.196, 0.327]

0.0011
[0.0009, 0.0014] N/A N/A 12974.1 12971.1

exGaussian 0.342
[0.131, 0.652]

0.107
[0.085, 0.124]

0.119
[0.001, 0.369]

0.0002
[0.00006, 0.0004] N/A 0.03

[0.02, 0.05] 13039.6 13074.5

#5. 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

Gaussian 0.64
[0.55, 0.73]

0.085
[0.080, 0.090]

0.56
[0.50, 0.63]

0.011
[0.008, 0.015] N/A N/A 13057.2 13053.7

Truncated Gaussian 0.585
[0.477, 0.683]

0.087
[0.082, 0.092]

0.615
[0.538, 0.697]

0.01
[0.006, 0.013] N/A N/A 13039.9 13036.6

Lognormal 0.60
[0.50, 0.70]

0.087
[0.082, 0.094]

0.48
[0.39, 0.57]

0.019
[0.014, 0.024] N/A N/A 12961.8 12960.2

Gamma 0.63
[0.53, 0.72]

0.086
[0.080, 0.091]

0.48
[0.41, 0.56]

0.015
[0.012, 0.020] N/A N/A 12954.9 12952.1

Extreme value 0.546
[0.453, 0.642]

0.091
[0.085, 0.097]

0.356
[0.28, 0.434]

0.026
[0.022, 0.031] N/A N/A 12976.9 12974.9

#6. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Gaussian 0.64
[0.55, 0.74]

0.085
[0.080, 0.090]

0.358
[0.221, 0.521]

0.007
[-0.102, 0.021]

0.0003
[0.00001, 0.0006] N/A 13060.2 13055.4

Truncated Gaussian 0.587
[0.469, 0.7]

0.087
[0.081, 0.092]

0.477
[0.0.299, 0.7]

0.0004
[-0.022, 0.017]

0.0003
[0.00002, 0.0008] N/A 13042.7 13038.1

Lognormal 0.61
[0.52, 0.72]

0.087
[0.081, 0.093]

0.454
[0.174, 0.766]

-0.012
[-0.047, 0.022]

0.001
[0.0002, 0.002] N/A 12962.2 12960.2

Gamma 0.63
[0.54, 0.73]

0.086
[0.080, 0.091]

0.326
[0.147, 0.539]

0.002
[-0.02, 0.02]

0.0005
[0.00005, 0.001] N/A 12957.2 12953.3

Extreme value 0.551
[0.456, 0.65]

0.091
[0.085, 0.098]

0.3
[0.118, 0.499]

-0.006
[-0.032, 0.02]

0.001
[0.0006, 0.002] N/A 12976.9 12973.7

Table 9: Fitting results for 31 distributing models on Zhou and Ren’s circular tunnel dataset. As explained in Section 4, we use
Steering law (Equation 1) to predict the mean (or location) parameter, and one of the six variance models (Table 1) to predict
the variance (or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of Steering law, and 𝑐, 𝑑 and 𝑒 are parameters
of variance models. Parameter estimations are shown in mean and 95% credible interval of posterior distributions. Fitness
results are reported in AIC and WAIC metrics. As shown, the quadratic variance model (Model #4 in Table 1) has the best
fitting results across all distribution types, measured by AIC, and WAIC.
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Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑒 𝑘 AIC WAIC

#1. 𝜎2 = 𝑐

Gaussian -0.11
[-0.23, 0.005]

0.084
[0.078, 0.091]

0.991
[0.92, 1.069] N/A N/A N/A 23972.6 23972.2

Truncated Gaussian -4.96
[-6.41, -3.84]

0.23
[0.196, 0.273]

1.834
[1.643, 2.054] N/A N/A N/A 23008.5 23005.6

Lognormal 0.42
[0.36, 0.5]

0.056
[0.051, 0.06]

1.545
[1.318, 1.817] N/A N/A N/A 22796.5 22793.4

Gamma 0.57
[0.50, 0.65]

0.047
[0.042, 0.052]

0.972
[0.882, 1.0729] N/A N/A N/A 23021.4 23018.5

Extreme value 0.424
[0.348, 0.504]

0.048
[0.044, 0.053]

0.645
[0.59, 0.708] N/A N/A N/A 23310.1 23307.5

#2. 𝜎2 = (𝑐 · 𝐼𝐷)2

Gaussian -0.1
[-0.18, -0.021]

0.083
[0.077, 0.09]

0.055
[0.053, 0.057] N/A N/A N/A 23370.5 23367.8

Truncated Gaussian -0.249
[-0.464, -0.044]

0.035
[0.011, 0.055]

0.087
[0.079, 0.096] N/A N/A N/A 22893.9 22890.8

Lognormal -0.1
[-0.16, -0.055]

0.085
[0.080, 0.091]

0.068
[0.064, 0.074] N/A N/A N/A 22711.5 22708.0

Gamma -0.086
[-0.14, -0.033]

0.082
[0.077, 0.088]

0.053
[0.051, 0.056] N/A N/A N/A 22730.5 22726.7

Extreme value -0.086
[-0.145, -0.031]

0.08
[0.075, 0.085]

0.049
[0.046, 0.051] N/A N/A N/A 22907.8 22904.6

#3. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

Gaussian -0.095
[-0.17, -0.021]

0.083
[0.077, 0.089]

-0.457
[-0.518, -0.396]

0.0837
[0.0761, 0.0918] N/A N/A 23389.8 23386.4

Truncated Gaussian -1.269
[-1.949, -0.693]

0.093
[0.064, 0.123]

-0.473
[-0.809, -0.085]

0.163
[0.128, 0.203] N/A N/A 22901.4 22897.2

Lognormal -0.072
[-0.15, 0.013]

0.083
[0.076, 0.09]

-0.633
[-0.827, -0.437]

1.216
[0.099, 1.477] N/A N/A 22698.7 22694.2

Gamma -0.059
[-0.13, 0.013]

0.081
[0.075, 0.087]

-0.4
[-0.475, -0.325]

0.076
[0.067, 0.085] N/A N/A 22733.8 22729.2

Extreme value -0.058
[-0.119, 0.008]

0.078
[0.073, 0.083]

-0.327
[-0.381, -0.272]

0.062
[0.055, 0.069] N/A N/A 22915.3 22908.4

#4. 𝜎2 = c + d ·ID2

Gaussian -0.1
[-0.18, -0.025]

0.083
[ 0.077, 0.091]

-0.019
[-0.051, 0.016]

0.003
[0.003, 0.004] N/A N/A 23371.9 23368.4

Truncated Gaussian -0.448
[-1.059, 0.031]

0.047
[0.008, 0.081]

0.098
[-0.106, 0.371]

0.007
[0.005, 0.009] N/A N/A 22896.4 22891.7

Lognormal -0.14
[-0.23, -0.028]

0.088
[0.08, 0.097]

-0.053
[-0.165, 0.118]

0.005
[0.004, 0.007] N/A N/A 22713.5 22709.0

Gamma -0.11
[-0.18, -0.034]

0.084
[0.078, 0.091]

-0.022
[-0.061, 0.026]

0.003
[0.0026, 0.0034] N/A N/A 22732.1 22727.4

Extreme value -0.108
[-0.175, -0.04]

0.082
[0.076, 0.088]

-0.016
[-0.045, 0.018]

0.002
[0.002, 0.003] N/A N/A 22909.5 22905.1

exGaussian -0.056
[-0.092, -0.022]

0.08
[0.076, 0.084]

0.0004
[0.00001, 0.001]

0.004
[0.0003, 0.004] N/A 0.02

[0.02, 0.002] 22692.1 22685.9

#5. 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

Gaussian -0.1
[-0.17, -0.022]

0.083
[0.077, 0.09]

-0.025
[-0.082, 0.035]

0.057
[ 0.052, 0.062] N/A N/A 23372.5 23369.1

Truncated Gaussian 0.071
[0.003, 0.217]

0.012
[0.0006, 0.027]

-0.123
[-0.22, -0.024]

0.096
[0.085, 0.11] N/A N/A 22898.6 22893.3

Lognormal -0.078
[-0.19, 0.034]

0.084
[ 0.075, 0.092]

0.057
[-0.12, 0.26]

0.065
[ 0.05, 0.079] N/A N/A 22714.1 22709.6

Gamma -0.093
[-0.17, -0.015]

0.083
[0.076, 0.089]

-0.01
[-0.084, 0.072]

0.054
[ 0.048, 0.061] N/A N/A 22733.3 22728.5

Extreme value -0.097
[-0.166, -0.03]

0.081
[0.075, 0.087]

-0.014
[-0.077, 0.047]

0.05
[0.045, 0.055] N/A N/A 22910.5 22906.4

#6. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Gaussian -0.099
[-0.18, -0.026]

0.083
[0.077, 0.09]

-0.103
[-0.279, 0.081]

0.016
[-0.018, 0.049]

0.003
[0.001, 0.004] N/A 23373.7 23369.4

Truncated Gaussian -0.64
[-1.38, -0.024]

0.058
[0.013, 0.098]

-0.073
[-0.533, 0.426]

0.045
[-0.059, 0.149]

0.005
[0.0008, 0.01] N/A 22898.7 22893.0

Lognormal -0.094
[-0.18, -0.007]

0.085
[0.078, 0.092]

-0.535
[-0.773, -0.292]

0.099
[0.055, 0.135]

0.001
[0.00005, 0.003] N/A 22701.1 22694.6

Gamma -0.095
[-0.17, -0.024]

0.083
[0.077, 0.09]

-0.21
[-0.353, -0.068]

0.037
[0.009, 0.063]

0.002
[0.0006, 0.003] N/A 22728.1 22722.0

Extreme value -0.093
[-0.157, -0.023]

0.081
[0.075, 0.086]

-0.147
[-0.273, -0.022]

0.025
[0.002, 0.049]

0.001
[0.0006, 0.003] N/A 22907.6 22904.1

Table 10: Fitting results for 31 distributingmodels on our straight tunnel dataset. As explained in Section 4, we use Steering law
(Equation 1) to predict the mean (or location) parameter, and one of the six variance models (Table 1) to predict the variance
(or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of Steering law, and 𝑐, 𝑑 and 𝑒 are parameters of variance
models. Parameter estimations are shown in mean and 95% credible interval of posterior distributions. Fitness results are
reported in AIC andWAICmetrics. As shown, the quadratic variance model (Model #4 in Table 1) has the best (or second-best)
fitting results across all distribution types, measured by AIC, and WAIC.
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Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑒 𝑘 AIC WAIC

#1. 𝜎2 = 𝑐

Gaussian 0.42
[0.32, 0.52]

0.073
[0.066, 0.080]

0.719
[0.667, 0.776] N/A N/A N/A 23491.6 23491.4

Truncated Gaussian -0.71
[-1.028, -0.433]

0.119
[0.105, 0.135]

1.159
[1.084, 1.248] N/A N/A N/A 23071.0 23069.5

Lognormal 0.75
[0.67, 0.82]

0.051
[0.046, 0.057]

1.208
[1.0437, 1.400] N/A N/A N/A 22988.7 22985.9

Gamma 0.80
[0.73, 0.88]

0.045
[ 0.039, 0.051]

0.755
[0.687, 0.830] N/A N/A N/A 22997.6 22994.7

Extreme value 0.786
[0.716, 0.855]

0.042
[0.037, 0.047]

0.617
[0.567, 0.67] N/A N/A N/A 23113.2 23110.3

#2. 𝜎2 = (𝑐 · 𝐼𝐷)2

Gaussian 0.33
[0.26, 0.41]

0.081
[0.072, 0.090]

0.071
[0.068, 0.073] N/A N/A N/A 23245.2 23242.5

Truncated Gaussian 0.511
[0.39, 0.632]

0.035
[0.018, 0.052]

0.09
[0.084, 0.096] N/A N/A N/A 22980.2 22977.2

Lognormal 0.12
[0.064, 0.18]

0.107
[0.1, 0.114]

0.951
[0.088, 0.102] N/A N/A N/A 22994.9 22992.1

Gamma 0.13
[0.715, 0.191]

0.102
[0.095, 0.109]

0.074
[0.702, 0.077] N/A N/A N/A 22920.5 22917.3

Extreme value 0.142
[0.085, 0.203]

0.099
[0.092, 0.106]

0.07
[0.067, 0.073] N/A N/A N/A 23014.0 23010.7

#3. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

Gaussian 0.366
[0.284, 0.442]

0.078
[0.07, 0.085]

-0.146
[-0.21, -0.077]

0.068
[0.059, 0.077] N/A N/A 23183.9 23180.2

Truncated Gaussian 0.238
[0.079, 0.377]

0.066
[0.052, 0.08]

-0.209
[-0.366, -0.042]

0.104
[0.084, 0.127] N/A N/A 22953.1 22948.8

Lognormal 0.447
[0.333, 0.568]

0.074
[0.064, 0.084]

0.136
[-0.141, 0.461]

0.081
[0.052, 0.111] N/A N/A 22957.3 22953.1

Gamma 0.394
[0.310, 0.478]

0.075
[0.068, 0.083]

-0.06
[-0.16, 0.043]

0.063
[0.052, 0.075] N/A N/A 22869.4 22864.8

Extreme value 0.405
[0.325, 0.486]

0.073
[0.066, 0.08]

-0.064
[-0.141, 0.02]

0.058
[0.048, 0.068] N/A N/A 22949.3 22939.3

#4. 𝜎2 = c + d ·ID2

Gaussian 0.365
[0.282, 0.450]

0.078
[0.07, 0.086]

0.158
[0.109, 0.209]

0.003
[0.003, 0.004] N/A N/A 23179.9 23176.1

Truncated Gaussian 0.257
[0.08, 0.422]

0.066
[0.048, 0.082]

0.26
[0.156, 0.395]

0.005
[0.003, 0.006] N/A N/A 22955.6 22951.2

Lognormal 0.454
[0.338, 0.575]

0.074
[0.064, 0.085]

0.565
[0.354, 0.789]

0.003
[0.002, 0.005] N/A N/A 22956.1 22951.7

Gamma 0.378
[0.289, 0.47]

0.077
[0.068, 0.086]

0.226
[0.157, 0.302]

0.003
[0.002, 0.004] N/A N/A 22866.0 22861.2

Extreme value 0.372
[0.281, 0.457]

0.077
[0.068, 0.085]

0.19
[0.134, 0.249]

0.003
[0.002, 0.003] N/A N/A 22948.3 22943.6

exGaussian 0.223
[0.153, 0.298]

0.092
[0.084, 0.1]

0.055
[0.037, 0.075]

0.005
[0.005, 0.006] N/A 0.01

[0.01, 0.01] 22943.5 22937.3

#5. 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

Gaussian 0.364
[0.283, 0.449]

0.078
[0.07, 0.086]

0.237
[0.18, 0.3]

0.046
[0.04, 0.052] N/A N/A 23177.0 23173.2

Truncated Gaussian 0.247
[0.071, 0.403]

0.066
[0.051, 0.081]

0.317
[0.207, 0.438]

0.055
[0.044, 0.066] N/A N/A 22952.4 22948.2

Lognormal 0.421
[0.278, 0.565]

0.077
[0.064, 0.09]

0.527
[0.331, 0.74]

0.042
[0.025, 0.06] N/A N/A 22955.6 22951.7

Gamma 0.373
[0.286, 0.462]

0.078
[0.069, 0.086]

0.309
[0.224, 0.397]

0.042
[0.033, 0.05] N/A N/A 22863.6 22859.0

Extreme value 0.377
[0.295, 0.46]

0.076
[0.068, 0.084]

0.285
[0.215, 0.354]

0.041
[0.034, 0.047] N/A N/A 22944.3 22939.8

#6. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Gaussian 0.365
[0.285, 0.444]

0.078
[0.07, 0.086]

0.034
[-0.116, 0.208]

0.027
[-0.009, 0.058]

0.002
[0.0005, 0.004] N/A 23179.9 23175.2

Truncated Gaussian 0.262
[0.095, 0.418]

0.065
[0.049, 0.079]

-0.017
[-0.255, 0.275]

0.058
[-0.0004, 0.105]

0.002
[0.0002, 0.005] N/A 22954.1 22948.7

Lognormal 0.437
[0.323, 0.554]

0.076
[0.065, 0.086]

0.341
[0.05, 0.666]

0.038
[0.002, 0.081]

0.002
[0.0001,0.004] N/A 22957.5 22951.5

Gamma 0.373
[0.285, 0.464]

0.077
[0.069, 0.086]

0.106
[-0.054, 0.288]

0.024
[-0.011, 0.055]

0.002
[0.0005, 0.003] N/A 22866.6 22860.5

Extreme value 0.378
[0.294, 0.46]

0.076
[0.068, 0.084]

0.061
[-0.074, 0.206]

0.028
[-0.0005, 0.055]

0.001
[0.0002, 0.003] N/A 22947.2 22939.7

Table 11: Fitting results for 31 distributing models on our narrowing tunnel dataset. As explained in Section 4, we use Steering
law (Equation 1) to predict themean (or location) parameter, and one of the six variancemodels (Table 1) to predict the variance
(or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of Steering law, and 𝑐, 𝑑 and 𝑒 are parameters of variance
models. Parameter estimations are shown in mean and 95% credible interval of posterior distributions. Fitness results are
reported in AIC and WAIC metrics. As shown, the quadratic variance model (Model #4 in Table 1) has the best fitting results
across all distribution types, measured by AIC, and WAIC.
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Model Model Parameters (Mean and 95% Credible Interval) Information Criteria
Variance Model Distribution Type 𝑎 𝑏 𝑐 𝑑 𝑒 𝑘 AIC WAIC

#1. 𝜎2 = 𝑐

Gaussian -0.336
[-0.487, -0.171]

0.301
[0.292, 0.31]

1.89
[1.756, 2.032] N/A N/A N/A 24901.4 24900.9

Truncated Gaussian -0.717
[-0.917, -0.518]

0.318
[0.306, 0.329]

2.145
[1.97, 2.334] N/A N/A N/A 24788.8 24788.4

Lognormal 0.756
[0.619, 0.891]

0.24
[0.231, 0.249]

2.443
[2.212, 2.698] N/A N/A N/A 24634.7 24633.0

Gamma 0.587
[0.444, 0.736]

0.251
[0.241, 0.26]

2.085
[1.92, 2.259] N/A N/A N/A 24768.0 24766.9

Extreme value 0.961
[0.83, 1.089]

0.215
[0.207, 0.223]

2.152
[1.996, 2.342] N/A N/A N/A 24822.0 24821.5

#2. 𝜎2 = (𝑐 ·ID)2

Gaussian -0.0005
[-0.097, 0.102]

0.276
[0.267, 0.286]

0.083
[0.08, 0.086] N/A N/A N/A 24251.3 24248.5

Truncated Gaussian -0.003
[-0.103, 0.102]

0.276
[0.267, 0.286]

0.083
[0.08, 0.086] N/A N/A N/A 24250.1 24247.2

Lognormal -0.0106
[-0.105, 0.086]

0.278
[0.268, 0.287]

0.086
[0.083, 0.09] N/A N/A N/A 24174.5 24171.4

Gamma -0.007
[-0.1, 0.087]

0.277
[0.268, 0.286]

0.083
[0.08, 0.086] N/A N/A N/A 24163.3 24160.0

Extreme value -0.006
[-0.097, 0.084]

0.278
[0.269, 0.287]

0.09
[0.087, 0.094] N/A N/A N/A 24194.0 24190.6

#3. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷

Gaussian -0.038
[-0.143, 0.065]

0.281
[0.272, 0.29]

-0.681
[-0.778, -0.577]

0.157
[0.143, 0.172] N/A N/A 24295.9 24292.4

Truncated Gaussian -0.039
[-0.139, 0.059]

0.281
[0.272, 0.29]

-0.686
[-0.792, -0.584]

0.158
[0.144, 0.174] N/A N/A 24293.5 24289.8

Lognormal 0.029
[-0.004, 0.127]

0.276
[0.267, 0.285]

-0.787
[-0.918, -0.656]

0.177
[0.158, 0.198] N/A N/A 24202.6 24198.3

Gamma 0.012
[-0.085, 0.106]

0.277
[0.269, 0.286]

-0.713
[-0.815, -0.608]

0.161
[0.146, 0.176] N/A N/A 24199.7 24195.5

Extreme value 0.065
[-0.03, 0.164]

0.273
[0.264, 0.282]

-0.844
[-0.972, -0.716]

0.191
[0.173, 0.21] N/A N/A 24238.8 24237.2

#4. 𝜎2 = c + d ·ID2

Gaussian -0.005
[-0.11, 0.099]

0.277
[0.267, 0.286]

0.033
[-0.026, 0.102]

0.007
[0.006, 0.007] N/A N/A 24253.4 24249.7

Truncated Gaussian -0.013
[-0.122, 0.097]

0.277
[0.267, 0.287]

0.035
[-0.21, 0.103]

0.007
[0.006, 0.007] N/A N/A 24252.2 24248.3

Lognormal -0.008
[-0.104, 0.095]

0.278
[0.268, 0.287]

0.002
[-0.07, 0.077]

0.007
[0.007, 0.008] N/A N/A 24177.5 24172.9

Gamma -0.006
[-0.11, 0.097]

0.277
[0.267, 0.287]

0.012
[-0.043, 0.075]

0.0068
[0.006, 0.008] N/A N/A 24166.3 24161.8

Extreme value -0.009
[-0.115, 0.098]

0.278
[0.269, 0.289]

-0.006
[-0.074, 0.067]

0.008
[0.007, 0.009] N/A N/A 24197.0 24192.4

exGaussian -0.012
[-0.112, 0.09]

0.277
[0.268, 0.287]

0.023
[0.0008, 0.067]

0.007
[0.006, 0.008] N/A 0.02

[0.02, 0.02] 24210.8 24204.7

#5. 𝜎2 = (𝑐 + 𝑑 · 𝐼𝐷)2

Gaussian -0.008
[-0.112, 0.096]

0.277
[0.267, 0.286]

0.037
[-0.035, 0.112]

0.08
[0.07, 0.09] N/A N/A 24253.3 24249.3

Truncated Gaussian -0.01
[-0.118, 0.097]

0.277
[0.267, 0.287]

0.039
[-0.035, 0.12]

0.08
[0.073, 0.087] N/A N/A 24252.3 24248.4

Lognormal -0.002
[-0.104, 0.102]

0.277
[0.267, 0.287]

0.012
[-0.075, 0.102]

0.085
[0.077, 0.094] N/A N/A 24177.5 24173.1

Gamma -0.003
[-0.106, 0.1]

0.277
[0.267, 0.287]

0.018
[-0.058, 0.095]

0.081
[0.074, 0.089] N/A N/A 24166.3 24161.9

Extreme value -0.006
[-0.113, 0.101]

0.278
[0.268, 0.288]

-0.005
[-0.087, 0.086]

0.091
[0.083, 0.099] N/A N/A 24197.0 24192.4

#6. 𝜎2 = 𝑐 + 𝑑 · 𝐼𝐷 + 𝑒 · 𝐼𝐷2

Gaussian -0.008
[-0.112, 0.097]

0.277
[0.267, 0.287]

0.072
[-0.178, 0.338]

-0.008
[-0.061, 0.044]

0.007
[0.005, 0.01]] N/A 24256.3 24251.4

Truncated Gaussian -0.008
[-0.11, 0.096]

0.277
[0.267, 0.286]

0.08
[-0.18, 0.367]

-0.009
[-0.069, 0.041]

0.007
[0.005, 0.01] N/A 24255.0 24250.0

Lognormal -0.003
[-0.098, 0.102]

0.277
[0.267, 0.287]

-0.121
[-0.403, 0.171]

0.027
[-0.034, 0.086]

0.006
[0.004, 0.009] N/A 24179.5 24173.7

Gamma -0.003
[-0.101, 0.093]

0.277
[0.268, 0.286]

-0.043
[-0.298, 0.209]

0.012
[-0.04, 0.065]

0.006
[0.004, 0.009] N/A 24169.0 24163.2

Extreme value -0.006
[-0.117, 0.104]

0.278
[0.268, 0.289]

-0.058
[-0.334, 0.222]

0.011
[-0.049, 0.069]

0.008
[0.005, 0.011] N/A 24200.0 24193.7

Table 12: Fitting results for 31 distributingmodels on our circular tunnel dataset. As explained in Section 4, we use Steering law
(Equation 1) to predict the mean (or location) parameter, and one of the six variance models (Table 1) to predict the variance
(or scale) parameter, as explained in Table 2. 𝑎 and 𝑏 are parameters of Steering law, and 𝑐, 𝑑 and 𝑒 are parameters of variance
models. Parameter estimations are shown in mean and 95% credible interval of posterior distributions. Fitness results are
reported in AIC and WAIC metrics. As shown, the quadratic variance model (Model #4 in Table 1) and the quadratic variance
model without constant term (Model #2 in Table 1) has the best (or second-best) fitting results across all distribution types,
measured by AIC, and WAIC.
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B APPENDIX
This is the Stan code fitting the movement time data with a Gamma
distribution and the quadratic variance model (Model #4 in Table 1).
We assumed the mean is expressed by Steering law:𝑀 = 𝑎 + 𝑏 · 𝐼𝐷
and the variance is expressed by the quadratic variance model:
𝑉 = 𝑐 + 𝑑 · 𝐼𝐷2.

steering_law_gamma_model = """
data {

//Number of IDs
int number_of_IDs;
//Number of data points
int number_of_data;
//Index of difficulty (ID) list
vector[number_of_IDs] ID_list;
//Index of difficulty squared (ID^2) list
vector[number_of_IDs] ID_square_list;
//Movement time list for all data points
vector[number_of_data] movement_time;
//Starting index of each condition in movement time list
int starts[number_of_IDs];
//Ending index of each condition in movement time list
int ends[number_of_IDs];

}
parameters {

real a;
real<lower=0> b;
real c;
real<lower=0> d;

}
transformed parameters {

//The mean expressed by Steering law
vector[number_of_IDs] mu = a + b * ID_list;
//The standard deviation expressed by the quadratic

variance model
vector[number_of_IDs] sigma = sqrt(c + d *

ID_square_list);
//Parameter alpha of Gamma model expressed by the mean

and standard deviation.
vector[number_of_IDs] alpha = (mu ./ sigma) .* (mu ./

sigma);
//Parameter beta of Gamma model expressed by the mean

and standard deviation
vector[number_of_IDs] beta = mu ./ (sigma .* sigma);

}
model {

for(i in 1 : number_of_IDs){
movement_time[starts[i] + 1 : ends[i] + 1] ~

gamma(alpha[i], beta[i]);
}

}
generated quantities {

vector[number_of_data] log_likelihood;
for(i in 1 : number_of_IDs){

for(j in starts[i] + 1 : ends[i] + 1){
log_likelihood[j] = gamma_lpdf(movement_time[j]

| alpha[i], beta[i]);
}

}
}
"""
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