
Multi-Threaded Tabled Logic Programing in
XSB

Terrance Swift
CENTRIA

Joint Work with Rui Marques and José Cunha
CITI

Summary of CICLOPS 08 paper, plus Concurrent and Local

Evaluation of Normal Program (ICLP 08).

1

Overview

• A review of common features in multi-threaded Prologs

• A review of tabling features in XSB

– Scheduling, variance vs subsumption, negation, con-
straints, space reclamation

• Multi-threaded tabling features in XSB

• Algorithms for shared multi-threaded tables

2

Multi-threaded Prolog

• Several Prologs support multi-threading including Ciao,
SWI, YAP, XSB, and others.

• In XSB, the Prolog-level support is fairly typical and con-
sists of:

– Thread-shared static code

– Private execution stacks, including Prolog’s heap

∗ Note difference from Java

– Shared atom tables, streams, sockets, etc.

∗ Note difference from Erlang

– Dynamic code that can be thread-private or thread-
shared

– One “main” thread and zero or more created threads

∗ SWI allows console thread to be switched

– An API for thread creation, synchronization and com-
munication

3

ISO Multi-threading API
Thread Operations

YAP, SWI and XSB support a core API that is now in an ISO draft. Its

semantics is based on pthreads, although Prolog threads are much more

heavy-weight than pthreads.

• thread create(#Goal,-ThreadId,+Options) creates a thread to

execute Goal. Aliases, exit handlers, etc can be associated with the

thread.

– SWI allows a time-out value for threads (in XSB... soon)

• thread join(+ThreadIds,-ExitTerms) waits for a set of threads

to exit, and unifies ExitTerms with a list of terms indicating whether

the goal succeeded, failed, explicitly exited or threw an error term

• Cancelling threads is easier for the user in Prolog than in C. Cancel-

lation is implemented as a virtual machine interrupt if the thread is

running, or as a signal handler on blocking operations.

– XSB currently allows cancellation during message queue opera-

tions and sleep

• One Prolog thread can signal another by giving it a signal goal to

execute. The signalled thread suspends its current goal, executes the

signal goal, and then returns to the goal it has been executing (unless

the signal goal exits).

• The state of each running or joinable thread can be obtained via

thread property/2. (No guarantee of consistency.)

4

ISO Multi-threading API
Communication and Synchronization

• Mutexes can be dynamically created or destroyed

– Mutexes can be explicitly locked, unlocked, and tried.

– The safest use of mutexes is with mutex(+Mutex,?Goal).
This predicate locks Mutex, executes Goal determinis-
tically; Mutex is unlocked when Goal succeeds, exits,
or fails.

– A thread is guaranteed to release its mutexes when it
exits (even if cancelled or if it throws an error)

– The state of each mutex can be obtained via mutex property/2

• Message queues can also be dynamically created or de-
stroyed

– Message queues contain non-ground Prolog terms; read-
ers can query a message queue for unification

– Public message qeueus can have multiple writers and
readers. Each thread also has its own private message
queue that only it can read from (and its own private
signal queue).

– The state of each message queue can be obtained via
message queue property/2

5

Multi-threaded Prologs: Summary

• ISO draft is just a start

– Needs to incorporate certain language constructs of
Ciao, Erlang and other systems

– Needs to consider more fully the ramifications of multi-
threading on existing Prolog constructs

∗ E.g. what should abolish/1 mean in an MT con-
text? What sort of consistency should be supported
for a given threads computation?

∗ Should MT-Prolog behave like C, where anything
goes? Or like Oracle, where data (and other) consis-
tency is ensured, regardless of the number of users?

∗ Logtalk was an early adapter of MT-Prolog, and
has uncovered numerous bugs in all MT-Prologs;
Logtalk also pioneered programming of simple and-
and or- parallelism using multi-threading

• MT-TLP is even newer. It has received less use and less
feedback than MT-Prolog (which is also new).

6

Tabling: Definite Programs

• Tabling can affect the termination and complexity of a
program, as well as making programs more “declarative”.

• Tabling is supported at some level by XSB, YAP, B-Prolog,
ALS, Mercury, Ciao, and other Prologs. All of these sup-
port at least definite programs.

• Algorithms differ in how environments are suspended and
resumed (e.g. shared environments (SLG-WAM: XSB,
YAP), copied environment (Call Contiuation: Ciao; CAT:
Mercury), recomputed environments (ALS, B-Prolog).

• Table storage mechanisms may differ between systems.
Many are based on tries (XSB, YAP, Ciao and others)

• Systems implement batched scheduling, local scheduling
or other scheduling mechanisms.

• In XSB, dynamic clauses for a predicate can be tabled just
as static code

7

Tabling

For most types of tabling there will be an example for an-
alyzing Petri-like nets. Reachability is illustrated, but path
derivation could also be used.

• Reachability is a central problem for Petri Net analysis, to
which problems such as liveness, deadlock-freedom, and
the existence of home states can be reduced.

• The following slide illustrates the entire program for 1-safe
(elementary) Petri Nets as a tabled definite program

– Configuration of a Net is maintained as a set of terms
(terms differ for elementary nets, place-transition nets,
color nets, preference nets, etc.)

• A definite program for analyzing workflow nets is approxi-
mately twice the size. Te program supports nearly all stan-
dard workflow control patterns in (van der Aalst, ter Hof-
stede, 2003). This includes splits, synchronized merges,
discriminators, cancellation, etc.

• Nets thus provide a good example of how TLP can be
declarative. Code can be found in CVS mttests module
of XSB on sourceforge.net.

8

Tabling: Definite Programs

% Prolog representation of the Producer-Consumer Net

:- index(trans/2,trie).

trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).

trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

% Program to determine reachability of an elementary net

:- table reachable/2.

reachable(InConf,NewConf):-

reachable(InConf,Conf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):-

hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-

get_trans_for_conf(Conf,AllTrans),

member(Trans,AllTrans),

apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-

get_trans_for_conf_1(Conf,Conf,Trans),

flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).

get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-

findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),

check_concession(Trans,Conf,Trans1),

get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).

check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-

ord_subset(In,Input),

ord_disjoint(Out,Input),!,

check_concession(T,Input,T1).

check_concession([_Trans|T],Input,T1):-

check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-

ord_subtract(Conf,In,Diff),

flatsort([Out|Diff],Temp),

9

Tabled Negation

• Tabling can be used to compute the 3-valued well-founded semantics

• Used to compute inheritance in object-logics (e.g. Flora, CDF)

• Used to code preferences (e.g. Preference Logic Grammars)

– Use of prefernce Logic Grammars reduced the size of an industry

data “standardizer” by 500%

• Used to compute a residual program to be sent to an ASP solver.

– An Smodels interface is supported by the XSB package XASP

• For the Workflow Net example, well-founded negation can be used to

ensure that a transition T is taken from a configuration C only if no

other transition is preferred to T for C.

– Lookaheads from a given state can be performed

– This allows preferences to be added to a workflow in a modular

way, to support local policies or requirements

– 1-line change in previous program

hasTransition(Conf,NewConf):-

get trans for conf(Conf,AllTrans),

member(Trans,AllTrans),

sk not(unpreferred(Trans,AllTrans,Conf)),

apply trans to conf(Trans,Conf,NewConf).

• CENTRIA researchers are the leaders in using TLP negation for AI

applications

10

Call Variance vs. Call Subsumption

•When should a tabled subgoal reuse a table and when
should it create a new one?

• Two terms are variants if they are identical up to vari-
able names – if their mgu consists only of substitutions of
variables for variables. E.g. p(X,Y,Y) and p(A,B,B)

• A term T1 subsumes a term T2 if T1 is more “general” than
T2 – if the an mgu of T1 and T2 consists only of bindings
to variables in T1. E.g. p(X,Y,Z) and p(a,B,B)

• Most tabling systems use call variance, which uses a table
if a table exists whose subgoal is a variant of a selected
subgoal

• Call subsumption is useful for computing fixed-points of
programs, e.g. program analysis, RDF inferences, certain
types of deductions in OWL (e.g. OWL wine example).

• Call subsumption could be performed over any partial or-
der. For instance, on the ordering of the real numbers,
p(X):{X < 3} subsumes p(X):{X < 2}.

– At the engine level, XSB supports call subsumption
only for the partial order (lattice) of terms.

– In 3.1 call subsumption works only for lrd-stratified
programs; 3.2 will have call subsumption for full WFS

11

Answer Variance vs. Answer Subsumption

• For calls, subsumption is useful on the partial order (lattice) of terms.

• For answers, this is not usually very useful, but other partial orders

or lattices are:

– Interval [0,1] for fuzzy sets

– Lattice of uncertainty intervals in Dempster-Schaeffer inference

– Lattices for paraconsitent logics

– Monotonic recursive aggregates (min, max)

– Comparing abductive solutions

• Example. Naive reachability for Place/Transition Nets will not ter-

minate. Instead, a technique called ω-abstraction must be used. A

place marked with ω tokens indicates that it may contain any number

of tokens.

• In XSB, the left-recursive reachable/2 predicate is rewritten as:

reachable(InConf,NewConf):-

filterPOA(reachable(InConf),Conf,gte omega,omega abstr,call abstr),

hasTransition(Conf,NewConf).

filterPOA/5 calls reachable(InConf,-ConfTemp) and succeeds

if there is no answer for the table (returning Conf) or if Conftemp is

greater than any element in the table for reachable(InConf,-ConfTemp)

that has key reachable(Conf,). ConfTemp may be abstracted by

omega abstr/2 and before returning it as Conf.

12

Tabled Constraints

• Many Constraint Logic Programs do not benefit from tabling, as the

logic program is used primarily to set up the constraints.

• Tabling can help search through a state space where the states can

be labelled with constraints.

– Examples in natural language analysis, program analysis, verifi-

cation, ILP

• In XSB, attributed variables are copied into and out of tables as any

other term

• Need to handle constraint interrupts before accessing the table for a

tabled subgoal or answer

• Example. Constraints can be used to encode a type of Colored Petri

net. Rather than collecting tokens, a transition collects constraints

until the constraint set entails a formula (and does not fire other-

wise). Once it fires, new constraints may be applied to the resulting

configuration.

apply trans to conf(trans(In,Entailment,Out),Conf,NewConf):-

unify for entailment(In,Conf,MidConf),

entailed(Entailment),

call new constraints(Out,OutPlaces),

flatsort([OutPlaces|MidConf],NewConf).

unify for entailment/3 simply unifies variables in the transition with those of the configuration to

produce a constraint store for entailment checking.

13

Incremental Tabling

• Answers for a tabled subgoal may depend on dynamic facts
used in the derivation of the answers. When these facts
change, the answers may become invalid.

– Incremental tabling provides automatic recomputation
of answers as dynamic facts are asserted or retracted.

– Useful for maintaining graphical views of an underlying
logical model. For instance, user interfaces driven by
Interprolog/XJ or deductive spreadsheets.

14

Table management and space reclamation

• Tables can be explicitly abolished (truncated), and are
implicitly abolished when a declaring the tabled predicates
is reconsulted.

– Tables can be abolished at the subgoal or predicate
level. In addition, all tables for predicates in a given
module can be abolished, as well as all tables present
in the system.

– Space for abolished tables may not be immediately re-
claimable if there are choice points that will backtrack
through these tables. In XSB, garbage collection is
performed at the subgoal and predicate level.

– When well-founded evaluation creates a residual pro-
gram (with clauses) deleting a single table could lead
to dangling pointers. E.g. if a residual clause were
p(a):- tnot(q(b)), deleting the subgoal q(b) or
the predicate q/2 may lead to dangling pointers in the
table for p(a). In such a case, XSB will perform a
cascading abolish that also abolishes q(a), and so on.

– YAP allows automatic reclamation via a least-recently-
used algorithm.

15

Goals for a Multi-Threaded Tabling System

1. Any tabling function should be available to any active
thread using tables that are private to a thread.

2. Any tabling function should be available to any active
thread using tables that are shared among threads.

3. Private tables should be highly scalable up to the number
of cores available.

4. For problems that support large amounts of parallelism,
shared tables should be able to provide speedup propor-
tional to the number of cores availabl

These goals are not easy to fulfill!

16

MT-TLP: Private Tables

• Private tables are suitable to ensure query completeness
or to support a particular semantics (WFS, GAPs, Pref-
erence Logics).

• Private tables use sequential tabling algorithms, but with
thread-safe code. They generally require no synchroniza-
tion above the level of memory management.

• Each thread can access the residual program for its private
tables

– Each thread must be able to reclaim its own table space
upon exit or explicit abolish (including delay listes, etc.
to support WFS)

– Must ensure that memory allocation for table space
data structures is efficient

17

MT-TLP: Summary of Private Table
Functionality

Feature Private Tables
Tabled constraints Supported
Answer subsumption Supported
Tabled Dynamic Code Supported
Tabled negation Supported
Space reclamation Supported
Call subsumption Supported
Incremental recomputation “Almost” supported
XASP (Residual Program→ Smodels) “Almost” supported

Goal 1: Any tabling function should be available to any
active thread using tables that are private to a thread. is
“almost” supported.

18

Private Table Performance

N. threads 1 2 Overhead 4 Overhead

Elementary Net 5.94 6.23 4.8% 6.25 5.2%

Dynamic Elementary Net 6.03 6.03 0% 6.03 0%

Workflow Net 19.21 19.68 2.4% 19.95 3.8%

Omega Net 7.18 8.33 16.0% 10.3 46.0%

Omega Net Specialized 6.37 6.37 0% 6.37 0.0%

Constraint Net 2.75 2.84 3.2% 2.85 3.6%

Preference Net 3.74 3.77 0.8% 3.82 2.1%

Call Subsumption .86 1.04 20.0% 1 43%

• Elementary Net uses tabled definite programs for Petri Net reachablilty; Dynamic

Elementary Net is the same, but uses dynamic clauses. Workflow Net uses
definite programs to test workflows.

• Constraints Net tests the constraint-based colored Petri nets, and Preferences

Net tests extension for well-founded preferences.

• Omega Net tests ω-abstraction using answer subsumption. filterPOA/5 relies
on call/N, which accesses XSB’s shared predicate table, causing poor perfor-

mance. A specialized version, Omega Net Specialized avoids this problem

• Call Subsumption tests an unbound call to right recursion over a graph. Its
poor speedup is apparently due to high demands for memory management

• Goal 3: Private tables should be highly scalable up to the number of cores
available is mostly satisfied (for 4 cores), although more work needs to be

done on call subsumption.

• All performance numbers in this paper were obtained on a 4-core linux machine

whose use was kindly provided by Luis Caires

19

Shared Tables!la

• Computing shared tables in a MT framework depends crit-
ically on the scheduling strategy for tabling.

• Let’s digress for a few slides.

20

Scheduling: Local Evaluation

• Local Evaluation: Completely evaluate each mutually de-
pendent set of subgoals before returning an answer to a
subgoal not in that set.

6. p(1,Y) <- p(2,Y) 19. p(1,Y) <- p(3,Y) 5. p(1,3) <-

1. p(1,Y) <- p(1,Y)

7. p(2,Y) <- p(2,Y)

18. p(1,3) <- 20. Fail

17. Fail

10. p(2,3) <-

9. p(2,Y) <- a(2,Y)8. p(2,Y) <- p(2,Z),p(Z,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

4. p(1,2) <-

11. p(2,Y) <- p(3,Y)

14. p(3,Y) <- a(3,Y)13. p(3,Y) <-
p(3,Z), p(Z,Y)

12. p(3,Y) <- p(3,Y)

16. Fail 15. Fail

:- table p/2.

p(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- a(X,Y).

a(1,2). a(1,3). a(2,3).

21

Scheduling: Local Evaluation

sgi(X,Y)(D) :- arc(X,Y).

sgi(X,Y)(D) :-

arc(X,Z), subsumes(min)(sgi(Z,Z1),D1),

arc(Y,Z1), D is D1+1.

...
...

2

5 6

n-2

n-1 n

1

3 4

n-3

0

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200

T
im

e
(i

n
se

cs
)

n

XSB v. 1.5
Local

(b)

Figure 1: (b) shows the execution time for the query subsumes(min)(sgi(n-1,n),I) on graphs of
the form depicted in (a) for varying n

22

Scheduling: Batched Evaluation

• Batched Evaluation: Return an answer to parent environ-
ments as soon as it is derived.

20. Fail

1. p(1,Y) <- p(1,Y)

3. p(1,Y) <- a(1,Y)

4. p(1,2) <- 5. p(1,3) <-

2. p(1,Y) <- p(1,Z), p(Z,Y)

19. p(1,Y) <- p(3,Y)6. p(1,Y) <- p(2,Y)

11. p(1,3) <-

13. p(3,Y) <- p(3,Y)7. p(2,Y) <- p(2,Y)

15. p(3,Y) <- a(3,Y)14. p(3,Y) <- p(3,Z),p(Z,Y)

12. p(2,Y) <- p(3,Y) 10. p(2,3) <-

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y)

17. Fail 16. Fail

18. Fail

:- table p/2.

p(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- a(X,Y).

a(1,2). a(1,3). a(2,3).

23

Scheduling Strategies

• Negation and tabled aggregation Local Evaluation is superior for

tabled aggregation as only optimal answers are returned out of a maxi-

mal SCC. Local Evaluation also can be more efficient for non-stratified

negation as it may allow delayed answers that are later simplified away

to avoid being propagated.

• Time to first answer Because Batched Evaluation returns answers

out of an SCC eagerly, it is faster to derive the first answer to a tabled

predicate.

• Time for left recursion Batched Evaluation is somewhat faster than

Local Evaluation for left recursion as Local Evaluation imposes over-

head to prevent answers from being returned outside of an indepen-

dent SCC.

• Stack space Local Evaluation ofte requires less space than Batched

Evaluation as it fully explores a maximal independent SCC, completes

the SCC’s subgoals, reclaims space, and then moves on to a new SCC.

• Efficiency for call subsumption Because Local Evaluation completes

tables earlier than Batched Evaluation it can be faster for call sub-

sumption, as subsumed calls can make use of completed subsuming

tables.

• Integration with cuts Local Evaluation integrates better with cuts,

as tabled subgoals may be fully evaluated before the cut takes effect.

24

Shared Tables: Scheduling

• In a multi-threaded environment, Local Evaluation and
batched evaluation have radically different properties

• Consider a simple “producer-consumer” fragment

:- table producer/1, consumer/1.

consumer(Term):- producer(Term).

– In Local Evaluation the producer is prohibited from re-
turning terms to the consumer since they are not mu-
tually dependent (in the same SCC)

– No prohibition is made in batched

– Yet the properties of Local Evaluation are still needed,
particularly for returning “best” the answers out of an
SCC.

25

Shared Tables: Local Evaluation

• In Local Evaluation, tables are shared among threads only
if they are completed (completely evaluated).

• Nonetheless, this is useful in a number of situations

– E.g. a web server for Flora or some other object logic.
Queries to the T-box (inheritance, attributes of clases)
may be shared for amortization, while queries to the
A-box may be thread-private

– While it is mainly oriented towards allowing multiple
threads to evaluate shared tables concurrently using
Local Evaluation, coarse parallelism can be exploited
when a search space can be partitioned into (mostly)
disjoint subspaces.

26

Shared Tables: Local Evaluation

• Implementation is based on Concurrent Local SLG

– If Thread1 calls a table T that is being computed by
a different thread, Thread2, Thread1 checks to see if
a some tables owned by Thread1 and Thread2 are
mutually dependent (perhaps through other threads).

– If not, Thread1 suspends until T is completed (by
Thread2 or some other thread)

– If so, Thread1 usurps the all tables in the SCC S of T .
All other threads that own tables in cS are suspended
until S is completed.

• Concurrent Local SLG has been formalized.

– It has the same completeness, termination, and com-
plexity as Local SLG

– N threads, each performing a local evaluation, together
perform a local evaluation

27

Shared Tables: Local Evaluation

Concurrent Local SLG depends on the definition of a Subgoal Depen-

dency Graph

Definition 1 (Subgoal Dependency Graph) Let F be a forest in

a SLG evaluation. A tabled subgoal S1 directly depends on a tabled

subgoal S2 in F iff neither the tree for S1 nor that for S2 is marked

as complete and S2 is the selected literal of some node in the tree for

S1. The Subgoal Dependency Graph of F , SDG(F), is a directed graph

V,E in which V is the set of root goals for non-completed trees in F

and (Si, Sj) ∈ E iff Si directly depends on Sj.

p(a,Z)

p(b,Z)

p(c,Z)

28

Shared Tables: Local Evaluation

• There is a function from SLG forests to SDGs – i.e. a
forest F defines SDG(F)

• Since SDGs are directed graphs, Strongly Connected Com-
ponents (SCCs) can be defined for them. A maximal SCC
is one that is contained in no other SCC, and an indepen-
dent SCC S is one such that no subgoal in S depends on
a subgoal not in S

• Incremental Completion can be performed an SCC at a
time, or a set of SCCs at a time.

• In a concurrent SLG evaluation, each tree for an incom-
plete subgoal is associated with a single thread.

– The SDG is taken to be the SDG of the combined for-
est of each thread’s evaluation and a thread T ’s SDG
(SDG(T)) is the SDG formed by the subforest of trees
that T owns.

– The Thread Dependency Graph (TDG) represents the
dependencies of a subgoal owned by any given thread
on a subgoal owned by another thread

29

Shared Tables: Local Evaluation

It can be proved that in a Concurrent Local Evaluation

• Each suspended thread is suspended on a single subgoal
and on a single thread

• Any thread T contains a single independent SCC in SDG(T)

These properties considerably simplify the algorithm.

• Any deadlock is a simple cycle in the TDG,

• If a thread T detects a deadlock, all threads in the dead-
lock cycle will be suspended except for T

• Each suspended thread T can be awakened when the sub-
goal on which it was suspended completes. T then resumes
execution by backtracking through answers for the com-
pleted table

30

Shared Tables: Local Evaluation

• Implementation changes mostly concern the tabletry instruction that

is called when a tabled subgoal is encountered.

• completion isntruction also wakes up threads suspended on a com-

pleted subgoal

Instruction tabletry (sequential version)

/* Subg is in argument registers; Tcurrent is current thread */

Perform the subgoal check insert(Subg) operation in the table

If Subg is new

Create a generator choice point to resolve program clauses

Else if Subg is incomplete

Create a consumer choice point to resolve answer clauses

Else if subg is complete

Branch to root of trie to execute instructions for completed table

31

Shared Tables: Local Evaluation

Instruction tabletry (Concurrent Local Version)

/* Subg is in argument registers; Tcurrent is current thread */

Perform the subgoal check insert(Subg) operation in the table

If Subg is not new and is marked by another thread

Lock global TDG mutex

If deadlock(Tcurrent,Subg.ThreadMark)

/* all other threads in the independent SCC are suspended at deadlock */

usurp(Tcurrent,Subg,Subg.ThreadMark)

Else unlock TDG mutex; suspend the calling thread until Subg completes

/* Proceed as in the sequential case */

/* if Subg was usurped, treat it as a new subgoal */

If Subg is new

Create a generator choice point to resolve program clauses

Unlock global TDG mutex

Else if Subg is incomplete

Create a consumer choice point to resolve answer clauses

Else if subg is complete

Branch to root of trie to execute instructions for completed table

32

Shared Tables: Local Evaluation

Because of the properties of a SDG for Local Evaluation

• deadlock() needs to traverse only a simple cycle

• usurp() can rely on the usurped threads being suspended

deadlock(Tcurrent,depends thread)

while(depends thread 6= NULL)

if(depends thread = Tcurrent) return true;

else depends thread← subgoal thread.suspended on thread);

return false;

usurp(Tcurrent, dep SF , first usurped)

Traverse SCC to reset suspended on thread dependencies

Unlock global mutex that protected TDG

Traverse SCC to

Reset stacks of each (suspended) usurped thread

Propagate the proper subgoal dependency to each usupred thread

33

Shared Tables: Local Evaluation

• As currently implemented in XSB, a usurping thread rederives usurped

computations from scratch (although it does not need to re-insert pre-

viously derived answers into the table).

• Details of the implementation are subtle; however they amount to

about 300 lines of code added to tabletry with minimal refactoring of

existing code.

– This means that the approach is quite general for various tablig

functions (as shown below)

– It also means that there is little overhead for this approach beyond

overheads for shared table space (i.e. one or two new conditions

in tabletry)

– It also means that the approach is portable: all tabling systems

execute special code when encountering a tabled subgoal

34

Shared Table Functionality for Local Evaluation

Feature Shared Tables (Local)

Tabled Dynamic Code Supported

Tabled constraints Supported

Answer subsumption Supported

Tabled negation Supported

XASP (Residual Program→ Smodels “Almost” supported

Space reclamation Partially Supported

Call subsumption Not supported

Incremental recomputation Not supported

• The generality of Concurrent Local SLG means that it can support most

tabling functionality

• Full space reclamation for abolished tables is not yet fully supported because

of lack of resources to implement a table garbage collector in a multi-threaded
environment.

• Further work needs to be done to extend Concurrent Local SLG to call sub-
sumption and to assess its efficiency.

• Incremental recomputation is difficult for shared tables, since each thread that
is using a table must maintain its view of the table throughout a query

35

Shared Tables: Efficiency of Concurrent Local SLG

N. threads 1 2 Speedup 4 Speedup

Shared Elementary 25.12 13.00 1.93 6.55 3.83

Shared Dynamic Elemtary 24.8 13.02 1.90 6.59 3.76

Shared Workflow 41.25 20.78 1.98 10.58 3.89

Shared Omega 19.58 10.38 1.88 5.57 3.51

Shared Constraint 11.13 5.56 2.00 2.83 3.93

Shared Preferences 3.73 1.86 1.99 0.95 3.92

• Benchmarks show that usurpation occurs surprisingly infrequently in

pratice.

• Overhead of shared tables over private tables is about 10-40 depending

on benchmark and platform

• Overheads are mostly due to handling mutual exclusion for tables and

to memory allocation. Further work is needed in these areas.

36

Shared Tables: Batched Evaluation

• For Concurrent Batched Evaluation, if one thread calls an (incom-

plete) table owned by another thread, it backtracks through the ex-

isting answers, rather than suspending

• This fixes Producer/Consumer example, and is all you need unless

two threads own subgoals in the same SCC

• When there are intra-SCC dependencies among threads, Concurrent

Batched Evaluation is a generalization of Sequential Batched Evalua-

tion.

• In a sequential (or thread-private) computation, when the engine

backtracks to the oldest subgoal in an SCC, it schedules the return of

unconsumed answers for each consuming node in the SCC by creating

a chain of choice points, and then backtracks into the newly created

chain.

37

Shared Tables: Batched Evaluation

In a concurrent computation, let S be an SCC with subgoals owned by

different threads

• Suppose a thread T1 computing subgoals in S backtracks to the oldest

subgoal that it “owns” in S .

• If another thread computing S is active, T1 will suspend and will be

wakened when a thread performs batched scheduling for S ;

• Tf T1 is the last unsuspended thread computing subgoals in S , T1 itself

will perform a fixed point check and batched scheduling and awaken

the other threads computing S — either to return further answers or

to complete their tables.

• As implemented in XSB, Concurrent Batched Evaluation thus allows

parallel computation of subgoals, but has a sequential fixpoint check

that synchronizes multiple threads when they compute the same SCC.

38

Shared Table Functionality for Batched
Evaluation

Feature Shared Tables (Batched-β)

Tabled Dynamic Code Supported

Tabled constraints Supported

Answer subsumption Supported

XASP (Residual Program → Smodels “Almost” supported

Tabled negation Partially Supported

Space reclamation Partially Supported

Call subsumption Not Supported

Incremental recomputation Not Supported

• Unlike Concurrent Batched Evaluation, Concurrent Local
Evaluation does not yet support full WFS.

• Currently adjusting heuristics to coordinate behavior be-
tween threads

39

