
Issues Related to Using Finger-Fitts law to Model
One-Dimensional Touch Pointing Tasks

Yu-Jung Ko
yujko@cs.stonybrook.edu

Department of Computer Science,
Stony Brook University

New York, USA

Hang Zhao
zhao8@cs.stonybrook.edu

Department of Computer Science,
Stony Brook University

New York, USA

IV Ramakrishnan
ram@cs.stonybrook.edu

Department of Computer Science,
Stony Brook University

New York, USA

Shumin Zhai
zhai@acm.org

Google, Mountain View
California, USA

Xiaojun Bi
xiaojun@cs.stonybrook.edu

Department of Computer Science,
Stony Brook University

New York, USA

ABSTRACT
Finger-Fitts law [6] is a variant of Fitts’ law which accounts for the
finger ambiguity in touch pointing. In this paper we investigated two
research questions related to Finger-Fitts law: (1) Should Finger-
Fitts law use nominal target width W or effect target width We to
model MT ? and (2) should Finger-Fitts law use a pre-defined value
(denoted by σa) or a free parameter (denoted by c) to represent the
absolute ambiguity caused by finger touch? Our investigation on
two touch pointing datasets showed that there are cases where using
nominal width has stronger model fitness, and also cases where
using effective width is better. Regarding the representation of finger
ambiguity, using a free parameter c to represent the ambiguity of
finger touch always leads to stronger model fitness than using the pre-
defined σa, after controlling for overfitting. It indicates that viewing
the finger ambiguity as an empirically determined parameter has
more flexibility to capture the ambiguity of finger touch involved in
the study. Overall, our research advances the understanding on how
to model Finger touch input with Finger-Fitts law.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and mod-
els; Pointing.
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1 INTRODUCTION
Among a number of finger-touch based interactions, pointing has
been a dominant input modality on mobile devices such as smart-
phones and tablets. Due to its prevalence, modeling touch pointing is
crucial in designing touch interfaces. Fitts’ law [13, 23] (Equation 1),
which relates the pointing movement time (MT ) to the relative pre-
cision of the tasks ( A

W ), is the most widely known pointing model.
However, despite its success in modeling pointing actions with a
mouse or stylus, Fitts’ law does not address the ambiguity caused by
finger touch, which is the widely recognized “fat finger” problem.
Hence, it cannot accurately model touch-based pointing.

MT = a+b log2(
A
W

+1). (1)

Finger-Fitts law (a.k.a FFitts law, Equation 2) [6] is a refinement
of Fitts’ law for modeling touch pointing:

MT = a+b log2
( A√

2πe(σ2 −σ2
a )

+1
)

= a+b log2
( A√

W 2
e −2πeσ2

a
+1

)
. (2)

Previous research [6, 34] has shown that Finger-Fitts law (Equa-
tion 2) can more accurately model finger-touch pointing than Fitts’
law, and has been used for modeling typing speed on soft key-
board [4], for developing a keyboard decoding algorithm [5], and
for modeling other touch interaction such as crossing [22].

The recent work of Ko et al. [20] indicates that the nominal target
width W (the width defined by the task parameter) can be used in
lieu of the effective target width We in Finger-Fitts law to model
touch pointing. Although the model proposed by Ko et al. [20] is
for 2D pointing (Equation 8 in [20]), for 1D pointing, their model
becomes the following form:

MT = a+b log2

( A√
W 2 − c2

+1
)
, (3)

where a, b, and c are all empirically determined parameters.
Compared to the original Finger-Fitts law (Equation 2), equation 3

has two changes: (1) the effective width We is replaced with the
nominal target width W , and (2) it uses a free parameter c rather than
a pre-defined σa to represent the ambiguity caused by finger touch.
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How would these changes influence the performance of models?
The understanding of this question would advance our knowledge of
touch modeling.

In this paper, we conducted a user study, and analyzed the pre-
viously reported data in [6], to answer two research questions re-
garding the determination of target width, and the representation
of finger ambiguity in Finger-Fitts law. The first question is which
target width should we use in Finger-Fitts law, nominal width W or
effective width We? The second question is how should the model
represent the absolute finger ambiguity, using the predefined σa from
separate calibration tasks (e.g., the task described in [6]) or treating
it as a free parameter estimated from data [20]?

Our investigation showed mixed results for using W vs. We: there
are cases where using nominal width is better than effective width
while there are cases that showed opposite results. Our study also
showed that using the free parameter c results in stronger model
fitness than using the pre-defined σa to represent the finger ambiguity,
after controlling for overfitting. Compared to pre-defined ambiguity
from the calibration task, the free parameter c offers more flexibility
to capture the uncertainty induced by the finger touch during the
study. Overall, our investigation advances the understanding of using
Finger-Fitts law to model touch pointing.

2 RELATED WORK
We review related work on (1) using Fitts’ law and its variants to
model pointing, and (2) modeling finger touch pointing with Finger-
Fitts law.

2.1 Modeling 1D pointing
As one of the best known theoretical foundations of HCI, Fitts’
law (Equation 1) [13, 23] has served as a cornerstone for interface
and input device evaluation [9, 23], interface optimization [21], and
interaction behavior modeling [11].

The beauty of the original Fitts’ law lies in its simplicity. It is a
pure task model of human pointing performance, in which all of the
model’s independent variables are a priori task parameters A and
W . For a given graphical object’s distance and size, for example,
designers can predict or estimate the average time it takes a user to
complete a pointing task at it.

One challenge of applying Fitts’ law is that a user might or might
not comply with the task precision defined by A/W when perform-
ing the tasks, causing over- or under-utilization of target width [35].
This is partly because a user may adopt different speed-accuracy
trade-off policies [3, 4, 16, 17, 24, 25, 33]. The way researchers have
addressed the varied degree of task compliance is to bend Fitts’ law
away from a pure task model towards a behavioral one by changing
an independent variable in the model from a task parameter W (tar-
get width) to "effective width", an a posterior quantity depending on
user’s behavior. First proposed by Crossman [12] and explored fur-
ther [23, 26, 32], the effective width adjustment method has shown
a stronger model fit if the observed error rates deviate from 4%. It
replaces the nominal target width W with the so-called effective

width We (i.e.,
√

2πeσ ), as shown in Equation 4.

MT = a+b · log2(
A√

2πeσ
+1) (4)

= a+b · log2(
A

We
+1), (5)

Controlled studies [35] showed that using We could partially but
not fully account for the subjective layer of a speed-accuracy trade-
off. Involving the posterior variable σ complicates Fitts’ law as a
predictive tool for design. Later in the next section, we explain in
detail that because the Fitts’ law with effective width adjustment
(Equations 4 and 5) is the basis of Finger-Fitts law [6]), the limitation
of involving a posterior variable also limits the predictive power of
Finger-Fitts law.

Another line of Fitts’ law research closely related to the current
work is about modeling small-sized target acquisition tasks. Previous
researchers [32] have proposed using W −c instead of We =

√
2πeσ

to adjust the target width in Fitts’ law, where c was an experimentally
determined constant attributed to hand tremor. The modified version
gave a good fit for both pencil-based [32] and mouse-based [10]
pointing tasks. Our research later shows that c-constant model could
serve as a simplification of the refined Finger-Fitts model, with
similar model fitness.

2.2 Modeling finger touch pointing
As finger touch has become the dominant input modality in mobile
computing, a sizable amount of research has been carried out to
understand and model the uncertainty in touch interaction. On a
capacitive touchscreen, a touch point is converted from the contact
region of the finger. This is an ambiguous and “noisy” procedure,
which inevitably introduces errors. Factors such as finger angle [18,
19] and pressure [15] may affect the size and shape of the contact
region, unintentionally altering the touch position. The lack of visual
feedback on where the finger lands due to occlusion (the “fat finger”
problem) further exacerbates the issue [18, 19, 27–29]. As a result,
it is hard to precisely control the touch position even with fine motor
control ability.

This “fat finger” problem, or the lack of absolute precision in
finger touch, presented a challenge to use Fitts’ law as a model for
finger touch-based pointing, because the only variable in Fitts’ law,
namely Fitts’ index of difficulty, log2(A/W + 1), is solely deter-
mined by the relative movement precision, or the distance to target
size ratio.

Bi, Li and Zhai [6–8] identified this challenge, and proposed
the Finger Fitts law [6] to address it. They derived their model by
separating two sources of end point variance - those due to the
absolute imprecision of finger touch (denoted by σa) and those due
to the speed-accuracy trade-off demonstrated in a pointing process
(denoted by σr

2). The end point variance caused by the imprecision
of finger touch (σa) is independent to the speed-accuracy trade-off
so it should be accounted for. They accounted for it by subtracting
σa

2 from the observed variance σ2, which led to Finger-Fitts law
(Equation 2). Following the notation of effective width We =

√
2πeσ
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(or 4.133σ ) [12, 26, 32], Finger-Fitts law (Equation 2) can be re-
expressed as Equation 6:

MT = a+b log2(
A√

We
2 −2πeσa2

+1). (6)

Later research [4, 6, 22, 34] showed that Finger-Fitts law was
successful in modeling touch interaction. For example, research
[4] showed it was more accurate than the typical Fitts’ law in es-
timating the upper bound of typing speed on a virtual keyboard.
Researchers [22] extended the Finger-Fitts law to the crossing ac-
tion with finger touch, which improved the model fitness (R2) from
0.75 to 0.84 over the original Fitts’ law. The recent work [20] ex-
tends Finger-Fitts law from 1D to 2D, which shows using nominal
target width and height is valid for modeling 2-dimensional touch
pointing. Complementary to the previous work [20], this work inves-
tigates modeling 1-dimensional target selection with nominal target
widths. We also compare effective width vs. nominal width while
the previous work [20] did not draw such a comparison.

As alluded to earlier, previous research on Finger-Fitts law is
mostly based on using the effective width We. Next, we describe
how we use the nominal width W in Finger-Fitts law (a.k.a the
Finger-Fitts-W model), and present a study comparing it with using
effective width and the typical Fitts’ law.

3 MODEL CANDIDATES FOR FINGER-FITTS
LAW

We have two options to represent the target width in Finger-Fitts law:
using the effective width or the nominal target width.

Additionally, there are two approaches of representing the finger
ambiguity. The first approach relies on the calibration task which
results in a pre-defined σa [6]. Another approach is to view the finger
ambiguity as a free parameter (denoted by c2) estimated from the
empirical data [20].

With two options of representing target width and two approaches
of representing finger ambiguity, we have four versions of Finger-
Fitts law:

• Finger-Fitts-We-σa model:

MT = a+b log2
( A√

W 2
e −2πeσ2

a
+1

)
. (7)

where a, b are empirically determined parameters, and σa is
a pre-defined value. We adopted the value proposed by Bi
et al. [6]: σa = 0.94mm for horizontal bar target, and σa =
1.5mm for circular targets.

• Finger-Fitts-W -σa model:

MT = a+b log2

( A√
W 2 −2πeσ2

a
+1

)
(8)

where a, b and σa are defined the same as the previous model.
• Finger-Fitts-We-c model:

MT = a+b log2
( A√

W 2
e − c2

+1
)
. (9)

where a, b, and c are all empirically determined parameters.
• Finger-Fitts-W -c model:

MT = a+b log2

( A√
W 2 − c2

+1
)

(10)

where a, b, and c are defined in the same way as in the previ-
ous model.

Additionally, we also include the typical Fitts’ law (Equation 1),
and the Fitts’ law with effective width (Equation 4) as another two
model candidates. Therefore, we have six models in total.

We carried out two studies to evaluate the finesses of these six
models on the horizontal bar and circular target pointing tasks, re-
spectively. Additionally, we also evaluated these models on the
previously reported data from Bi, Li, and Zhai [6].

4 EXPERIMENT 1: EVALUATION IN 1D
POINTING TASKS WITH HORIZONTAL
BARS

We first carried out a study to evaluate the proposed models in
horizontal bar selection tasks.

4.1 Participants and Apparatus
We recruited 23 subjects for an IRB approved study (7 females; aged
from 21 - 36). All of them were right-handed and daily smartphone
users. A Google Pixel C tablet with 2560x1800 resolution and 308
PPI were used throughout the experiment. Each participant was
instructed to perform the tasks on the tablet. They were instructed
to select the target with the index finger as fast and accurately as
possible.

(a) Experiment Setup (b) Targets (horizontal bars)

Figure 1: (a) A participant was doing the task. (b) A screenshot of the
task.

4.2 Design and Data Processing
4.2.1 Target Acquisition Task. We designed a within-subject recipro-
cal target acquisition task with horizontal bars with different widths
and distances between the bars. In this experiment, we applied a
similar 1-D shape in [6], horizontal bars, as our targets.

The study included 15 conditions with 5 levels (2, 4, 8, 12, 20
mm) of target height (W ) and 3 levels (24, 48, 80 mm) of distance
(A). The wide range of target height from 2 to 20 mm comprises
the most practical design of UI elements on mobile devices and
tablets. Each condition included 20 touches (19 trials, where the first
touches in each condition are considered the starting action) and the
condition would show up in random order. We have 23 (participants)
× 15 (conditions) × 10 (successful trials in one condition) = 3,450
successful trials in total.

At the beginning of each trial, two horizontal bars were displayed
on the touch screen. One starting bar colored in red and one in
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blue. The blue horizontal bar indicates the destination bar after
successfully touching the starting bar. The participant was instructed
to select the start bar to start the trial. Upon successfully selecting
the start bar, the colors of start and destination bars got swapped and
the participant was instructed to select the destination bar as fast
and accurately as possible. A successful sound would be played if
the target was successfully selected. Otherwise, a failure sound was
played. The elapsed time between the moment the user successfully
selected the start bar and the moment the user subsequently landed
down the touch point to select the destination bar was recorded as
the movement time of the current trial; the touch point for selecting
the destination bar was the location of the endpoint, regardless of
whether the touch point was within or outside the target boundary. If
the participant succeeded in selecting the destination bar, the colors
of the two circles were swapped again. This would be recorded as a
successful trial and move on to the next successful trial requirement
immediately. If the participant failed in selecting the destination
bar, she had to successfully select it again to start the next trial.
This setting ensured that in each trial the finger always starts from
somewhere within the starting bar, reducing the noise in measuring
A.

Heights (mm) MT Mean [SD] (s) Error rate

2 0.63 [0.16] 39.3%

4 0.54 [0.11] 18.1%

8 0.46 [0.11] 4.8%

12 0.42 [0.11] 2.1%

20 0.38 [0.11] 0.0%

Table 1: Movement time and error rates over different target widths

Distances (mm) MT Mean [SD] (s) Error rate

24 0.44 [0.13] 14.1%

48 0.51 [0.15] 15.5%

80 0.56 [0.16] 17.8%

Table 2: Movement time and error rates over different distances

4.2.2 Data processing. We pre-processed the data by removing
touch points that fell beyond 3 standard deviations to the target center.
In horizontal bar acquisition tasks, 100 out of 4,109 touch points
(2.4%) were removed as outliers. This results in 3,450 successful
trials out of 4,099 trials in total.

4.3 Results
4.3.1 MT and error rates across the condition. We observed move-
ment time and the error rates across different target widths and
distances (Table 1 and 2).

For movement times, a repeated measure ANOVA test showed
that both width W (F4,88 = 158.4, p< 0.001) and distance A (F2,44 =

69.38, p < 0.001) had a statistically significant effect. The interac-
tion effect of width and distance was also significant (F8,176 = 2.564,
p = 0.011). For error rates, a repeated measure ANOVA test showed
that width W had a significant effect (F4,88 = 122.5, p < 0.001), but
not distance A (F2,44 = 2.311, p = 0.111). The interaction effect of
width and distance was not significant (F8,176 = 1.569, p = 0.137).

We also evaluated if the participants were error-prone with smaller
targets. A pairwise t-test with Bonferroni correction showed that W
= 2, 4mm had a significant effect on error rates against the cases that
target width W = 8, 12, and 20mm, with p values significantly lower
than 0.05. These results concurred with the conclusion from other
research [6, 8]

4.3.2 Regression for MT vs. ID. Figure 2 shows the regression
results of MT vs. ID. As shown, the Finger-Fitts-W -c has the highest
R2 value (0.984) among all the test models, indicating its high model
fitness.

4.3.3 RMSE of MT Prediction. To increase the external validity
of the evaluation, we also examined the Root Mean Square Error
(RMSE) of MT prediction with cross validation. We conducted
leave-one-(A, W )-out cross validation and obtained the mean and
standard deviation [SD] of RMSE (Unit: Second) for Finger-Fitts-W ,
Finger-Fitts-We, Fitts’ law - We and Fitts’ law - W (Table 2).

4.3.4 Information Criteria. Information criteria [1, 2, 30, 31] have
been widely used to compare the quality of models because they
take into account the complexity of the model (i.e., the number of
free parameters). Commonly used information criteria include AIC
(Akaike Information Criterion), WAIC (Widely Applicable Infor-
mation Criterion) and BIC (Bayesian information criterion) [14],
all of which penalize the complexity of a model. In general, the
smaller the information criterion, the better the model is. We have
calculated multiple information criteria including AIC, WAIC, and
BIC (Table 3). As shown, the Finger-Fitts-W -c outperforms Finger-
Fitts-W -σa, Finger-Fitts-We-σa and Finger-Fitts-We-c, Fitts’ law -
W and Fitts’ law - We in these metrics.

4.3.5 Model Fitness. The result of all six models in the touch input
data we collected is shown in Table 3. Compared to the models with
effective width We (models #4 - #6), models using a free parameter c
to represent the finger touch ambiguity (model #1 - #3) lead to better
performance.

4.4 Model Fitness on Bi, Li, and Zhai’s Horizontal
Bar Pointing Data Set [6]

We also evaluated the fitness of all six models with the horizontal-bar
target acquisition data reported in Bi, Li, and Zhai’s paper [6]. As
shown in Table 4, in both nominal width W and effective width We
conditions, models using a free parameter c to represent the finger
touch ambiguity (models #3 and #6) lead to the best performance.
Comparing the model using W with its counterpart using We, the
results are mixed: there are situations where models with W are
better (e.g., models #1 vs. #4), and also situations where models
with We are better (e.g., models #2 vs. #5, and models #3 vs. #6).
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Figure 2: Horizontal Bar: MT vs. ID regressions for Fitts’ law, Fitts’ law with effective width, Finger-Fitts-W , and Finger-Fitts-We models. As shown,
Finger-Fitts-W with free parameter c model shows the best model fitness.

Model ID R2 RMSE [SD] AIC WAIC BIC Parameters

Nominal
Width W

#1 Fitts-W Eq. (1) log2(
A
W +1) 0.98 0.014 [0.003] -75.20 -77.58 -73.08 a = 0.231,b = 0.085

#2 Finger-Fitts-W -σa Eq. (8) log2(
A√

W2−2πeσ2a
+1) 0.983 0.013 [0.003] -78.11 -80.45 -75.98

a = 0.238,b = 0.082,
σ 2

a = 0.884

#3 Finger-Fitts-W -c Eq. (10) log2(
A√

W2−c2
+1) 0.984 0.013 [0.002] -79.31 -81.97 -77.18 a=0.244,b=0.079,

c2=1.54

Effective
Width We

#4 Fitts-We Eq. (4) log2(
A√

2πeσ
+1) 0.72 0.054 [0.011] -35.65 -39.00 -33.53 a = 0.096,b = 0.14

#5 Finger-Fitts-We-σa Eq. (7) log2(
A√

W2e −2πeσ2a
+1) 0.854 0.038 [0.01] -45.36 -48.59 -43.23

a = 0.076,b = 0.136,
σ 2

a = 0.884

#6 Finger-Fitts-We-c Eq. (9) log2(
A√

W2e −c2
+1) 0.923 0.027 [0.01] -55.07 -56.72 -52.94

a = 0.103,b = 0.117,
c2 = 23.38

Table 3: Horizontal Bar: The parameters, R2, RMSE of leave-one-(A,W )-out cross validation, and the information criteria AIC, WAIC and BIC of the
models. For the information criteria, the smaller the values, the more accurate the model prediction.

5 EXPERIMENT 2: EVALUATION IN 1D
POINTING TASKS WITH CIRCULAR
TARGETS

In addition to the 1D horizontal bar experiment, we carried out
a study with circular targets which has the same reciprocal target
acquisition setting as the horizontal bar experiment.

For this experiment, we recruited 14 subjects for an IRB approved
study (3 females; aged from 24 - 35). All of them were right-handed
and daily smartphone users. The participants practice the experi-
ment on the same apparatus and perform the tasks with the same
instruction as in the horizontal bar experiment.

In this experiment with circular targets, 15 conditions with 5 lev-
els (4, 6, 8, 10, 12 mm) of diameters (W ) and 3 levels (16, 28, 60
mm) of distance (A) were considered. It had two different movement
directions, which are vertical and horizontal movements. Each con-
dition included 20 touches (19 trials, where the first touches in each
condition are considered the starting action) and the condition would
show up in random order. Unlike the horizontal bar experiment, once
19 valid trials are operated, the experiment will move on to the next
non-repeated, randomly ordered condition. Except for this selection,
The acquisition task setting follows the one in the horizontal target
experiment. In total, We have 14 (participants) × 15 (conditions) ×
2 (directions) × 19 (trials) = 7,980 trials.
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Model ID R2 RMSE AIC WAIC BIC Parameters

Nominal
Width W

#1 log2(
A
W +1) 0.956 0.009 [0.001] -29.37 -33.17 -29.99 a = 0.25,b = 0.06

#2 log2(
A√

W 2−2πeσ2
a
+1) 0.946 0.010 [0.001] -28.37 -32.04 -28.99 a = 0.25,b = 0.06, σ2

a = 0.884

#3 log2(
A√

W 2−c2
+1) 0.956 0.009 [0.001] -29.37 -33.17 -29.99 a = 0.24,b = 0.06, c2 = 0

Effective
Width We

#4 log2(
A√

2πeσ
+1) 0.864 0.016 [0.003] -22.43 -26.28 -23.06 a = 0.08,b = 0.14

#5 log2(
A√

W 2
e −2πeσ2

a
+1) 0.958 0.009 [0.002] -29.17 -32.06 -29.79 a = 0.11,b = 0.12, σ2

a = 0.884

#6 log2(
A√

W 2
e −c2

+1) 0.961 0.009 [0.002] -29.36 -32.89 -29.99 a = 0.10,b = 0.12, c2 = 13.56

Table 4: Data of the horizontal bar experiment in FFitts law [6]: Prameters, R2, RMSE of leave-one-(A,W )-out cross validation, and the information
criteria AIC, WAIC and BIC of the models.

We pre-processed the data by removing touch points that fell
beyond 3 standard deviations to the target center. In circular acquisi-
tion tasks, 50 out of 7,980 touch points (0.63%) were removed as
outliers.

(a) Experiment Setup (b) Targets (Circular)

Figure 3: (a) A participant was doing the task. (b) A screenshot of the
task.

5.1 Results
5.1.1 MT and error rates across the condition. We observed move-
ment time and the error rates across different target widths and
distances (Table 5 and 6).

For movement times, a repeated measure ANOVA test showed
that both width W (F4,52 = 175.3, p < 0.0001) and distance A
(F2,26 = 320.7, p < 0.0001) had a statistically significant effect.
The interaction effect of width and distance was also significant
(F8,104 = 2.077, p < 0.05). For error rates, a repeated measure
ANOVA test showed that width W had a significant effect (F4,52 =
56.19, p < .0001), but not distance A (F2,26 = 1.443, p = 0.255).
The interaction effect of width and distance was not significant
(F8,104 = 1.965, p = 0.058).

A pairwise t-test with Bonferroni correction was used to evaluate
if the participants were error-prone with smaller targets. It showed
that the size of the targets with W = 4, 6mm had a significant effect
on error rates against the cases with target width W = 8, 10, and
12mm, where p values were significantly lower than 0.05.

5.1.2 Regression for MT vs. ID. Figure 4 shows the regression
results of MT vs. ID. As shown, the Finger-Fitts-W law with free

Diameters (mm) MT Mean [SD] (s) Error rate

4 0.50 [0.13] 24.9%

6 0.37 [0.13] 10.9%

8 0.31 [0.11] 6.4%

10 0.28 [0.10] 2.8%

12 0.25 [0.09] 1.1%

Table 5: Movement time and error rates over different target widths

Distances (mm) MT Mean [SD] (s) Error rate

16 0.26 [0.11] 8.2%

28 0.31 [0.12] 9.3%

60 0.45 [0.13] 10.0%

Table 6: Movement time and error rates over different distances

parameter c has the highest R2 value (0.986) among all the test
models, indicating its high model fitness. The results also showed
that Finger-Fitts-We model free parameter c and pre-defined σa
were better than the typical Fitts’ law - W and the Fitts’ law - We,
consistent with findings from previous work [6].

5.1.3 RMSE of MT Prediction. To increase the external validity
of the evaluation, we also examined the Root Mean Square Error
(RMSE) of MT prediction with cross-validation. We conducted
leave-one-(A, W )-out cross-validation and obtained the RMSE for
Finger-Fitts-W , Finger-Fitts-We, Fitts’ law - We and Fitts’ law - W .

5.1.4 Information Criteria. Similar to Experiment 1, we calculated
information criteria including AIC, WAIC, and BIC. As shown, the
Finger-Fitts-W law with free parameter c outperforms all other test
models in these metrics.

5.1.5 Model Fitness. The result of all six models in the touch input
data we collected is shown in Table 7. Finger-Fitts-W -c (model
#3) results in a better performance compared with its counterpart
using We (model #6). On the contrary, Finger-Fitts-We-σa (model
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Figure 4: Circular Target: MT vs.ID regressions for Fitts’ law, Fitts’ law with effective width, Finger-Fitts-W , and Finger-Fitts-We models. As shown,
Finger-Fitts-W with free parameter c model shows the best model fitness.

Model ID R2 RMSE [SD] AIC WAIC BIC Parameters

Nominal
Width W

#1 Fitts-W Eq. (1) log2(
A
W +1) 0.927 0.033 [0.008] -50.49 -52.98 -48.37 a =−0.012,b = 0.150

#2 Finger-Fitts-W -σa Eq. (8) log2(
A√

W2−2πeσ2a
+1) 0.941 0.029 [0.007] -54.18 -57.66 -52.06

a =−0.011,b = 0.147,
σ 2

a = 2.25

#3 Finger-Fitts-W -c Eq. (10) log2(
A√

W2−c2
+1) 0.986 0.014 [0.002] -75.68 -79.24 -73.55 a=0.022,b=0.122,

c2=11.506

Effective
Width We

#4 Fitts-We Eq. (4) log2(
A√

2πeσ
+1) 0.719 0.064 [0.012] -30.84 -33.94 -28.72 a =−0.049,b = 0.179

#5 Finger-Fitts-We-σa Eq. (7) log2(
A√

We−2πeσ2a
+1) 0.968 0.021 [0.004] -63.47 -67.11 -61.35

a =−0.109,b = 0.167,
σ 2

a = 2.25

#6 Finger-Fitts-We-c Eq. (9) log2(
A√

W2e −c2
+1) 0.969 0.02 [0.005] -64.18 -67.80 -62.06

a =−0.103,b = 0.163,
c2 = 39.36

Table 7: Circular Target: The parameters, R2, RMSE of leave-one-(A,W )-out cross validation, and the information criteria AIC, WAIC and BIC of the
models. For the information criteria, the smaller the values, the more accurate the model prediction.

#5) performs better than Finger-Fitts-W -σa (model #3). Compared
to Fitts’ law - We (model #4), Fitts’ law - W (model #1) leads to
better model fitness.

5.2 Model Fitness on Bi, Li, and Zhai’s Circular
Pointing Data Set [6]

We also evaluated the fitness of all six models in the touch input data
reported in Bi, Li, and Zhai’s paper [6] as in tasks with horizontal
bars. As shown in Table 8, models #3 and #6, which use a free
parameter c to represent the finger touch ambiguity result in the
best performance. Similar to the tasks with horizontal bars, the
comparison between using We vs. using W generates mixed results:

there are situations where models with W are better (e.g., models #1
vs. #4), and also situations where models with We are better (e.g.,
models #2 vs. #5, and models #3 vs. #6).

6 GENERAL DISCUSSION
Representing finger ambiguity with a free parameter c leads to
stronger model fitness than using a pre-defined σa. The results
from our user studies and investigation on Bi, Li, and Zhai’s [6]
both show that representing finger ambiguity with a free parameter
c leads to stronger model fitness than using a pre-defined σa. The
models with parameter c all have stronger model fitness than their
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Model ID R2 RMSE AIC WAIC BIC Parameters

Nominal
Width W

#1 log2(
A
W +1) 0.849 0.015 [0.000] -23.23 -27.02 -23.86 a = 0.29,b = 0.05

#2 log2(
A√

W 2−2πeσ2
a
+1) 0.789 0.018 [0.001] -21.52 -25.38 -22.15 a = 0.32,b = 0.04, σ2

a = 2.25

#3 log2(
A√

W 2−c2
+1) 0.849 0.015 [0.000] -23.23 -27.02 -23.86 a = 0.29,b = 0.05, c2 = 0

Effective
Width We

#4 log2(
A√

2πeσ
+1) 0.791 0.017 [0.003] -21.28 -25.02 -21.91 a = 0.15,b = 0.14

#5 log2(
A√

W 2
e −2πeσ2

a
+1) 0.949 0.008 [0.001] -29.64 -33.51 -30.27 a = 0.16,b = 0.10, σ2

a = 2.25

#6 log2(
A√

W 2
e −c2

+1) 0.968 0.006 [0.002] -32.56 -36.39 -33.19 a = 0.13,b = 0.12, c2 = 34.39

Table 8: Data of the circular target experiment in FFitts law [6]: Parameters, R2, RMSE of leave-one-(A,W )-out cross validation, and the information
criteria AIC, WAIC and BIC of the models.

counterparts with predefined σa, after controlling for overfitting (e.g.,
cross-one-(A,/w)-out cross-validation.)

The implication of representing finger ambiguity with free param-
eter c is that σa may differ across task contexts, and treating it as a
free parameter would provide more flexibility in modeling. It also
addresses a potential problem which is that it leaves the equation
undefined if W <

√
2πeσa. However, this formulation induces the

drawback that it introduces an extra free parameter c to the model.
Nominal width vs. effective width. Our evaluation shows mixed

results of nominal width vs. effective width. In the circular target
selection task in our user study, model #5 (with We) outperformed
its counterpart of using W (model #2). However, for other model
candidates, using nominal target widths outperformed their coun-
terparts of using effective target width. The evaluation on Bi, Li,
and Zhai’s [6] shows models #5, and #6 which used effective width
outperformed their counterparts of using nominal target width. How-
ever, model #1 which used nominal target width outperformed model
#4 which used effective target width.

These mixed results show that both nominal and effective target
widths are valid representations of target widths in Finger-Fitts law.
There is no clear winner of these two approaches. Although the
original Finger-Fitts law [6] used the effective target width, it is still
valid to use nominal target width to model touch pointing behaviors.
Replacing We with W also has a physical meaning. The We represents
the observed variance in the endpoint distribution, which is the actual
endpoint variability a user exhibits. In contrast, W 2 represents the
endpoint variability allowance specified by the task parameter, which
is the variability allowance a user is supposed to consume.

7 CONCLUSIONS
We investigate two issues related to modeling touch pointing tasks
with Finger-Fitts law: (1) Should nominal or effective target width be
used?, and (2) should the ambiguity of finger touch be represented
by a pre-defined σa or by a free parameter c estimated from user
data?

Our investigation shows that both nominal and effective widths
could be used to model touch pointing. There is no clear winner
between them: there are cases where using nominal width is better
than effective width while there are cases that showed the opposite
results.

Regarding the representation of the finger ambiguity, models us-
ing free parameter c lead to stronger model fitness than using the pre-
defined σa to interpret the finger ambiguity after controlling for the
overfitting (e.g., performing leave-one-(A,W )-out cross-validation).
With the free parameter c, the model can more accurately reflect the
uncertainty introduced by the finger touch in the study. In sum, our
investigation deepens the understanding of how to use Finger-Fitts
law to model touch pointing.
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