
Extending Tabled Logic Programming with

Multi-Threading: A Systems Perspective

Rui Marques
CITI, Dep. Informatica FCT, Universidade Nova de Lisboa

Terrance Swift
CENTRIA Universidade Nova de Lisboa

José Cunha
CITI, Dep. Informatica FCT, Universidade Nova de Lisboa

1

Overview

• What would we like to make multi-threaded?

– Tabled negation (WFS + residual program)

– Call variance vs. Call subsumption

– Answer variance vs. Answer subsumption

– Tabled constraints

– Incremental tabling

– Space reclamation

• How far have we gotten?

– Thread Private Tables in XSB

– Thread Shared Tables in XSB

∗ The effect of Local and Batched Evaluation

2

Goals for Multi-Threaded XSB

• Support multi-threading ISO/IEC DTR 13211–5:2007

• Any tabling function should be available to any active
thread using tables that are private to a thread.

• Any tabling function should be available to any active
thread using tables that are shared among threads.

• Private tables should be highly scalable up to the number
of cores available.

• For problems that support both tabling and parallelism,
shared tables should be able to provide speedup propor-
tional to the number of cores available

• MT-TLP can be used by others for real work

These goals are ambitious and not yet fulfilled!

3

Benchmarking Tabling

• Paucity of good tabling benchmarks

– Some (e.g. graph reachability) test well parts of an engine, but

don’t have a realistic mixture of tabled and non-tabled code

– Others for analysis and model-checking test only definite programs

• We introduce some new benchmarks based on reachability in Petri or

workflow nets

– Reachability is a central problem for Petri Net analysis, to which

problems such as liveness, deadlock-freedom, and the existence of

home states can be reduced.

• The following slide illustrates the entire program for 1-safe (elemen-

tary) Petri Nets as a tabled definite program

– Configuration is maintained as a ordered set of terms (terms differ

for elementary nets, place-transition nets, color nets, preference

nets, etc.)

• A definite program for analyzing workflow nets is approximately twice

the size.

– The program supports nearly all standard workflow control pat-

terns in (van der Aalst, ter Hofstede, 2003). This includes splits,

synchronized merges, discriminators, cancellation, etc.

• All benchmark code can be found in CVS mttests module of XSB

on sourceforge.net.

4

Tabling: Definite Programs

% Prolog representation of the Producer-Consumer Net

:- index(trans/2,trie).

trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).

trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

% Program to determine reachability of an elementary net

:- table reachable/2.

reachable(InConf,NewConf):-

reachable(InConf,Conf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):-

hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-

get_trans_for_conf(Conf,AllTrans),

member(Trans,AllTrans),

apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-

get_trans_for_conf_1(Conf,Conf,Trans),

flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).

get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-

findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),

check_concession(Trans,Conf,Trans1),

get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).

check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-

ord_subset(In,Input),

ord_disjoint(Out,Input),!,

check_concession(T,Input,T1).

check_concession([_Trans|T],Input,T1):-

check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-

ord_subtract(Conf,In,Diff),

flatsort([Out|Diff],Temp),

5

Tabled Negation

• Well-founded negation (WFS) can be used

– to compute inheritance in object-logics (e.g. Flora,
CDF)

– to code preferences (e.g. Preference Logic Grammars)

– to compute a residual program to be sent to an ASP
solver (e.g. XASP/Smodels)

• For the Workflow Net example, WFS can be used to ensure
that a transition T is taken from a configuration C only
if no other transition is preferred to T for C.

– Lookaheads from a given state can be performed

– Preferences can be added to a workflow in a modular
way, to support local policies or requirements

hasTransition(Conf,NewConf):-

get trans for conf(Conf,AllTrans),

member(Trans,AllTrans),

sk not(unpreferred(Trans,AllTrans,Conf)),

apply trans to conf(Trans,Conf,NewConf).

6

Answer Variance vs. Answer Subsumption

• For calls, subsumption is useful on the partial order (lattice) of terms.

• For answers, this is not usually very useful, but other partial orders

or lattices are:

– Interval [0,1] for fuzzy sets

– Lattice of uncertainty intervals in Dempster-Schaeffer inference

– Lattices for paraconsitent logics

– Monotonic recursive aggregates (min, max)

– Comparing abductive solutions

• Example. Naive reachability for Place/Transition Nets may not ter-

minate. Instead, a technique called ω-abstraction must be used. A

place marked with ω indicates that it may contain any number of

tokens.

• In XSB, the left-recursive reachable/2 predicate is rewritten as:

reachable(InConf,NewConf):-

filterPOA(reachable(InConf),Conf,gte omega,omega abstr,call abstr),

hasTransition(Conf,NewConf).

filterPOA/5 calls reachable(InConf,-ConfTemp) and succeeds

if there is no answer for the table (returning Conf) or if Conftemp is

greater than any element in the table for reachable(InConf,-ConfTemp)

that has key reachable(Conf,). ConfTemp may be abstracted by

omega abstr/2 and before returning it as Conf.

7

Tabled Constraints

• Many Constraint Logic Programs do not benefit from tabling, as the

logic program is used primarily to set up the constraints.

• Tabling can help search through a state space where the states can

be labelled with constraints.

– Examples in natural language analysis, program analysis, verifi-

cation, ILP

• In XSB, attributed variables are copied into and out of tables as any

other term

• Need to handle constraint interrupts before accessing the table for a

tabled subgoal or answer

• Example. Constraints can encode a type of Colored Petri net. Rather

than collecting tokens, a transition collects constraints until the con-

straint set entails a formula (and does not fire otherwise). Once it

fires, new constraints may be applied to the resulting configuration.

apply trans to conf(trans(In,Entailment,Out),Conf,NewConf):-

unify for entailment(In,Conf,MidConf),

entailed(Entailment),

call new constraints(Out,OutPlaces),

flatsort([OutPlaces|MidConf],NewConf).

unify for entailment/3 simply unifies variables in the transition with those of the configuration

to produce a constraint store for entailment checking.

8

Call Variance vs. Call Subsumption

• When should a tabled subgoal reuse a table and when
should it create a new one?

• The most common approach is call variance which uses
a table if a table exists whose subgoal is a variant of a
selected subgoal

– E.g. the subgoal p(X,a,X) can use the table for p(Y,a,Y)

• Call subsumption is useful for computing fixed-points of
programs, e.g. program analysis, RDF inferences, certain
types of deductions in OWL (e.g. OWL wine example).

– E.g. the subgoal p(X,a,X) can use the table for p(Y,a,Z)

9

Incremental Tabling

• Answers for a tabled subgoal may depend on dynamic facts
used in the derivation of the answers. When these facts
change, the answers may become invalid.

– Incremental tabling provides automatic recomputation
of answers as dynamic facts are asserted or retracted.

– Useful for maintaining graphical views of an underlying
logical model. For instance, user interfaces driven by
Interprolog/XJ or deductive spreadsheets.

10

Table management and space reclamation

• Tables can be explicitly abolished (truncated), and are
implicitly abolished when a declaring the tabled predicates
is reconsulted.

– Tables can be abolished at the subgoal or predicate
level. In addition, all tables for predicates in a given
module can be abolished, as well as all tables present
in the system.

– Space for abolished tables may not be immediately re-
claimable if there are choice points that will backtrack
through these tables. In XSB, garbage collection is
performed at the subgoal and predicate level.

– When well-founded evaluation creates a residual pro-
gram (with clauses) deleting a single table could lead
to dangling pointers. E.g. if a residual clause were
p(a):- tnot(q(b)), deleting the subgoal q(b) or
the predicate q/2 may lead to dangling pointers in the
table for p(a). In such a case, XSB will perform a
cascading abolish that also abolishes q(a), and so on.

– YAP allows automatic reclamation via a least-recently-
used algorithm.

11

MT-TLP: Private Tables

• Private tables are suitable to ensure query completeness
or to support a particular semantics (WFS, GAPs, Pref-
erence Logics).

• Private tables use sequential tabling algorithms, but with
thread-safe code. They generally require no synchroniza-
tion above the level of memory management.

• Each thread can access the residual program for its private
tables

– Each thread must be able to reclaim its own table space
upon exit or explicit abolish (including delay listes, etc.
to support WFS)

– Must ensure that memory allocation for table space
data structures is efficient

12

MT-TLP: Summary of Private Table

Functionality

Feature Private Tables
Tabled constraints Supported
Answer subsumption Supported
Tabled Dynamic Code Supported
Tabled negation Supported
Space reclamation Supported
Call subsumption Supported
Incremental recomputation “Almost” supported
XASP (Residual Program → Smodels) “Almost” supported

Goal: Any tabling function should be available to any ac-

tive thread using tables that are private to a thread. is
“almost” supported.

13

Private Table Performance

N. threads 1 2 Overhead 4 Overhead

Elementary Net 5.94 6.23 4.8% 6.25 5.2%

Dynamic Elementary Net 6.03 6.03 0% 6.03 0%

Workflow Net 19.21 19.68 2.4% 19.95 3.8%

Omega Net 7.18 8.33 16.0% 10.3 46.0%

Omega Net Specialized 6.37 6.37 0% 6.37 0.0%

Constraint Net 2.75 2.84 3.2% 2.85 3.6%

Preference Net 3.74 3.77 0.8% 3.82 2.1%

Call Subsumption .86 1.04 20.0% 1 43%

• Elementary Net uses tabled definite programs for Petri Net reachablilty; Dynamic

Elementary Net is the same, but uses dynamic clauses. Workflow Net uses
definite programs to test workflows.

• Constraints Net tests the constraint-based colored Petri nets, and Preferences

Net tests extension for well-founded preferences.

• Omega Net tests ω-abstraction using answer subsumption. filterPOA/5 relies
on call/N, which accesses XSB’s shared predicate table, causing poor perfor-
mance. A specialized version, Omega Net Specialized avoids this problem

• Call Subsumption tests an unbound call to right recursion over a graph. Its
poor scalability is apparently due to high demands for memory management

• Goal: Private tables should be highly scalable up to the number of cores avail-

able is mostly satisfied (for 4 cores), although more work needs to be done on

call subsumption.

14

Scheduling: Local Evaluation

• Local Evaluation: Completely evaluate each mutually de-
pendent set of subgoals before returning an answer to a
subgoal not in that set.

6. p(1,Y) <- p(2,Y) 19. p(1,Y) <- p(3,Y) 5. p(1,3) <-

1. p(1,Y) <- p(1,Y)

7. p(2,Y) <- p(2,Y)

18. p(1,3) <- 20. Fail

17. Fail

10. p(2,3) <-

9. p(2,Y) <- a(2,Y)8. p(2,Y) <- p(2,Z),p(Z,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

4. p(1,2) <-

11. p(2,Y) <- p(3,Y)

14. p(3,Y) <- a(3,Y)13. p(3,Y) <-
p(3,Z), p(Z,Y)

12. p(3,Y) <- p(3,Y)

16. Fail 15. Fail

:- table p/2.

p(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- a(X,Y).

a(1,2). a(1,3). a(2,3).

15

Local Evaluation: Example

sgi(X,Y)(D) :- arc(X,Y).

sgi(X,Y)(D) :-

arc(X,Z), subsumes(min)(sgi(Z,Z1),D1),

arc(Y,Z1), D is D1+1.

6

.

.
.
.
.

21

43

n−2n−3

0

5

n−1 n

.

• Time for ?-p(bound,free) is linear in edges for Local
Evaluation, Linear in size of paths for Batched Evaluation

16

Scheduling: Batched Evaluation

• Batched Evaluation: Return an answer to parent environ-
ments as soon as it is derived.

20. Fail

1. p(1,Y) <- p(1,Y)

3. p(1,Y) <- a(1,Y)

4. p(1,2) <- 5. p(1,3) <-

2. p(1,Y) <- p(1,Z), p(Z,Y)

19. p(1,Y) <- p(3,Y)6. p(1,Y) <- p(2,Y)

11. p(1,3) <-

13. p(3,Y) <- p(3,Y)7. p(2,Y) <- p(2,Y)

15. p(3,Y) <- a(3,Y)14. p(3,Y) <- p(3,Z),p(Z,Y)

12. p(2,Y) <- p(3,Y) 10. p(2,3) <-

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y)

17. Fail 16. Fail

18. Fail

:- table p/2.

p(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- a(X,Y).

a(1,2). a(1,3). a(2,3).

17

Scheduling Strategies

• Answer Subsumption Local Evaluation is superior as only optimal

answers are returned out of a maximal SCC.

• Negation Local Evaluation can be more efficient for non-stratified

negation as it may allow delayed answers that are later simplified

away to avoid being propagated.

• Time to first answer Batched Evaluation is faster, because it returns

answers out of an SCC eagerly.

• Time for left recursion Batched Evaluation is somewhat faster than

Local Evaluation for left recursion as Local Evaluation imposes over-

head to prevent answers from being returned outside of an indepen-

dent SCC.

• Stack space Local Evaluation often requires less space than Batched

Evaluation as it fully explores a maximal independent SCC, completes

the SCC’s subgoals, reclaims space, and then moves on to a new SCC.

• Call subsumption Local Evaluation can be faster than Batched Eval-

uation, as subsumed calls may make use of completed subsuming ta-

bles.

• Scope for Parallelism Batched Evaluation allows one thread to

consume answers as they are produced by another thread

18

Shared Table Functionality for Local Evaluation

Feature Shared Tables (Local)

Tabled Dynamic Code Supported

Tabled constraints Supported

Answer subsumption Supported

Tabled negation Supported

XASP (Residual Program → Smodels) “Almost” supported

Space reclamation Partially Supported

Call subsumption Not supported

Incremental recomputation Not supported

• The generality of Concurrent Local SLG means that it can support most
tabling functionality

• Full space reclamation for abolished tables is not yet fully supported because
of lack of resources to implement a table garbage collector in a multi-threaded

environment.

• Further work needs to be done to extend Concurrent Local SLG to call sub-
sumption and to assess its efficiency.

• Incremental recomputation is difficult for shared tables, since each thread that
is using a table must maintain its view of the table throughout a query

19

Shared Tables: Efficiency of Concurrent Local

SLG

N. threads 1 2 Speedup 4 Speedup

Shared Elementary 25.12 13.00 1.93 6.55 3.83

Shared Dynamic Elemtary 24.8 13.02 1.90 6.59 3.76

Shared Workflow 41.25 20.78 1.98 10.58 3.89

Shared Omega 19.58 10.38 1.88 5.57 3.51

Shared Constraint 11.13 5.56 2.00 2.83 3.93

Shared Preferences 3.73 1.86 1.99 0.95 3.92

• Speedup is based on partitionable search space

• Overhead of shared tables over private tables is about 10-
40%‘ depending on benchmark and platform

• Overheads are mostly due to handling mutual exclusion for
tables and to memory allocation. Further work is needed
in these areas.

20

Shared Tables: Batched Evaluation

• For Concurrent Batched Evaluation, if one thread calls an
(incomplete) table owned by another thread, it backtracks
through the existing answers, rather than suspending

• This fixes Producer/Consumer example, and is all you
need unless two threads own subgoals in the same SCC

• When there are intra-SCC dependencies among threads,
Concurrent Batched Evaluation is a generalization of Se-
quential Batched Evaluation.

• In a sequential (or thread-private) computation, when the
engine backtracks to the oldest subgoal in an SCC, it
schedules the return of unconsumed answers for each con-
suming node in the SCC by creating a chain of choice
points, and then backtracks into the newly created chain.

21

Shared Tables: Batched Evaluation

In a concurrent computation, let S be an SCC with subgoals
owned by different threads

• Suppose a thread T1 computing subgoals in S backtracks
to the oldest subgoal that it “owns” in S.

• If another thread computing S is active, T1 will suspend
and will be wakened when a thread performs batched
scheduling for S;

• Tf T1 is the last unsuspended thread computing subgoals
in S, T1 itself will perform a fixed point check and batched
scheduling and awaken the other threads computing S —
either to return further answers or to complete their tables.

• As implemented in XSB, Concurrent Batched Evaluation
thus allows parallel computation of subgoals, but has a se-
quential fixpoint check that synchronizes multiple threads
when they compute the same SCC.

22

Shared Table Functionality for Batched

Evaluation

Feature Shared Tables (Batched-β)
Tabled Dynamic Code Supported
Tabled constraints Supported
Answer subsumption Supported
XASP (Residual Program → Smodels) “Almost” supported
Tabled negation Partially Supported
Space reclamation Partially Supported
Call subsumption Not Supported
Incremental recomputation Not Supported

• Unlike Concurrent Batched Evaluation, Concurrent Local
Evaluation only supports LRD-stratified programs.

• Currently adjusting heuristics to coordinate behavior be-
tween threads

23

Goals for Multi-Threaded XSB

• Support multi-threading ISO/IEC DTR 13211–5:2007

– Almost complete

• Any tabling function should be available to any active
thread using tables that are private to a thread.

– Almost complete

• Any tabling function should be available to any active
thread using tables that are shared among threads.

– Partly achieved under Local Evaluation

• Private tables should be highly scalable up to the number
of cores available.

– Mostly achieved, at least for small number of cores

• For problems that support both tabling and parallelism,
shared tables should be able to provide speedup propor-
tional to the number of cores available

– Mostly achieved under Local Evaluation, at least

for small number of cores

• MT-TLP can be used by others for real work

– Still trying, but parts ready for real work with im-

plementor participation

24

