
Octopus: Evaluating Touchscreen Keyboard Correction
and Recognition Algorithms via “Remulation”

Xiaojun Bi1 Shiri Azenkot2 Kurt Partridge1 Shumin Zhai1
 1Google Inc. 2University of Washington
 Mountain View, CA, USA Seattle, WA, USA
 {bxj, kep, zhai}@google.com shiri@cs.washington.edu

ABSTRACT
The time and labor demanded by a typical laboratory-based
keyboard evaluation are limiting resources for algorithmic
adjustment and optimization. We propose Remulation, a
complementary method for evaluating touchscreen
keyboard correction and recognition algorithms. It
replicates prior user study data through real-time, on-device
simulation. To demonstrate remulation, we have developed
Octopus, an evaluation tool that enables keyboard
developers to efficiently measure and inspect the impact of
algorithmic changes without conducting resource-intensive
user studies. It can also be used to evaluate third-party
keyboards in a “black box” fashion, without access to their
algorithms or source code. Octopus can evaluate both touch
keyboards and word-gesture keyboards. Two empirical
examples show that Remulation can efficiently and
effectively measure many aspects of touch screen
keyboards at both macro and micro levels. Additionally, we
contribute two new metrics to measure keyboard accuracy
at the word level: the Ratio of Error Reduction (RER) and
the Word Score.

Author Keywords
Simulation; Text Entry; Touch Screen Interaction

ACM Classification
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

General terms
Design; Human Factors

INTRODUCTION
Today, touchscreen keyboards are used by hundreds of
millions of people around the world as their default text
entry method. To reduce typing errors, most of these
“Smart Touch Keyboards” (STKs) correct errors
automatically as users type. However, occasionally the
error correction system itself makes a mistake, with
undesirable and sometimes humorous consequences [6,20].
An increasingly popular alternative to the STK is the smart
gesture keyboard (SGK). An SGK recognizes words based

on the user’s finger gestures (Figure 1, right). SGK’s are
also known as Shape Writing keyboards [21, 28], gesture
keyboards [5] or word-gesture keyboards [29] in the
literature. Different forms of SGKs have been
commercially distributed in many products such as
ShapeWriter, SlideIT, Swype, Flex T9, TouchPal, and the
Android 4.2 stock keyboard (Gesture Typing) [2]. SGKs
face the same correction challenges as STKs because they
must map ambiguous finger gestures to words.

Figure 1. Illustrations of Smart Touch Keyboard
(Left) and Smart Gesture Keyboard (Right)

HCI research has explored various techniques for error
prevention, including adapting decoding algorithms to hand
posture [4], and personalizing ten-finger typing for large
touchscreens [7].
As with other advanced UI technologies such as speech
recognition, effective and efficient evaluation is critical to
the improvement of smart keyboards. An evaluation
generally consists of (1) data collection and (2) data
analysis. Our goal is to facilitate both stages of the process.
Collecting keyboard output data typically involves a
laboratory experiment with a dozen or more participants.
The time and labor required by these experiments make
frequent evaluation of small algorithmic changes infeasible.
Moreover, current data analysis techniques do not provide
important information about keyboard algorithms. For
example, they do not explicitly and quantitatively measure
an STK’s ability to correct user errors, and the typical
accuracy metrics (e.g., the MSD error rate [16]) examine
output at the character-level, and do not reflect today’s
keyboards’ word-level behaviors.
To expand the repertoire of tools and methods for
evaluating STKs and SGKs, we propose Remulation, a
novel keyboard evaluation approach that measures
correction and recognition algorithms of keyboards by
replaying previously collected user data through real-time
on-device simulation. It takes touch screen events recorded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

543

during prior user studies as input, and injects them into a
live mobile keyboard, at the same rate as they were
collected. The original experiment is thereby replicated on
a working keyboard. Remulation can efficiently evaluate
many (not all) aspects of both STKs and SGKs without
conducting laboratory experiments, and can be done
repeatedly as if the same group of participants were
employed to type the same input tirelessly over and over on
different keyboards.
Typical use cases for Remulation include: (1) a developer
seeks to evaluate the impact of an algorithmic change to her
keyboard, (2) a researcher seeks to evaluate different
versions of the same third-party keyboard, and (3) a device
manufacturer wants to select a third-party keyboard to
embed in its devices without inspecting the keyboards’
proprietary source code or algorithms.
To effectively measure the accuracy of a keyboard
algorithm, we introduce the metrics of Word Score, which
reflects the number of correct words out of every 100 input
words from a given test dataset, and Ratio of Error
Reduction (RER), which quantifies an STK’s error
prevention and correction ability. Both metrics measure
keyboard accuracy at the word level.
In the rest of this paper we demonstrate the Remulation
approach and its corresponding data analysis methods by
designing and implementing Octopus, a Remulation-based
keyboard evaluation tool. We put Remulation and Octopus
into practice by applying them to two STKs and two SGKs,
revealing various insights at both the macro and micro
levels.
In summary, this work contributes a novel approach to
evaluating touchscreen keyboards, which includes:
• Remulation, a new approach for evaluating keyboard

correction and recognition algorithms by replicating
prior user study data with real-time simulation

• The design and implementation of Octopus, a
Remulation-based keyboard evaluation tool and
system

• A demonstration of Remulation and Octopus in real
use, with evaluations of two STKs and two SGKs

• RER and Word Score, new metrics for evaluating
keyboard accuracy.

RELATED WORK
Collecting natural use data and applying them to train
recognition algorithms has been widely adopted as a
research methodology in AI (e.g., speech and handwriting
recognition). Recently, it has also been employed to design
keyboard algorithms. Gunawardana et al. [9] used pre-
recorded data on a keyboard to train and evaluate their own
error correction algorithm. Remulation uses some of the
same techniques for the different problem of comparing
two or more third-party keyboards when the source code or
algorithm is unavailable. Our work shows that it is possible
to send “fake” touch events to today’s mainstream devices

(Android in particular but other OSs in principle) and
evaluate keyboards in a “black box” fashion.
In what follows we discuss relevant prior work on (1)
simulating human text entry for evaluating keyboard
performance without traditional laboratory studies, and (2)
current analysis techniques used for assessing a text entry
method’s accuracy.
Simulating Text Entry
In 1982, Rumelhart and Norman [23] described a model for
simulating skilled typists on physical typewriters, with the
goal of understanding human typing behavior. Their model
focused on predicting keystroke timing and simulated key
transposition and doubling errors. In our work, we rely on
direct data replication rather than complex modeling of
human performance, and seek to evaluate keyboard
algorithms rather than theorize user behavior.
Since the early 1990’s, research interest has shifted from
studying physical typewriters to soft keyboards. The Fitts-
digraph model, first proposed by Lewis [12], was used to
estimate average text entry speeds based on movement time
between pairs of keys and digraph frequencies. This model
has been a popular performance prediction tool for
keyboard evaluation with different layouts using a single
finger or a stylus [12,13,14,19], and has been used as an
objective function for keyboard optimization [26]. A two-
thumb physical keyboard predictive model has also been
proposed [15]. Unlike these models, which predict an upper
bound for average text entry speed assuming a certain error
rate implied by Fitts’ law (4% per target), our Remulation
and analysis method assesses keyboard error rates and
accuracies using the same speed that had naturally occurred
in the data collection experiment. Also, we focus on
evaluating keyboards with similar appearances but different
algorithms, instead of different layouts.
Measuring Accuracy in Text Entry
Standard text entry accuracy metrics compare the tran-
scribed and presented strings. The Minimum String Dis-
tance (MSD) [16] is often used to measure the “distance”
between the two strings, based on the number of character
insertions, deletions, and replacements needed to turn one
string into another. While this has been effective in measur-
ing traditional physical keyboards that literally output every
letter typed, it is insufficient for measuring STKs. STKs
embed a dictionary or language model and do not neces-
sarily map touch points to text on an individual letter basis.
Similarly, SGKs usually work at the word level: they rec-
ognize a continuous finger gesture to output a single word
[21, 28, 29]. Since both SGKs and STKs operate at word-
level, it is more meaningful to adopt the word-level met-
rics. Furthermore, although word-level metrics (e.g., WER)
are common in other fields such as speech recognition [1],
they are rarely used to measure keyboard performance.
Wobbrock and Myers [25] analyzed the character input
stream in addition to the presented and transcribed strings.
They assume that text flows serially character by character.

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

544

This assumption does not hold for STKs, in which whole
words may be algorithmically modified after they are en-
tered. The character-level metric also does not suit SGKs
well.
Building upon this prior work, we develop new word-level
metrics to measure keyboard accuracy.
OCTOPUS: A REMULATION-BASED KEYBOARD
EVALUATION SYSTEM
Based on the Remulation concepts described earlier, we
designed and implemented Octopus (named after the
conference room “Dr. Octopus” where the concept was first
discussed). Octopus is a Remulation-based touchscreen
keyboard evaluation tool. Figure 2 shows its architecture,
which consists of (1) the Simulator, (2) Dataset, and (3) the
Keyboard Output Receiver.

Figure 2. The architecture of the Octopus System.

(1) Touch events simulator. This component simulates
touch actions on a mobile device in real time according to
the dataset. It can simulate TOUCH_DOWN,
TOUCH_MOVE, and TOUCH_UP events, which are the
three basic touch operations on a mobile device. Using
these events as building blocks, Octopus can simulate all
the typical touch interactions. For example, a quick tap
usually consists of a TOUCH_DOWN event immediately
followed by a TOUCH_UP event, and a gesture usually con-
sists of a TOUCH_DOWN event followed by several
TOUCH_MOVE events and a TOUCH_UP event.
The Simulator accurately specifies the interval between
every two touch events. The precision of such intervals
between two events is less than ±10 ms. It can also simulate
multi-finger interaction by specifying the finger ID of a
touch event. These features allow Octopus to keep fidelity
high in simulation, which is critical for evaluating modern
soft keyboards. For example, a keyboard might adjust its
algorithm according to the typing speed of a user. Simulat-
ing touch actions in real time is critical to measure such
algorithms. When a user quickly types with two thumbs,

she might land the second thumb before lifting the first one,
generating multi-touch events. Octopus enables us to inves-
tigate how a keyboard handles these situations.
(2) Dataset. The dataset is fed into Octopus to simulate real
users’ text entry actions. The datasets consist of touch
events and their corresponding phrases in presented
phrases. Each touch event includes the event type (i.e.,
TOUCH_DOWN, TOUCH_MOVE, or TOUCH_UP), the (x,y)
screen coordinates, the timestamp, and the finger identifier.
The collected data aims to reflect fundamental human per-
formance, independent of particular visual design elements,
keyboard features, or algorithms. Also, to challenge key-
boards’ algorithms and better discriminate different key-
boards, the dataset strives to capture users’ relaxed, natural
and uncorrected typing behaviors.
In the current implementation of Octopus, the dataset is
collected through lab studies in which participants type or
gesture the presented phrases on a mobile device as
naturally and as quickly as possible, using a collector
keyboard. The collector keyboard provides users with only
asterisks as feedback when they enter text, to prevent them
from adjusting their input behaviors to take advantage of
certain keyboard algorithms and features (such as deleting a
whole word at a time).
Ideally, the layout and dimensions of the collector key-
board are identical to the test keyboard used during Remu-
laiton. If the test keyboard has slightly different dimen-
sions, touch points can be scaled and translated according
to the target keyboard’s height, width, and top-left corner
location. The validity of such transformations should be
further empirically verified in future research, particularly
when the transformation is large.
(3) Keyboard Output Receiver. This is an application (Fig-
ure 3) that runs on the touch screen device at the same time
as the Simulator that generates the touch events.

Figure 3. The UI of Keyboard Output Receiver as
Octopus remulates the phrase “please provide your
date.” The red dot marks a simulated touch point.

Touch Events
Simulator

Keyboard in Test

Keyboard Output
Receiver

(Android Application)

Dataset

Simulated touch events

Transcribed Phrases

(In Android OS)

(Real user input and
their corresponding phrases)

Presented Phrases

Presented
Phrase

Transcribed
Phrase

Keyboard
in Testing

Metrics
Simulated
Touch Point

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

545

The Keyboard Output Receiver includes a standard text
view widget that receives the transcribed phrases from the
keyboard. The communication between the keyboard and
the Keyboard Receiver is through the mobile OS input
method framework, so Remulation can be performed on
any keyboard that is installed on the device. The Keyboard
Output Receiver logs the transcribed phrases generated by
the keyboard, compares them with the presented phrases
from original Dataset, and then calculates and displays the
quality measures of the keyboard being tested (Figure 3).
STRENGTHS AND LIMITATIONS
The Octopus remulation method is but one method of key-
board evaluation. Text entry is a complex process and no
single method, such as a laboratory experiment, instru-
mented field deployment, or modeling and prediction, can
provide a complete understanding of a keyboard. In our
view, the Remulation-based approach offers another meth-
od that has both strengths and limitations.
 Strengths. The advantages of this method include:

1. Efficiency. Empirical data can be used and reused
multiple times to evaluate different keyboards.
Efficiency is important for rapid algorithm iteration,
since a developer can determine the impact of
algorithm changes without new human participants.

2. Fidelity. This approach faithfully replicates
participants’ behavior in real time during the user
study. It can precisely specify the time intervals
between touch events, and also can support multi-
touch input.

3. Sensitivity. Running Octopus is like employing the
same group of participants typing over and over on
multiple keyboards. There are no confounding
variables like time of day, fatigue, or learning
effects, so the impact of small algorithm tweaks can
be measured reliably.

4. No source code required. This approach offers a
“black box” evaluation: one must only install a
keyboard on a mobile device to evaluate it. This
enables evaluation of third-party keyboards without
accessing their proprietary algorithms or source
code.

Limitations. Octopus focuses on correction and recognition
algorithms of keyboards. It does not evaluate the entire user
experience of a touchscreen keyboard. In particular, it does
not evaluate UI-related interaction behaviors, such as se-
lecting the target via the suggestion bar or using the back-
space key. Also, it is limited to keyboards with the same
layout as the one used in data collection (e.g., Qwerty).
Because the user data is collected a priori and the keyboard
for data collection does not provide the user with feedback
for correct or erroneous input, Octopus does not account for
changes in user behavior in response to keyboard output.
Octopus focuses on “open loop” typing aspects in which
the user types ahead and trusts the keyboard to correct their

imprecise input (be it touch or gesture). This type of data
reflects the most basic and natural input behaviors, unen-
cumbered by the UI and algorithms, but does not capture
feedback-driven behavior adjustments.
IMPLEMENTATION
We implemented Octopus on the Android operating sys-
tem. The initial simulator was implemented on a desktop
machine. It constructed touch events according to the An-
droid protocol and sent them to the device using Android
Debug Bridge (ADB) [3] via a USB cable. The limitations
of this approach were 1) it was difficult to accurately con-
trol time intervals between simulated events because of the
latency variance between the device and the machine; 2)
simulated events occasionally went missing due to disrup-
tions in the USB connection; and 3) the protocol for con-
structing touch events varied across devices, requiring extra
engineering per device.
The current Simulator was implemented on top of An-
droid’s Monkey event simulation tool. It runs on a device
without direct connection to a host computer. Since it simu-
lates touch events at the OS level, it works on any Android
device. From the perspective of a keyboard application,
events from the simulator are indistinguishable from events
that are generated by the device’s touch screen.
The Keyboard Output Receiver is a standard android appli-
cation developed in Java.
METRICS FOR MEASURING KEYBOARD ACCURACY
Octopus is designed to evaluate the effectiveness of
keyboard algorithms. This section introduces the measures
used: Character Score, Word Score, and Ratio of Error
Reduction.
Character Score
Character Score is based on Minimum String Distance,
(MSD) [16], which is the smallest number of character in-
sertions, deletions, and replacements needed to transform
one string into another:

𝑀𝑆𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 𝑀𝑆𝐷(𝑃,𝑇)
𝑀𝐴𝑋(|𝑃|,|𝑇|)

 (1)

where 𝑃 is the presented phrase and 𝑇 is the transcribed
phrase. To more intuitively and directly reflect accuracy,
we convert the error rate to character score:
𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 = (1 −𝑀𝑆𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) × 100 (2)

The character score is between 0 and 100, and approxi-
mately indicates the percentage of correct characters. The
higher the score, the more accurate the keyboard. A key-
board with a score of 100 is error-free. However, note that
this score depends on the test dataset. A dataset could in-
clude fundamental errors (e.g. input based on misread
words from presented text), so a score of 100 may not be
achievable.
Word Score
Word Score is based on Minimum Word Distance (MWD),
which is the smallest number of word deletions, insertions,

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

546

or replacements needed to transform one string into
another.

𝑀𝑊𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 𝑀𝑊𝐷(𝑃,𝑇)
𝑀𝐴𝑋(|𝑃|,|𝑇|)

 (3)

A word is defined as a string of characters entered between
one or more continuous spaces. |𝑃| and |𝑇| are the lengths
of the presented and transcribed phrases, measured in
number of words.
Similar to Character Score, Word Score is defined as:
𝑊𝑜𝑟𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 = (1 −𝑀𝑊𝐷 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) × 100

It approximately represents the percentage of correct words
for a given dataset. Like Character Score, it is also dataset-
dependent.
Ratio of Error Reduction (RER)
Character and Word Scores measure the overall accuracy
of a given dataset, but they do not specifically measure a
keyboard’s correction and recognition capabilities. Com-
paring transcribed to presented text does not provide infor-
mation about how many of a user’s errors were corrected
by the touch keyboard.
Figure 4 shows an example of user touch input on a soft
keyboard. The presented text is “home,” but the user
touches the keys “h”, “o”, “m”, and “w.” A naïve keyboard
that does not attempt to correct user imprecision may
output “homw,” but the keyboard in the figure has
successfully corrected the user’s input and output the text
“home.” However, if we compare the presented text to the
transcribed text, we do not learn about the successful error
correction. If the user’s input had been precise (hitting the
“h,” “o,” “m,” and “e” keys), the naïve keyboard would
have produced the same transcribed text. A Word Score
comparing presented text with transcribed text will give the
same result for the two scenarios.

Figure 4. A user touches the screen when entering
the word “home.” The touches are labeled in the or-
der entered. The user imprecisely entered the “e,”
touching above the “w” key instead.

We thus propose to compare the presented and transcribed
text to baseline text, which reflects a user’s uncorrected
keyboard output. The baseline text is generated from the

closest key labels on the keyboard to the users’ actual touch
points. This is a naïve key-detection algorithm that offers
no error correction, and literally transcribes the user’s touch
points. Comparing the baseline text to the presented text
provides information about a user’s accuracy; comparing
the baseline text to the transcribed text provides
information about the keyboard’s ability to correct user
errors.
To quantify a touch keyboard’s ability to correct user error
into correct words, we propose another metric, the Ratio of
Error Reduction (RER). This metric is defined as the
proportion of errors in the baseline string that were fixed by
the keyboard. The RER is calculated as follows:

𝑅𝐸𝑅 =
𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐸𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 × 100% (4)

where 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the error rate of the baseline text and
𝐸𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 is the error rate of the transcribed text. RER is
applicable only when 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 0. We can use either the
MSD or the MWD to express the error rates.
EVALUATING STKS
We used Octopus to evaluate two touch keyboards on
Android phones. Since the purpose of the current work was
to research and demonstrate an evaluation method and a
tool, not to report the relative merit and quality of different
commercial products, we anonymously refer to the two
keyboards as STK-A and STK-B. The dimensions of the
two are identical, but the algorithms that determine
keyboard output for given touch input are different. Since
STK-B was developed a bit later than STK-A, it was
expected that it would perform slightly better than STK-A.
Method
Collecting Typing Data
To evaluate the keyboards with Octopus, we collected text
input data from users in a laboratory study we called “Salt.”
The study was similar to the dataset used in Azenkot and
Zhai [4], but with different conditions for different hand
postures, and different instructions to encourage the users
to type more quickly.
A wizard of Oz keyboard was used in the study (Figure 5),
which provided users with only asterisks as feedback when
they entered text. After a user finished a phrase, she pressed
the “next” button to proceed to the next phrase.
We recruited 40 participants. The average age was 32 (the
youngest was 18 and the oldest was 59). Five were left-
handed. All had experience with text entry on smartphones.
The average level of self-rated proficiency with STKs was
5.5 (SD = 1.2) according to a pre-study questionnaire (1 –
7, 1 = no experience, 7 = expert).
Unlike the study in Azenkot and Zhai [4], which specified a
hand posture for every participant, this study allowed the
participants to text with two thumbs, one finger, or one
thumb on the dominant hand according to their preference.
A Galaxy Nexus phone was used throughout the study.

home

1

2

3

4

5

presented: home

transcribed: home

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

547

Twenty-four users entered text with two thumbs, 4 with
one thumb, and 12 with the index finger.

Figure 5. The WOZ keyboard we used to collect da-
ta for evaluating STKs. The keyboard design aims
to capture fundamental text entry behavior.

Each participant entered the same set of 50 phrases
randomly chosen from the MacKenzie and Soukoreff
phrase set [17, 25]. All touch events were logged.
Participants were asked to enter text “as naturally and as
fast as possible.” The first 10 phrases for each user were
considered a warm-up and excluded in the dataset. Overall,
we collected input for 1,597 phrases with 7,106 words.
Running Octopus
We ran Octopus using the Salt dataset on two Galaxy Nex-
us phones, the same type of phone used to collect the data.
A complete run of Octopus with the Salt data took about
212.8 minutes (about 3.5 hours) on each keyboard.
Results and Discussion
Character and Word Scores
The mean Word Scores across the 40 participants were 83.7
(SD = 11.0), and 84.7 (SD = 10.2). The character scores
were 94.6 (SD = 4.4) and 94.5 (SD = 4.6), for STK-A and
STK-B, respectively (Figure 6). A paired t-test did not
show a significant difference between these two keyboards
on either of the two measures, indicating that the overall
accuracies of these keyboards were similar.

Figure 6. Mean (SD) of Word and Character
Scores.

A detailed analysis, however, shows important differences
between the two keyboards. The same correct output were
generated from the two keyboards on 5,401 (of 7,106)
words from the Salt dataset. There were 1,000 cases of
touch input in Salt in which both STKs failed to generate
correct target words. There were 438 word cases in which
STK-B succeeded but STK-A failed. By visually inspecting
the output, we discovered that STK-B seemed better at
handling missing spaces than STK-A. The top three rows in
Table 1 show examples. Conversely, there were 267 cases
where STK-B failed but STK-A succeeded, as shown by
the bottom three rows of Table 1. STK-B seemed to be
more conservative than STK-A in auto-correcting spatial
proximity errors.
Output on STK-A Output on STK-B
pleasevorovife your date please provide your date
my gagoritevsibjevy my favorite subject
an offervyoy cannot refus an offer you cannot refuse
three two one zero three twp one zero
are you talking to me are yiy talking to me
hair gel is very greasy hair gel is very greadu

Table 1. Examples of Salt output from STK-A and
STK-B. The phrases on the same row were gener-
ated on the same set of touch points.

Here we can see the Octopus remulation approach not only
generated global metrics, but also afforded inspection of
specific error cases. The latter capability enables the kind
of micro-level analysis critical for more detailed insights
into a keyboard’s characteristics.
RER Rates
The word and character scores of baseline text of the Salt
dataset were 38.9 (SD = 15.3) and 80.6 (SD = 8.6) respec-
tively, indicating that users’ input was very sloppy. More
than 60% of words would have been incorrect if the touch
input were decoded with a naïve closest-label keyboard
algorithm.
Both STK-A and STK-B keyboards markedly reduced the
errors due to imprecise input. As shown in Table 2, the
Ratio of Error Reduction (RER) was 72.6% and 75.1% for
MWD, and were 72.2% and 71.6% for MSD, for STK-A
and STK-B, respectively. Approximately 7 out of 10 word
errors in the Salt dataset were corrected by each keyboard.

 MWD MSD
STK-A 16.3% 5.4%
STK-B
Baseline

15.2%
61.1%

5.5%
19.4%

RER of STK-A
RER of STK-B

72.6%
75.1%

72.2%
71.6%

Table 2. Ratio of Error Reduction (RER) for both
keyboards, using the MSD and MWD to measure
error.

50

60

70

80

90

100

STK-A STK-B STK-A STK-B

Word Scores Character Scores

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

548

When a keyboard attempts to correct user errors, a word
undergoes a transition between two possible states: correct
(no errors) and incorrect (contains some errors). There are
four such transitions: incorrect to correct, incorrect to
incorrect, correct to incorrect, and correct to correct.
Table 3 shows examples of the transitions for the presented
text “home.”
Ideally, all transitions are either correct to correct, where
the keyboard algorithms recognize the input is correct and
do not modify it, or incorrect to correct, where the
keyboard algorithms identify “sloppy” input and modify it
to the target word. Correct to incorrect transitions are
likely to occur when a user enters a string that is OOV (out
of vocabulary). Transitions that move from Correct to
Incorrect have been found in prior work to be disruptive
and frustrating to users [9].

 Baseline Transcribed
Incorrect  Correct homw Home
Incorrect  Incorrect hone Gone
Correct  Incorrect home homw
Correct  Correct home home

Table 3. Examples of transitions from the baseline
to the transcribed text for the presented text
“home.” A “correct” state indicates the transcribed
text is the same as the presented text, and an “in-
correct” state indicates they are different.

To deeply understand the keyboard’s error correction
behavior, we investigate the composition of these four
types of transitions (Figure 7). 3,297 words (46.4%) on
STK-A and 3,425 words (48.2%) on STK-B keyboards
underwent an incorrect to correct transition, demonstrating
strong auto-correction performance for both keyboards.
STK-A and STK-B falsely changed 1.5% and 0.8% of
words from correct to incorrect. Although small in number,
in this very critical category of errors, STK-B made only
about half the errors that STK-A did. Table 4 shows
examples of successful corrections.

Figure 7. Percentages of Four Types of Transitions
on STK-A (left) and STK-B (right) keyboards

Baseline Corrected output on STK-A
and STK-B

he s jst kr everone he is just like everyone
nofer youcannot refuse an offer you cannot refuse
pleae orovife our aye please provide your date

Table 4. Examples of Successful Corrections.
Words in red are erroneous words.

EVALUATING WORD-GESTURE KEYBOARDS
In addition to evaluating STKs, we used Octopus to
evaluate two SGKs, SGK-A and SGK-B. SGK-B was
developed later than SGK-A, so we expected it to perform
better.
Method
Collecting Gesture Data
The Salt study described earlier also collected gestures. The
experiment balanced the order of gesture and touch data
collection. The WOZ keyboard in the study was the same
as the one used in touch data collection (720 × 414 pixels).
It was identical to SGK-B in dimensions, but slightly
different from SGK-A in height (720 × 398 pixels).
The gesture data collected were therefore slightly scaled to
match SGK-A when running Octopus.
The same 40 subjects participated in the study. The levels
of proficiency of these participants reflected the partial
adoption of SGKs: half of the participants were proficient
users who used SGKs at least 5 days a week; the other half
had never used an SGK.
Unlike STK data collection in which participants freely
chose the preferred input finger, hand posture was a two-
level, within-subject factor (i.e., thumb or index finger).
Each participant gestured a set of 50 phrases by index
finger and the same set of phrases by the thumb. The device
used in this study was the same as the one used in the
typing data collection study. A user’s finger gesture trace
was shown using a blue stroke, and only minimal output
feedback was provided. The current target word was
underlined and the previously gestured words were dimmed
(Figure 8). Our purpose was again to capture the most
natural input behaviors, and to avoid interference from any
particular recognition algorithm.

Figure 8. Keyboard Layout for Gesture Data Collec-
tion. The participant was gesturing the word having.

The first 10 phrases for each posture and each user were
treated as a warm-up and excluded from the dataset. In the
entire study, we collected data for 40 × 2 (finger postures)
× 40 (participants) = 3,200 phrases with 14,235 words.

46.4%

18.8%1.5%

33.3%
48.2%

17.0%

0.8%

34.0%

1

2

3

4

Incorrect to Correct

Incorrect to Incorrect

Correct to Incorrect

Correct to Correct

STK-A STK-B

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

549

Running Octopus
We ran Octopus using the Salt gesture data described above
on a Galaxy Nexus phone to evaluate SGK-A and SGK-B.
The study had two within-subject factors: input finger
(thumb and index finger) and keyboard (SGK-A, and SGK-
B). A complete run of Octopus took approximately 400
minutes (around 7 hours).
Results and Discussion
Since gesture input does not have baseline text, the RER
measure is not applicable for evaluating SGKs. We there-
fore focus on the word and character scores.
An ANOVA showed that both word (F(1,39) = 155.5, p <
.001) and character (F(1,39) = 134.6, p < .001) scores of
SGK-B were significantly higher than those for SGK-A.
The mean word scores were 73.0 (SD = 12.2) and 81.9 (SD
= 10.0), and the mean character scores were 83.8 (SD =
8.8) and 89.7 (SD = 7.0) for SGK-A and SGK-B
respectively (Figure 9). SGK-B generated about 10 more
correct words in every 100 gestures than SGK-A.

Figure 9. Mean (Std. Error) Word and Character
scores by Keyboard and Posture.

The analysis also showed a significant main effect of input
finger on word (F(1, 39) = 14.6, p < 0.01) and character (F
(1, 39) = 11.0, p < 0.05) scores. The participants were more
accurate gesturing with the index finger than with the
thumb.
ANOVA showed significant interactions for keyboard ×
input finger on both word (F(1,39) = 10.0, p < .005), and

character scores (F(1,39) = 12.1, p < .005). As illustrated in
Figure 9, SGK-B was especially more accurate than SGK-
A in the thumb condition, in which the input was more
“sloppy” than in the index-finger condition.
Figure 10 shows the mean word score for each participant.
As illustrated, SGK-B is more accurate then SGK-A for 39
out of 40 participants (and the remaining participant had
the same score on both). It confirms the finding from the
ANOVA analysis: SGK-B is significantly superior to SGK-
A.
By comparing the output of both keyboards with presented
phrases, we discovered some limitations of each keyboard.
These findings could help developers to further improve the
algorithms.
One interesting observation of SGK-A’s performance was
that it tended to mistakenly include unintended letters
adjacent to the target letter in the recognition results. As
shown in the first three rows of Table 5, SGK-A
misrecognized provide as provides, are as ate, and smart as
smarty. Unintended letters s (close to e), t (close to r), and y
(close to t) were mistakenly included.

SGK-A Output SGK-B Output
please provide your date please provides your date
you are not a jedi yet you ate not a jedi yet
yes you are very smart yes you are very smarty
a great dissonance a great disturbance
you must be hefting old you must be getting old
a quezon to answer a question to answer

Table 5. Examples of Output Phrases on SGK-A
and SGK-B. Erroneous words are in red.

Unlike SGK-A, one potential problem for SGK-B was its
large vocabulary. It contained obscure words that
distracted a sloppy gestures from their intended word. For
example, it falsely recognized the target words disturbance
as dissonance, getting as hefting, and question as quezon
(see the bottom three rows of Table 5).

Figure 10. Mean Word Score for Each Participant (Sorted in Descending Order on SGK-B).

60
65
70
75
80
85
90
95

100

Index Finger Thumb

SGK-B

SGK-A

60
65
70
75
80
85
90
95

100

Index Finger Thumb

Word Score Character Score

20
30
40
50
60
70
80
90

100

SGK-B

SGK-A

Word Score per User

Participants #1-40

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

550

LIMITATIONS AND FUTURE WORK
We note again that the performance measures from
Octopus Remulation depend on the test dataset. A dataset
can be either too easy (nearly perfect input) so all
keyboards can give high word scores (a ceiling effect), or
too difficult (all input hopelessly sloppy and erroneous) so
no keyboard can do well on it (a floor effect). We have
collected a dataset, Salt, that is natural and sloppy, so it can
discriminate among different keyboards. Indeed our word
scores were in 70’s and 80’s, close neither to the ceiling
(100) nor the floor (0). However whether the Salt data
closely resembles users’ “natural” behavior on real
keyboards is debatable. We suspect there may not be a
“perfectly natural” behavior when it comes to interacting
with real UI technologies. The better the recognition
technology gets, the sloppier the user may behave to take
advantage of the technology. It will therefore be necessary
to collect different datasets that reflect different ranges of
user expertise and behavior.
Octopus can be used and enhanced in several ways. We
described only two applications of Octopus for evaluating
touch and gesture keyboards. With a new set of data, Octo-
pus can be used to evaluate keyboards with different lay-
outs on various devices, including tablets. With appropriate
operating system support, the Remulation approach can
also be implemented on platforms other than Android, such
as Apple’s iPhone and Microsoft’s Windows Phone, ena-
bling comparison across platforms.
CONCLUSION
We have presented Remulation, a novel approach to
evaluating keyboard correction and recognition algorithms
by replicating prior user study data via real-time
simulation. It contributes to the wide spectrum of user
interface evaluation methods, ranging from A/B testing in
laboratory experiments to model-based prediction. We have
also contributed two new metrics, Word Score and Ratio of
Error Reduction (RER), to measure keyboard accuracy at
the word level, and to quantify STK error-correction
capability.
Based on the Remulation approach and new data analysis
methods, we have designed and implemented Octopus, a
keyboard evaluation tool. Powered by the Salt dataset we
collected, we used Octopus to evaluate two smart touch
keyboards and two smart gesture keyboards. The results
clearly demonstrated the value of the Remulation approach,
the Octopus tool, and the metrics of Word Score and RER.
For example, Octopus showed that today’s STKs can
correct over 70% of the word errors that a naïve
touchscreen keyboard would produce on the Salt dataset.
Octopus also exposed different types of errors made by the
tested STKs, even though standard metrics showed that the
keyboards performed identically. We have shown that
Octopus remulation can also be applied to continuous word
gesture-based keyboards, and found that one SGK is much
stronger than another, which in turn suggests that this novel

input paradigm [29] may progress even further with future
research.
ACKNOWLEDGEMENTS
We thank participants in our studies, and the CHI paper
reviewers for the insightful comments.
REFERENCES
1. Andrew, C. W., Maier, V., Green, P. (2004). From

WER and RIL to MER and WIL: improved evaluation
measures for connected speech recognition. Proc. of
INTERSPEECH. 4 pages.

2. Android 4.2 http://www.android. com/whatsnew/

3. Android Developers. Tools: Andorid Debug Bridge.
Accessed April 13, 2012.
http://developer.android.com/guide/developing/tools/a
db.html.

4. Azenkot, S. and Zhai, S. (2012). Touch Behavior with
Different Postures on Soft Smart Phone Keyboards.
Proc. of MobileHCI’12. 251-260.

5. Bi, X., Chelba, C., Ouyang, T., Partridge, K., and Zhai,
S. (2012). Bimanual gesture keyboard. Proc. of
UIST’12. 137-146.

6. Damn You, Auto-Correct! http://www.damnyouauto
correct.com/. Accessed April 13, 2012.

7. Findlater, L., and Wobbrock, J.O. (2012). Personalized
input: improving ten-finger touchscreen typing through
automatic adaptation. Proc. of CHI ’12. 815-824.

8. Goodman, J., Venolia, G., Steury, K., and Parker, C.
(2002). Language modeling for soft keyboards. Proc.
AAAI ‘02, Menlo Park, CA, USA, 419-424.

9. Gunawardana, A., Paek, T., and Meek, C. (2010). Usa-
bility guided key-target resizing for soft keyboards.
Proc. IUI '10. ACM, New York, NY, USA, 111-118.

10. Kristensson, P.O. and Zhai, S. 2004. SHARK: a large
vocabulary shorthand writing system for pen-based
computers. Proc. of UIST ‘04. ACM Press: 43-52.

11. Lewis, J. R. (1992). Typing-key layouts for single-
finger or stylus input: initial user preference and
performance (Technical Report No. 54729). Boca
Raton, FL: International Business Machines
Corporation.

12. Lewis, J. R., Kennedy, P. J., & LaLomia, M. J. (1999).
Development of a Digram-Based Typing Key Layout
for Single-Finger/Stylus Input. Proceedings of The
Human Factors and Ergonomics Society 43rd Annual
Meeting.

13. Lewis, J. R., LaLomia, M. J., & Kennedy, P. J. (1999).
Evaluation of Typing Key Layouts for Stylus Input.
Proceedings of The Human Factors and Ergonomics
Society 43rd Annual Meeting.

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

551

14. Lewis, J. R., Potosnak, K. M., & Magyar, R. L. (1997).
Keys and Keyboards. In M. G. Helander, T. K.
Landauer & P. V. Prabhu (Eds.), Handbook of human-
computer interaction (2nd ed., pp. 1285-1315).
Amsterdam: Elsevier Science.

15. MacKenzie, I. S. and Soukoreff, R. W. (2002). A
Model of Two–Thumb Text Entry. In Proceedings of
Graphics Interface ’02, pp. 117–124.

16. MacKenzie, I. S. and Soukoreff, R. W. (2002). A
chracter-level error analysis technique for evaluating
text entry methods. In Proceedings of the 2nd Nordic
Conference on Human-Computer Interaction
(NordiCHI). Arhus, Denmark (Oct. 19–23). 243–24.

17. MacKenzie, I. S., and Soukoreff, R. W. (2003). Phrase
sets for evaluating text entry techniques. Proc. of CHI
EA ‘03, pp. 754-755. New York: ACM.

18. MacKenzie, I. S., and Tanaka-Ishii, K. (Eds.). (2007).
Text Entry Systems: Mobility, Accessibility,
Universality: Morgan Kaufmann Publishers.

19. MacKenzie, I. S., and Zhang, S. X. (1999) The design
and evaluation of a high-performance soft key-
board. Proceedings of the ACM Conference on Human
Factors in Computing Systems CHI '99, pp. 25-31.
New York: ACM.

20. The New York Times, iPhone Keyboard Secrets.
http://pogue.blogs.nytimes.com/2007/06/27/iphone-
keyboard-secrets/

21. Rick, J. (2010). Performance optimizations of virtual
keyboards for stroke-based text entry on a touch-based
tabletop. ACM UIST, 77-86.

22. Rudchenko, D., Paek, T., and Badger, E. (2011). Text
Text Revolution: A game that improves text entry on
mobile touchscreen keyboards. Proc. Pervasive ‘2011.

23. Rumelhart, D. E. and Norman, D. A. (1982), Simulat-
ing a Skilled Typist: A Study of Skilled Cognitive-
Motor Performance. Cognitive Science, 6: 1–36.

24. Wobbrock, J.O. (2007). Measures of text entry perfor-
mance. Chapter 3 in I.S. MacKenzie and K. Tanaka-
Ishii (eds.), Text Entry Systems: Mobility, Accessibil-
ity, Universality. San Francisco: Morgan Kaufmann,
pp. 47-74.

25. Wobbrock, J.O. and Myers, B.A. (2006). Analyzing
the input stream for character-level errors in uncon-
strained text entry evaluations. ACM Transactions on
Computer-Human Interaction 13 (4), pp. 458-489.

26. Zhai, S., Hunter, M., & Smith, B. A. (2002).
Performance optimization of virtual keyboards.
Human-Computer Interaction, 17(2,3), 89-129.

27. Zhai, S. and Kristensson, P.O. 2003. Shorthand writing
on stylus keyboard. Proc. of CHI ‘03. ACM Press: 97-
104.

28. Zhai, S. and Kristensson, P.O. Introduction to Shape
Writing (2006) IBM Research Report RJ10393
(A0611-006), November.

29. Zhai, S. and Kristensson, P.O. (2012). The word-
gesture keyboard: reimagining keyboard interac-
tion. Commun. ACM 55, 9 (September 2012), 91-101.

Session: Keyboards and Hotkeys CHI 2013: Changing Perspectives, Paris, France

552

http://pogue.blogs.nytimes.com/2007/06/27/iphone-keyboard-secrets/
http://pogue.blogs.nytimes.com/2007/06/27/iphone-keyboard-secrets/

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /PageByPage

 /Binding /Left

 /CalGrayProfile ()

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 524288

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo true

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Preserve

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 600

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 600

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages false

 /MonoImageDownsampleType /Average

 /MonoImageResolution 300

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects true

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ENU ()

 >>

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [612.000 792.000]

>> setpagedevice

