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ABSTRACT 
The time and labor demanded by a typical laboratory-based 
keyboard evaluation are limiting resources for algorithmic 
adjustment and optimization.  We propose Remulation, a 
complementary method for evaluating touchscreen 
keyboard correction and recognition algorithms. It  
replicates prior user study data through real-time, on-device 
simulation.  To demonstrate remulation, we have developed 
Octopus, an evaluation tool that enables keyboard 
developers to efficiently measure and inspect the impact of 
algorithmic changes without conducting resource-intensive 
user studies. It can also be used to evaluate third-party 
keyboards in a “black box” fashion, without access to their 
algorithms or source code. Octopus can evaluate both touch 
keyboards and word-gesture keyboards. Two empirical 
examples show that Remulation can efficiently and 
effectively measure many aspects of touch screen 
keyboards at both macro and micro levels. Additionally, we 
contribute two new metrics to measure keyboard accuracy 
at the word level: the Ratio of Error Reduction (RER) and 
the Word Score.  
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INTRODUCTION 
Today, touchscreen keyboards are used by hundreds of 
millions of people around the world as their default text 
entry method.  To reduce typing errors, most of these 
“Smart Touch Keyboards” (STKs) correct errors 
automatically as users type. However, occasionally the 
error correction system itself makes a mistake, with 
undesirable and sometimes humorous consequences [6,20]. 
An increasingly popular alternative to the STK is the smart 
gesture keyboard (SGK).  An SGK recognizes words based 

on the user’s finger gestures (Figure 1, right). SGK’s are 
also known as Shape Writing keyboards [21, 28], gesture 
keyboards [5] or word-gesture keyboards [29] in the 
literature. Different forms of SGKs have been 
commercially distributed in many products such as 
ShapeWriter,  SlideIT, Swype, Flex T9, TouchPal, and the 
Android 4.2 stock keyboard (Gesture Typing) [2]. SGKs 
face the same correction challenges as STKs because they 
must map ambiguous finger gestures to words. 

 
Figure 1. Illustrations of Smart Touch Keyboard 
(Left) and Smart Gesture Keyboard (Right)  

HCI research has explored various techniques for error 
prevention, including adapting decoding algorithms to hand 
posture [4], and personalizing ten-finger typing for large 
touchscreens [7].  
As with other advanced UI technologies such as speech 
recognition, effective and efficient evaluation is critical to 
the improvement of smart keyboards. An evaluation 
generally consists of (1) data collection and (2) data 
analysis. Our goal is to facilitate both stages of the process. 
Collecting keyboard output data typically involves a 
laboratory experiment with a dozen or more participants. 
The time and labor required by these experiments make 
frequent evaluation of small algorithmic changes infeasible.  
Moreover, current data analysis techniques do not provide 
important information about keyboard algorithms. For 
example, they do not explicitly and quantitatively measure 
an STK’s ability to correct user errors, and the typical 
accuracy metrics (e.g., the MSD error rate [16]) examine 
output at the character-level, and do not reflect today’s 
keyboards’ word-level behaviors. 
To expand the repertoire of tools and methods for  
evaluating STKs and SGKs, we propose Remulation, a 
novel keyboard evaluation approach that measures 
correction and recognition algorithms of keyboards by 
replaying previously collected user data through real-time 
on-device simulation. It takes touch screen events recorded 
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during prior user studies as input, and injects them into a 
live mobile keyboard, at the same rate as they were 
collected. The original experiment is thereby replicated on 
a working keyboard. Remulation can efficiently evaluate 
many (not all) aspects of both STKs and SGKs without 
conducting laboratory experiments, and can be done 
repeatedly as if the same group of participants were 
employed to type the same input tirelessly over and over on 
different keyboards.   
Typical use cases for Remulation include: (1) a developer 
seeks to evaluate the impact of an algorithmic change to her 
keyboard, (2) a researcher seeks to evaluate different 
versions of the same third-party keyboard, and (3) a device 
manufacturer wants to select a third-party keyboard to 
embed in its devices without inspecting the keyboards’ 
proprietary source code or algorithms. 
To effectively measure the accuracy of a keyboard 
algorithm, we introduce the metrics of Word Score, which 
reflects the number of correct words out of every 100 input 
words from a given test dataset, and Ratio of Error 
Reduction (RER), which quantifies an STK’s error 
prevention and correction ability. Both metrics measure 
keyboard accuracy at the word level. 
In the rest of this paper we demonstrate the Remulation 
approach and its corresponding data analysis methods by 
designing and implementing Octopus, a Remulation-based 
keyboard evaluation tool. We put Remulation and Octopus 
into practice by applying them to two STKs and two SGKs, 
revealing various insights at both the macro and micro 
levels. 
In summary, this work contributes a novel approach to 
evaluating touchscreen keyboards, which includes: 
• Remulation, a new approach for evaluating keyboard 

correction and recognition algorithms by replicating 
prior user study data with real-time simulation 

• The design and implementation of Octopus, a 
Remulation-based keyboard evaluation tool and 
system 

• A demonstration of Remulation and Octopus in real 
use, with evaluations of two STKs and two SGKs 

• RER and Word Score, new metrics for evaluating 
keyboard accuracy.   

RELATED WORK 
Collecting natural use data and applying them to train 
recognition algorithms has been widely adopted as a 
research methodology in AI (e.g., speech and handwriting 
recognition). Recently, it has also been employed to design 
keyboard algorithms. Gunawardana et al. [9] used pre-
recorded data on a keyboard to train and evaluate their own 
error correction algorithm.  Remulation uses some of the 
same techniques for the different problem of comparing 
two or more third-party keyboards when the source code or 
algorithm is unavailable. Our work shows that it is possible 
to send “fake” touch events to today’s mainstream devices 

(Android in particular but other OSs in principle) and 
evaluate keyboards in a “black box” fashion.  
In what follows we discuss relevant prior work on (1) 
simulating human text entry for evaluating keyboard 
performance without traditional laboratory studies, and (2) 
current analysis techniques used for assessing a text entry 
method’s accuracy.  
Simulating Text Entry 
In 1982, Rumelhart and Norman [23] described a model for 
simulating skilled typists on physical typewriters, with the 
goal of understanding human typing behavior. Their model 
focused on predicting keystroke timing and simulated key 
transposition and doubling errors. In our work, we rely on 
direct data replication rather than complex modeling of 
human performance, and seek to evaluate keyboard 
algorithms rather than theorize user behavior.  
Since the early 1990’s, research interest has shifted from 
studying physical typewriters to soft keyboards. The Fitts-
digraph model, first proposed by Lewis [12], was used to 
estimate average text entry speeds based on movement time 
between pairs of keys and digraph frequencies. This model 
has been a popular performance prediction tool for 
keyboard evaluation with different layouts using a single 
finger or a stylus [12,13,14,19], and has been used as an 
objective function for keyboard optimization [26]. A two-
thumb physical keyboard predictive model has also been 
proposed [15]. Unlike these models, which predict an upper 
bound for average text entry speed assuming a certain error 
rate implied by Fitts’ law (4% per target), our Remulation 
and analysis method assesses keyboard error rates and 
accuracies using the same speed that had naturally occurred 
in the data collection experiment. Also, we focus on 
evaluating keyboards with similar appearances but different 
algorithms, instead of different layouts.  
Measuring Accuracy in Text Entry  
Standard text entry accuracy metrics compare the tran-
scribed and presented strings. The Minimum String Dis-
tance (MSD) [16] is often used to measure the “distance” 
between the two strings, based on the number of character 
insertions, deletions, and replacements needed to turn one 
string into another. While this has been effective in measur-
ing traditional physical keyboards that literally output every 
letter typed, it is insufficient for measuring STKs. STKs 
embed a dictionary or language model and do not neces-
sarily map touch points to text on an individual letter basis. 
Similarly, SGKs usually work at the word level: they rec-
ognize a continuous finger gesture to output a single word 
[21, 28, 29]. Since both SGKs and STKs operate at word-
level, it is more meaningful to adopt the word-level met-
rics. Furthermore, although word-level metrics (e.g., WER) 
are common in other fields such as speech recognition [1], 
they are rarely used to measure keyboard performance.   
Wobbrock and Myers [25] analyzed the character input 
stream in addition to the presented and transcribed strings.  
They assume that text flows serially character by character. 
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This assumption does not hold for STKs, in which whole 
words may be algorithmically modified after they are en-
tered. The character-level metric also does not suit SGKs 
well. 
Building upon this prior work, we develop new word-level 
metrics to measure keyboard accuracy.  
OCTOPUS: A REMULATION-BASED KEYBOARD 
EVALUATION SYSTEM 
Based on the Remulation concepts described earlier, we 
designed and implemented Octopus (named after the 
conference room “Dr. Octopus” where the concept was first 
discussed). Octopus is a Remulation-based touchscreen 
keyboard evaluation tool. Figure 2 shows its architecture, 
which consists of (1) the Simulator, (2) Dataset, and (3) the 
Keyboard Output Receiver. 

 
Figure 2. The architecture of the Octopus System. 

(1) Touch events simulator. This component simulates 
touch actions on a mobile device in real time according to 
the dataset. It can simulate TOUCH_DOWN, 
TOUCH_MOVE, and TOUCH_UP events, which are the 
three basic touch operations on a mobile device. Using 
these events as building blocks, Octopus can simulate all 
the typical touch interactions. For example, a quick tap 
usually consists of a TOUCH_DOWN event immediately 
followed by a TOUCH_UP event, and a gesture usually con-
sists of a TOUCH_DOWN event followed by several 
TOUCH_MOVE events and a TOUCH_UP event. 
The Simulator accurately specifies the interval between 
every two touch events. The precision of such intervals 
between two events is less than ±10 ms. It can also simulate 
multi-finger interaction by specifying the finger ID of a 
touch event. These features allow Octopus to keep fidelity 
high in simulation, which is critical for evaluating modern 
soft keyboards. For example, a keyboard might adjust its 
algorithm according to the typing speed of a user. Simulat-
ing touch actions in real time is critical to measure such 
algorithms. When a user quickly types with two thumbs, 

she might land the second thumb before lifting the first one, 
generating multi-touch events. Octopus enables us to inves-
tigate how a keyboard handles these situations. 
(2) Dataset. The dataset is fed into Octopus to simulate real 
users’ text entry actions. The datasets consist of touch 
events and their corresponding phrases in presented 
phrases. Each touch event includes the event type (i.e., 
TOUCH_DOWN, TOUCH_MOVE, or TOUCH_UP),  the (x,y) 
screen coordinates, the timestamp, and the finger identifier.  
The collected data aims to reflect fundamental human per-
formance, independent of particular visual design elements, 
keyboard features, or algorithms. Also, to challenge key-
boards’ algorithms and better discriminate different key-
boards, the dataset strives to capture users’ relaxed, natural 
and uncorrected typing behaviors. 
In the current implementation of Octopus, the dataset is 
collected through lab studies in which participants type or 
gesture the presented phrases on a mobile device as 
naturally and as quickly as possible, using a collector 
keyboard. The collector keyboard provides users with only 
asterisks as feedback when they enter text, to prevent them 
from adjusting their input behaviors to take advantage of 
certain keyboard algorithms and features (such as deleting a 
whole word at a time). 
Ideally, the layout and dimensions of the collector key-
board are identical to the test keyboard used during Remu-
laiton. If the test keyboard has slightly different dimen-
sions, touch points can be scaled and translated according 
to the target keyboard’s height, width, and top-left corner 
location. The validity of such transformations should be 
further empirically verified in future research, particularly 
when the transformation is large. 
(3) Keyboard Output Receiver. This is an application (Fig-
ure 3) that runs on the touch screen device at the same time 
as the Simulator that generates the touch events.  

 
Figure 3. The UI of Keyboard Output Receiver as 
Octopus remulates the phrase “please provide your 
date.”  The red dot marks a simulated touch point. 
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The Keyboard Output Receiver includes a standard text 
view widget that receives the transcribed phrases from the 
keyboard.  The communication between the keyboard and 
the Keyboard Receiver is through the mobile OS input 
method framework, so Remulation can be performed on 
any keyboard that is installed on the device. The Keyboard 
Output Receiver logs the transcribed phrases generated by 
the keyboard, compares them with the presented phrases 
from original Dataset, and then calculates and displays the 
quality measures of the keyboard being tested (Figure 3).  
STRENGTHS AND LIMITATIONS  
The Octopus remulation method is but one method of key-
board evaluation. Text entry is a complex process and no 
single method, such as a laboratory experiment, instru-
mented field deployment, or modeling and prediction, can 
provide a complete understanding of a keyboard. In our 
view, the Remulation-based approach offers another meth-
od that has both strengths and limitations. 
 Strengths. The advantages of this method include: 

1. Efficiency. Empirical data can be used and reused 
multiple times to evaluate different keyboards. 
Efficiency is important for rapid algorithm iteration, 
since a developer can determine the impact of 
algorithm changes without new human participants. 

2. Fidelity. This approach faithfully replicates 
participants’ behavior in real time during the user 
study. It can precisely specify the time intervals 
between touch events, and also can support multi-
touch input.  

3. Sensitivity. Running Octopus is like employing the 
same group of participants typing over and over on 
multiple keyboards. There are no confounding 
variables like time of day, fatigue, or learning 
effects, so the impact of small algorithm tweaks can 
be measured reliably. 

4. No source code required. This approach offers a 
“black box” evaluation: one must only install a 
keyboard on a mobile device to evaluate it. This 
enables evaluation of third-party keyboards without 
accessing their proprietary algorithms or source 
code.  

Limitations. Octopus focuses on correction and recognition 
algorithms of keyboards. It does not evaluate the entire user 
experience of a touchscreen keyboard. In particular, it does 
not evaluate UI-related interaction behaviors, such as se-
lecting the target via the suggestion bar or using the back-
space key. Also, it is limited to keyboards with the same 
layout as the one used in data collection (e.g., Qwerty). 
Because the user data is collected a priori and the keyboard 
for data collection does not provide the user with feedback 
for correct or erroneous input, Octopus does not account for 
changes in user behavior in response to keyboard output. 
Octopus focuses on “open loop” typing aspects in which 
the user types ahead and trusts the keyboard to correct their 

imprecise input (be it touch or gesture). This type of data 
reflects the most basic and natural input behaviors, unen-
cumbered by the UI and algorithms, but does not capture 
feedback-driven behavior adjustments.  
IMPLEMENTATION 
We implemented Octopus on the Android operating sys-
tem.  The initial simulator was implemented on a desktop 
machine.  It constructed touch events according to the An-
droid protocol and sent them to the device using Android 
Debug Bridge (ADB) [3] via a USB cable. The limitations 
of this approach were 1) it was difficult to accurately con-
trol time intervals between simulated events because of the 
latency variance between the device and the machine; 2) 
simulated events occasionally went missing due to disrup-
tions in the USB connection; and 3) the protocol for con-
structing touch events varied across devices, requiring extra 
engineering per device. 
The current Simulator was implemented on top of An-
droid’s Monkey event simulation tool.  It runs on a device 
without direct connection to a host computer. Since it simu-
lates touch events at the OS level, it works on any Android 
device. From the perspective of a keyboard application, 
events from the simulator are indistinguishable from events 
that are generated by the device’s touch screen.   
The Keyboard Output Receiver is a standard android appli-
cation developed in Java.     
METRICS FOR MEASURING KEYBOARD ACCURACY 
Octopus is designed to evaluate the effectiveness of 
keyboard algorithms. This section introduces the measures 
used: Character Score, Word Score, and Ratio of Error 
Reduction.  
Character Score 
Character Score is based on Minimum String Distance, 
(MSD) [16], which is the smallest number of character in-
sertions, deletions, and replacements needed to transform 
one string into another: 

𝑀𝑆𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  𝑀𝑆𝐷(𝑃,𝑇)
𝑀𝐴𝑋(|𝑃|,|𝑇|)

                                    (1) 

where 𝑃  is the presented phrase and 𝑇  is the transcribed 
phrase. To more intuitively and directly reflect accuracy, 
we convert the error rate to character score: 
𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 = (1 −𝑀𝑆𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) × 100    (2) 

The character score is between 0 and 100, and approxi-
mately indicates the percentage of correct characters. The 
higher the score, the more accurate the keyboard. A key-
board with a score of 100 is error-free.  However, note that 
this score depends on the test dataset.  A dataset could in-
clude fundamental errors (e.g. input based on misread 
words from presented text), so a score of 100 may not be 
achievable.  
Word Score 
Word Score is based on Minimum Word Distance (MWD), 
which is the smallest number of word deletions, insertions, 

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

546



 

or replacements needed to transform one string into 
another. 

𝑀𝑊𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  𝑀𝑊𝐷(𝑃,𝑇)
𝑀𝐴𝑋(|𝑃|,|𝑇|)

                                       (3) 

A word is defined as a string of characters entered between 
one or more continuous spaces. |𝑃| and |𝑇| are the lengths 
of the presented and transcribed phrases, measured in 
number of words.  
Similar to Character Score, Word Score is defined as: 
𝑊𝑜𝑟𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 = (1 −𝑀𝑊𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) × 100 

It approximately represents the percentage of correct words 
for a given dataset. Like Character Score, it is also dataset-
dependent. 
Ratio of Error Reduction (RER) 
Character and Word Scores measure the overall accuracy 
of a given dataset, but they do not specifically measure a 
keyboard’s correction and recognition capabilities. Com-
paring transcribed to presented text does not provide infor-
mation about how many of a user’s errors were corrected 
by the touch keyboard. 
Figure 4 shows an example of user touch input on a soft 
keyboard. The presented text is “home,” but the user 
touches the keys “h”, “o”, “m”, and “w.” A naïve keyboard 
that does not attempt to correct user imprecision may 
output “homw,” but the keyboard in the figure has 
successfully corrected the user’s input and output the text 
“home.” However, if we compare the presented text to the 
transcribed text, we do not learn about the successful error 
correction. If the user’s input had been precise (hitting the 
“h,” “o,” “m,” and “e” keys), the naïve keyboard would 
have produced the same transcribed text. A Word Score 
comparing presented text with transcribed text will give the 
same result for the two scenarios.  

 
Figure 4. A user touches the screen when entering 
the word “home.” The touches are labeled in the or-
der entered. The user imprecisely entered the “e,” 
touching above the “w” key instead. 

We thus propose to compare the presented and transcribed 
text to baseline text, which reflects a user’s uncorrected 
keyboard output. The baseline text is generated from the 

closest key labels on the keyboard to the users’ actual touch 
points. This is a naïve key-detection algorithm that offers 
no error correction, and literally transcribes the user’s touch 
points. Comparing the baseline text to the presented text 
provides information about a user’s accuracy; comparing 
the baseline text to the transcribed text provides 
information about the keyboard’s ability to correct user 
errors. 
To quantify a touch keyboard’s ability to correct user error 
into correct words, we propose another metric, the Ratio of 
Error Reduction (RER). This metric is defined as the 
proportion of errors in the baseline string that were fixed by 
the keyboard. The RER is calculated as follows: 

𝑅𝐸𝑅 =
𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −  𝐸𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑  

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 × 100%  (4) 

where 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is the error rate of the baseline text and 
𝐸𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑  is the error rate of the transcribed text. RER is 
applicable only when 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 0.  We can use either the 
MSD or the MWD to express the error rates. 
EVALUATING STKS 
We used Octopus to evaluate two touch keyboards on 
Android phones. Since the purpose of the current work was 
to research and demonstrate an evaluation method and a 
tool, not to report the relative merit and quality of different 
commercial products, we anonymously refer to the two 
keyboards as STK-A and STK-B.  The dimensions of the 
two are identical, but the algorithms that determine 
keyboard output for given touch input are different. Since 
STK-B was developed a bit later than STK-A, it was 
expected that it would perform slightly better than STK-A.  
Method 
Collecting Typing Data 
To evaluate the keyboards with Octopus, we collected text 
input data from users in a laboratory study we called “Salt.” 
The study was similar to the dataset used in Azenkot and 
Zhai [4], but with different conditions for different hand 
postures, and different instructions to encourage the users 
to type more quickly.  
A wizard of Oz keyboard was used in the study (Figure 5), 
which provided users with only asterisks as feedback when 
they entered text. After a user finished a phrase, she pressed 
the “next” button to proceed to the next phrase.   
We recruited 40 participants.  The average age was 32 (the 
youngest was 18 and the oldest was 59).  Five were left-
handed. All had experience with text entry on smartphones.  
The average level of self-rated proficiency with STKs was 
5.5 (SD = 1.2) according to a pre-study questionnaire (1 – 
7, 1 = no experience, 7 = expert). 
Unlike the study in Azenkot and Zhai [4], which specified a 
hand posture for every participant, this study allowed the 
participants to text with two thumbs, one finger, or one 
thumb on the dominant hand according to their preference. 
A Galaxy Nexus phone was used throughout the study.  

home

1

2

3

4

5

presented:  home

transcribed: home
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Twenty-four users entered text with two thumbs, 4 with 
one thumb, and 12 with the index finger. 

 
Figure 5. The WOZ keyboard we used to collect da-
ta for evaluating STKs. The keyboard design aims 
to capture fundamental text entry behavior. 

Each participant entered the same set of 50 phrases 
randomly chosen from the MacKenzie and Soukoreff 
phrase set [17, 25]. All touch events were logged. 
Participants were asked to enter text “as naturally and as 
fast as possible.” The first 10 phrases for each user were 
considered a warm-up and excluded in the dataset. Overall, 
we collected input for 1,597 phrases with 7,106 words.  
Running Octopus 
We ran Octopus using the Salt dataset on two Galaxy Nex-
us phones, the same type of phone used to collect the data. 
A complete run of Octopus with the Salt data took about 
212.8 minutes (about 3.5 hours) on each keyboard. 
Results and Discussion 
Character and Word Scores 
The mean Word Scores across the 40 participants were 83.7 
(SD = 11.0), and 84.7 (SD = 10.2).  The character scores 
were 94.6 (SD = 4.4) and 94.5 (SD = 4.6), for STK-A and 
STK-B, respectively (Figure 6). A paired t-test did not 
show a significant difference between these two keyboards 
on either of the two measures, indicating that the overall 
accuracies of these keyboards were similar.  

 
Figure 6. Mean (SD) of Word and Character 
Scores. 

A detailed analysis, however, shows important differences 
between the two keyboards. The same correct output were 
generated from the two keyboards on 5,401 (of 7,106 ) 
words from the Salt dataset. There were 1,000 cases of 
touch input in Salt in which both STKs failed to generate 
correct target words. There were 438 word cases in which 
STK-B succeeded but STK-A failed. By visually inspecting 
the output, we discovered that STK-B seemed better at 
handling missing spaces than STK-A. The top three rows in 
Table 1 show examples.  Conversely, there were 267 cases 
where STK-B failed but STK-A succeeded, as shown by 
the bottom three rows of Table 1. STK-B seemed to be 
more conservative than STK-A in auto-correcting spatial 
proximity errors.  
Output on STK-A  Output on STK-B 
pleasevorovife your date  please provide your date 
my gagoritevsibjevy  my favorite subject 
an offervyoy cannot refus  an offer you cannot refuse 
three two one zero  three twp one zero 
are you talking to me  are yiy talking to me 
hair gel is very greasy  hair gel is very greadu 

Table 1. Examples of Salt output from STK-A and 
STK-B. The phrases on the same row were gener-
ated on the same set of touch points. 

Here we can see the Octopus remulation approach not only 
generated global metrics, but also afforded inspection of 
specific error cases.  The latter capability enables the kind 
of micro-level analysis critical for more detailed insights 
into a keyboard’s characteristics.   
RER Rates 
The word and character scores of baseline text of the Salt 
dataset were 38.9 (SD = 15.3) and 80.6 (SD = 8.6) respec-
tively, indicating that users’ input was very sloppy. More 
than 60% of words would have been incorrect if the touch 
input were decoded with a naïve closest-label keyboard 
algorithm.  
Both STK-A and STK-B keyboards markedly reduced the 
errors due to imprecise input. As shown in Table 2, the 
Ratio of Error Reduction (RER) was 72.6% and 75.1% for 
MWD, and were 72.2% and 71.6% for MSD, for STK-A 
and STK-B, respectively. Approximately 7 out of 10 word 
errors in the Salt dataset were corrected by each keyboard.  
 

 MWD MSD     
STK-A 16.3% 5.4% 
STK-B 
Baseline 

15.2% 
61.1% 

5.5% 
19.4% 

RER of STK-A 
RER of STK-B 

72.6% 
75.1% 

72.2% 
71.6% 

Table 2. Ratio of Error Reduction (RER) for both 
keyboards, using the MSD and MWD to measure 
error. 

50

60

70

80

90

100

STK-A STK-B STK-A STK-B
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When a keyboard attempts to correct user errors, a word 
undergoes a transition between two possible states: correct 
(no errors) and incorrect (contains some errors). There are 
four such transitions: incorrect to correct, incorrect to 
incorrect, correct to incorrect, and correct to correct. 
Table 3 shows examples of the transitions for the presented 
text “home.”  
Ideally, all transitions are either correct to correct, where 
the keyboard algorithms recognize the input is correct and 
do not modify it, or incorrect to correct, where the 
keyboard algorithms identify “sloppy” input and modify it 
to the target word. Correct to incorrect transitions are 
likely to occur when a user enters a string that is OOV (out 
of vocabulary). Transitions that move from Correct to 
Incorrect have been found in prior work to be disruptive 
and frustrating to users [9]. 

 Baseline Transcribed 
Incorrect  Correct homw Home 
Incorrect  Incorrect hone Gone 
Correct  Incorrect home homw 
Correct  Correct home home 

Table 3. Examples of transitions from the baseline 
to the transcribed text for the presented text 
“home.” A “correct” state indicates the transcribed 
text is the same as the presented text, and an “in-
correct” state indicates they are different. 

To deeply understand the keyboard’s error correction 
behavior, we investigate the composition of these four 
types of transitions (Figure 7). 3,297 words (46.4%) on 
STK-A and 3,425 words (48.2%) on STK-B keyboards 
underwent an incorrect to correct transition, demonstrating 
strong auto-correction performance for both keyboards. 
STK-A and STK-B falsely changed 1.5% and 0.8% of 
words from correct to incorrect. Although small in number, 
in this very critical category of errors, STK-B made only 
about half the errors that STK-A did. Table 4 shows 
examples of successful corrections.  

 
Figure 7. Percentages of Four Types of Transitions 
on STK-A (left) and STK-B (right) keyboards 

Baseline  Corrected output on STK-A 
and STK-B 

he s jst kr everone  he is just like everyone 
nofer youcannot refuse  an offer you cannot refuse 
pleae orovife our aye  please provide your date 

Table 4. Examples of Successful Corrections. 
Words in red are erroneous words. 

EVALUATING WORD-GESTURE KEYBOARDS 
In addition to evaluating STKs, we used Octopus to 
evaluate two SGKs, SGK-A and SGK-B. SGK-B was 
developed later than SGK-A, so we expected it to perform 
better.  
Method 
Collecting Gesture Data 
The Salt study described earlier also collected gestures. The 
experiment balanced the order of gesture and touch data 
collection. The WOZ keyboard in the study was the same 
as the one used in touch data collection (720 × 414 pixels). 
It was identical to SGK-B in dimensions, but slightly 
different from SGK-A in height (720 × 398 pixels).   
The gesture data collected were therefore slightly scaled to 
match SGK-A when running Octopus. 
The same 40 subjects participated in the study. The levels 
of proficiency of these participants reflected the partial 
adoption of SGKs: half of the participants were proficient 
users who used SGKs at least 5 days a week; the other half 
had never used an SGK.  
Unlike STK data collection in which participants freely 
chose the preferred input finger, hand posture was a two-
level, within-subject factor (i.e., thumb or index finger). 
Each participant gestured a set of 50 phrases by index 
finger and the same set of phrases by the thumb. The device 
used in this study was the same as the one used in the 
typing data collection study. A user’s finger gesture trace 
was shown using a blue stroke, and only minimal output 
feedback was provided.  The current target word was 
underlined and the previously gestured words were dimmed 
(Figure 8). Our purpose was again to capture the most 
natural input behaviors, and to avoid interference from any 
particular recognition algorithm. 

 
Figure 8. Keyboard Layout for Gesture Data Collec-
tion. The participant was gesturing the word having. 

The first 10 phrases for each posture and each user were 
treated as a warm-up and excluded from the dataset.  In the 
entire study, we collected data for 40 × 2 (finger postures) 
× 40 (participants) = 3,200 phrases with 14,235 words.  
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Running Octopus 
We ran Octopus using the Salt gesture data described above 
on a Galaxy Nexus phone to evaluate SGK-A and SGK-B. 
The study had two within-subject factors: input finger 
(thumb and index finger) and keyboard (SGK-A, and SGK-
B). A complete run of Octopus took approximately 400 
minutes (around 7 hours).  
Results and Discussion 
Since gesture input does not have baseline text, the RER 
measure is not applicable for evaluating SGKs. We there-
fore focus on the word and character scores.   
An ANOVA showed that both word (F(1,39) = 155.5, p < 
.001) and character (F(1,39) = 134.6, p < .001) scores of 
SGK-B were significantly higher than those for SGK-A. 
The mean word scores were 73.0 (SD = 12.2) and 81.9 (SD 
= 10.0), and the mean character scores were 83.8 (SD = 
8.8) and 89.7 (SD = 7.0) for SGK-A and SGK-B 
respectively (Figure 9). SGK-B generated about 10 more 
correct words in every 100 gestures than SGK-A.  

 
Figure 9. Mean (Std. Error) Word and Character 
scores by Keyboard and Posture.  

The analysis also showed a significant main effect of input 
finger on word (F(1, 39) = 14.6, p < 0.01) and character (F 
(1, 39) = 11.0, p < 0.05) scores. The participants were more 
accurate gesturing with the index finger than with the 
thumb.  
ANOVA showed significant interactions for keyboard × 
input finger on both word (F(1,39) = 10.0, p < .005), and 

character scores (F(1,39) = 12.1, p < .005). As illustrated in 
Figure 9, SGK-B was especially more accurate than SGK-
A in the thumb condition, in which the input was more 
“sloppy” than in the index-finger condition. 
Figure 10 shows the mean word score for each participant. 
As illustrated, SGK-B is more accurate then SGK-A for 39 
out of 40 participants (and the remaining participant had 
the same score on both). It confirms the finding from the 
ANOVA analysis: SGK-B is significantly superior to SGK-
A. 
By comparing the output of both keyboards with presented 
phrases, we discovered some limitations of each keyboard. 
These findings could help developers to further improve the 
algorithms.  
One interesting observation of SGK-A’s performance was 
that it tended to mistakenly include unintended letters 
adjacent to the target letter in the recognition results. As 
shown in the first three rows of Table 5, SGK-A 
misrecognized provide as provides, are as ate, and smart as 
smarty. Unintended letters s (close to e), t (close to r), and y 
(close to t) were mistakenly included.  

SGK-A Output  SGK-B Output 
please provide your date  please provides your date 
you are not a jedi yet  you ate not a jedi yet 
yes you are very smart  yes you are very smarty 
a great dissonance  a great disturbance 
you must be hefting old  you must be getting old 
a quezon to answer  a question to answer 

Table 5. Examples of Output Phrases on SGK-A 
and SGK-B. Erroneous words are in red. 

Unlike SGK-A, one potential problem for SGK-B was its 
large vocabulary.  It contained obscure words that 
distracted a sloppy gestures from their intended word. For 
example, it falsely recognized the target words disturbance 
as dissonance, getting as hefting, and question as quezon 
(see the bottom three rows of Table 5). 

 
Figure 10. Mean Word Score for Each Participant (Sorted in Descending Order on SGK-B). 
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LIMITATIONS AND FUTURE WORK 
We note again that the performance measures from 
Octopus Remulation depend on the test dataset. A dataset 
can be either too easy (nearly perfect input) so all 
keyboards can give high word scores (a ceiling effect), or 
too difficult (all input hopelessly sloppy and erroneous) so 
no keyboard can do well on it (a floor effect).  We have 
collected a dataset, Salt, that is natural and sloppy, so it can 
discriminate among different keyboards. Indeed our word 
scores were in 70’s and 80’s, close neither to the ceiling 
(100) nor the floor (0). However whether the Salt data 
closely resembles users’ “natural” behavior on real 
keyboards is debatable. We suspect there may not be a 
“perfectly natural” behavior when it comes to interacting 
with real UI technologies. The better the recognition 
technology gets, the sloppier the user may behave to take 
advantage of the technology. It will therefore be necessary 
to collect different datasets that reflect different ranges of 
user expertise and behavior.  
Octopus can be used and enhanced in several ways. We 
described only two applications of Octopus for evaluating 
touch and gesture keyboards. With a new set of data, Octo-
pus can be used to evaluate keyboards with different lay-
outs on various devices, including tablets. With appropriate 
operating system support, the Remulation approach can 
also be implemented on platforms other than Android, such 
as Apple’s iPhone and Microsoft’s Windows Phone, ena-
bling comparison across platforms. 
CONCLUSION 
We have presented Remulation, a novel approach to 
evaluating keyboard correction and recognition algorithms 
by replicating prior user study data via real-time 
simulation. It contributes to the wide spectrum of user 
interface evaluation methods, ranging from A/B testing in 
laboratory experiments to model-based prediction. We have 
also contributed two new metrics, Word Score and Ratio of 
Error Reduction (RER), to measure keyboard accuracy at 
the word level, and to quantify STK error-correction 
capability.  
Based on the Remulation approach and new data analysis 
methods, we have designed and implemented Octopus, a 
keyboard evaluation tool. Powered by the Salt dataset we 
collected, we used Octopus to evaluate two smart touch 
keyboards and two smart gesture keyboards. The results 
clearly demonstrated the value of the Remulation approach, 
the Octopus tool, and the metrics of Word Score and RER. 
For example, Octopus showed that today’s STKs can 
correct over 70% of the word errors that a naïve 
touchscreen keyboard would produce on the Salt dataset. 
Octopus also exposed different types of errors made by the 
tested STKs, even though standard metrics showed that the 
keyboards performed identically. We have shown that 
Octopus remulation can also be applied to continuous word 
gesture-based keyboards, and found that one SGK is much 
stronger than another, which in turn suggests that this novel 

input paradigm [29] may progress even further with future 
research. 
ACKNOWLEDGEMENTS  
We thank participants in our studies, and the CHI paper 
reviewers for the insightful comments.  
REFERENCES 
1. Andrew, C. W., Maier, V., Green, P. (2004). From 

WER and RIL to MER and WIL: improved evaluation 
measures for connected speech recognition.  Proc. of 
INTERSPEECH.  4 pages. 

2. Android 4.2 http://www.android. com/whatsnew/ 

3. Android Developers. Tools: Andorid Debug Bridge. 
Accessed April 13, 2012. 
http://developer.android.com/guide/developing/tools/a
db.html. 

4. Azenkot, S. and Zhai, S. (2012). Touch Behavior with 
Different Postures on Soft Smart Phone Keyboards. 
Proc. of MobileHCI’12. 251-260.  

5. Bi, X., Chelba, C., Ouyang, T., Partridge, K., and Zhai, 
S. (2012). Bimanual gesture keyboard. Proc. of 
UIST’12. 137-146. 

6. Damn You, Auto-Correct! http://www.damnyouauto 
correct.com/. Accessed April 13, 2012. 

7. Findlater, L., and Wobbrock, J.O. (2012). Personalized 
input: improving ten-finger touchscreen typing through 
automatic adaptation. Proc. of CHI ’12. 815-824. 

8. Goodman, J., Venolia, G., Steury, K., and Parker, C. 
(2002). Language modeling for soft keyboards. Proc. 
AAAI ‘02, Menlo Park, CA, USA, 419-424. 

9. Gunawardana, A., Paek, T., and Meek, C. (2010). Usa-
bility guided key-target resizing for soft keyboards. 
Proc. IUI '10. ACM, New York, NY, USA, 111-118.  

10. Kristensson, P.O. and Zhai, S. 2004. SHARK: a large 
vocabulary shorthand writing system for pen-based 
computers. Proc. of UIST ‘04. ACM Press: 43-52.  

11. Lewis, J. R. (1992). Typing-key layouts for single-
finger or stylus input: initial user preference and 
performance (Technical Report No. 54729). Boca  
Raton, FL: International Business Machines 
Corporation. 

12. Lewis, J. R., Kennedy, P. J., & LaLomia, M. J. (1999). 
Development of a Digram-Based Typing Key Layout 
for Single-Finger/Stylus Input. Proceedings of The 
Human Factors and Ergonomics Society 43rd Annual 
Meeting. 

13. Lewis, J. R., LaLomia, M. J., & Kennedy, P. J. (1999). 
Evaluation of Typing Key Layouts for Stylus Input. 
Proceedings of The Human Factors and Ergonomics 
Society 43rd Annual Meeting. 

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

551



 

14. Lewis, J. R., Potosnak, K. M., & Magyar, R. L. (1997). 
Keys and Keyboards. In M. G. Helander, T. K. 
Landauer & P. V. Prabhu (Eds.), Handbook of human-
computer interaction (2nd ed., pp. 1285-1315). 
Amsterdam: Elsevier Science. 

15. MacKenzie, I. S. and Soukoreff, R. W. (2002). A 
Model of Two–Thumb Text Entry. In Proceedings of 
Graphics Interface ’02, pp. 117–124. 

16. MacKenzie, I. S. and Soukoreff, R. W. (2002). A 
chracter-level error analysis technique for evaluating 
text entry methods. In Proceedings of the 2nd Nordic 
Conference on Human-Computer Interaction 
(NordiCHI). Arhus, Denmark (Oct. 19–23). 243–24. 

17. MacKenzie, I. S., and Soukoreff, R. W. (2003). Phrase 
sets for evaluating text entry techniques. Proc. of CHI 
EA ‘03, pp. 754-755. New York: ACM. 

18. MacKenzie, I. S., and Tanaka-Ishii, K. (Eds.). (2007). 
Text Entry Systems: Mobility, Accessibility, 
Universality: Morgan Kaufmann Publishers. 

19. MacKenzie, I. S., and Zhang, S. X. (1999) The design 
and evaluation of a high-performance soft key-
board. Proceedings of the ACM Conference on Human 
Factors in Computing Systems CHI '99, pp. 25-31. 
New York: ACM.  

20. The New York Times, iPhone Keyboard Secrets. 
http://pogue.blogs.nytimes.com/2007/06/27/iphone-
keyboard-secrets/ 

21. Rick, J. (2010). Performance optimizations of virtual 
keyboards for stroke-based text entry on a touch-based 
tabletop. ACM UIST, 77-86.  

22. Rudchenko, D., Paek, T., and Badger, E. (2011). Text 
Text Revolution: A game that improves text entry on 
mobile touchscreen keyboards. Proc. Pervasive ‘2011.  

23. Rumelhart, D. E. and Norman, D. A. (1982), Simulat-
ing a Skilled Typist: A Study of Skilled Cognitive-
Motor Performance. Cognitive Science, 6: 1–36. 

24. Wobbrock, J.O. (2007). Measures of text entry perfor-
mance. Chapter 3 in I.S. MacKenzie and K. Tanaka-
Ishii (eds.), Text Entry Systems: Mobility, Accessibil-
ity, Universality. San Francisco: Morgan Kaufmann, 
pp. 47-74. 

25. Wobbrock, J.O. and Myers, B.A. (2006). Analyzing 
the input stream for character-level errors in uncon-
strained text entry evaluations. ACM Transactions on 
Computer-Human Interaction 13 (4), pp. 458-489.  

26. Zhai, S., Hunter, M., & Smith, B. A. (2002). 
Performance optimization of virtual keyboards. 
Human-Computer Interaction, 17(2,3), 89-129. 

27. Zhai, S. and Kristensson, P.O. 2003. Shorthand writing 
on stylus keyboard. Proc. of CHI ‘03. ACM Press: 97-
104. 

28. Zhai, S. and Kristensson, P.O. Introduction to Shape 
Writing (2006) IBM Research Report RJ10393 
(A0611-006),  November. 

29. Zhai, S. and Kristensson, P.O. (2012). The word-
gesture keyboard: reimagining keyboard interac-
tion. Commun. ACM 55, 9 (September 2012), 91-101. 

  

 

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

552

http://pogue.blogs.nytimes.com/2007/06/27/iphone-keyboard-secrets/
http://pogue.blogs.nytimes.com/2007/06/27/iphone-keyboard-secrets/


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /PageByPage

  /Binding /Left

  /CalGrayProfile ()

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /LeaveColorUnchanged

  /DoThumbnails true

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 524288

  /LockDistillerParams true

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo true

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Preserve

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 600

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 600

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages false

  /MonoImageDownsampleType /Average

  /MonoImageResolution 300

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects true

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /ENU ()

  >>

>> setdistillerparams

<<

  /HWResolution [600 600]

  /PageSize [612.000 792.000]

>> setpagedevice





