Implementing Query Answering for Hybrid MKNF
Knowledge Bases

Ana Sofia Gomes, José Julio Alferes and Terrance Swift

CENTRIA, Departamento de Informatica
Faculdade Ciéncias e Tecnologias
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract. Ontologies and rules are usually loosely coupled in knowledge rep-
resentation formalisms. In fact, ontologies use open-world reasoning while the
leading semantics for rules use non-monotonic, closed-world reasoning. One ex-
ception is the tightly-coupled framework of Minimal Knowledge and Negation as
Failure (MKNF), which allows statements about individuals to be jointly derived
via entailment from an ontology and inferences from rules. Nonetheless, the prac-
tical usefulness of MKNF has not always been clear, although recent work has
formalized a general resolution-based method for querying MKNF when rules
are taken to have the well-founded semantics, and the ontology is modeled by a
general Oracle. That work leaves open what algorithms should be used to relate
the entailments of the ontology and the inferences of rules. In this paper we pro-
vide such algorithms, and describe the implementation of a query-driven system,
CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules
under the well-founded semantics and a (monotonic) ontology, represented by a
CDF (ALCQ) theory.

1 Introduction

Ontologies and rules offer distinctive strengths for the representation and transmission
of knowledge over the Semantic Web. Ontologies offer the deductive advantages of
first-order logics with an open domain while guaranteeing decidability. Rules employ
non-monotonic (closed-world) reasoning that can formalize scenarios under locally in-
complete knowledge; rules also offer the ability to reason about fixed points (e.g. reach-
ability) which cannot be expressed within first-order logic.

Several factors influence the decision of how to combine rules and ontologies into
a hybrid knowledge base. The choice of semantics for the rules, such as the answer-set
semantics [5] or the well-founded semantics (WFS) [[14], can greatly affect the behavior
of the knowledge base system. The answer set semantics offers several advantages: for
instance, description logics can be translated into the answer set semantics providing a
solid basis for combining the two paradigms [9/11]]. WFS is weaker than the answer-
set semantics (in the sense that it is more skeptical), having the advantage of a lower
complexity, and that it can be evaluated in a query-oriented, Prolog-like, fashion and
having, in fact, been integrated in Prolog systems.

2 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

Several formalisms have concerned themselves with combining ontologies with
WES rules [31417]. Among these, the Well-Founded Semantics for Hybrid MKNF knowl-
edge bases (MKNFw rs), introduced in [7] and overviewed in Section E] below, is the
only one which allows knowledge about instances to be fully inter-definable between
rules and an ontology that is taken as a parameter of the formalism. MKNFyy g assigns
a well founded semantics to Hybrid MKNF knowledge bases, is sound w.r.t. the original
semantics of [[10] and, as in [10], allows the knowledge base to have both closed- and
open-world (classical) negation.

Example 1. The following fragment, adapted from an example [10], concerning car
insurance premiums illustrates several properties of MKNFyy rs. The ontology consists
of the axioms:

nonMarried = -married —married C highRisk 3Spouse.T T married

while the rule base consists of the rules:
K nonMarried(X) « K person(X), not married(X).
K discount(X) < not spouse(X,Y), K person(X), K person(Y).
K surcharge(X) «— K highRisk(X), K person(X).

Note that married and nonMarried are defined both by axioms in the ontology and by
rules. Within the rule bodies, literals with the K or not operators (e.g. K highRisk(X))
may require information both from the ontology and from other rules; other literals are
proven directly by the other rules (e.g. person(X)).

Suppose person(john) were added as a fact (in the rule base). Under closed-world
negation, the first rule would derive nonMarried(john). By the first ontology axiom,
— married(john) would hold, and by the second axiom highRisk(john) would also hold.
By the third rule, surcharge(john) would also hold. Thus the proof of surcharge(john)
involves interdependencies between the rules with closed-world negation, and the on-
tology with open-world negation. At the same time the proof of surcharge(john) is
relevant in the sense that properties of other individuals do not need to be considered.

In the original definition of MKNF g, the inter-dependencies of the ontology
and rules were captured by a bottom-up fixed-point operator with multiple levels of it-
erations. Recently, a query-based approach to hybrid MKNF knowledge bases, called
SLG(O), has been developed using tabled resolution [1]]. SLG(O) is sound and com-
plete, as well as terminating for various classes of programs (e.g. datalog). In addition
SLG(O) is relevant in the sense of Example [I] This relevancy is a critical requirement
for scalability in real domains application (e.g. in the area of Semantic Web): without
relevance a query about a particular individual I may need to derive information about
other individuals even if those individuals were not connected with I through rules or
axioms. SLG(QO) serves as a theoretical framework for query evaluation of MKNFy g
knowledge bases, but it models the inference mechanisms of an ontology abstractly, as
an oracle. While this abstraction allows the resolution method to be parameterized by
different ontology formalisms in the same manner as MKNFyy g, it leaves open details
of how the ontology and rules should interact and these details must be accounted for
in an implementation.

Implementing Query Answering for Hybrid MKNF Knowledge Bases 3

This paper describes, in Section [] the design and implementation of a working
prototype query evaluatmﬂ for MKNFw g, called CDF-Rules, which fixes the ontology
part to ALC Q theories, and makes use of the prover from XSB’s ontology management,
the Coherent Description Framework (CDF) [12] (overviewed in Section[3)). To the best
of our knowledge, this implementation is the first working query-driven implementation
for Hybrid MKNF knowledge bases, combining rules and ontology and complete w.r.t.
the well-founded semantics.

2 MKNF Well-Founded Semantics

Hybrid MKNF knowledge bases as introduced in [10] are essentially formulas in the
logics of minimal knowledge and negation as failure (MKNF) [8], i.e. first-order log-
ics with equality and two modal operators K and not, which allow inspection of the
knowledge base. Intuitively, given a first-order formula ¢, K¢ asks whether ¢ is known
while noty is used to check whether ¢ is not known. A Hybrid MKNF knowledge base
consists of two components, a decidable description logic (DL) knowledge base, trans-
latable into first-order logic, and a finite set of rules of modal atoms.

Definition 1. Let O be a DL knowledge base built over a language L with distinguished
sets of countably infinitely many variables Ny, along with finitely many individuals
Ny and predicates (also concepts) No. An atom P(ty,...,t,) where P € N¢ and
t; € Ny U Ny is called a DL-atom if P occurs in O, otherwise it is called non-DL-
atom. An MKNF rule r has the following form where H;, A;, and B; are atoms: (1)
KH — KA4,...,KA,,notBy,...,notB,,. H is called the (rule) head and the sets
{KA;}, and {notB;} form the (rule) body. Atoms of the form KA are also called
positive literals or modal K-atoms while atoms of the form not A are called negative
literals or modal not-atoms. A rule r is positive if m = 0 and a factifn = m = 0. A
program P is a finite set of MKNF rules and a hybrid MKNF knowledge base K is a
pair (O, P).

For decidability DL-safety is applied which basically constrains the use of rules to
individuals actually appearing in the knowledge base under consideration. Formally, an
MKNF rule r is DL-safe if every variable in r occurs in at least one non-DL-atom KB
occurring in the body of r. A hybrid MKNF knowledge base K is DL-safe if all its rules
are DL-safe (for more details we refer to [10]).

The well-founded MKNF semantics as presented in [7] is based on a complete three-
valued extension of the original MKNF semantics. However, here, as we are only in-
terested in querying for literals and conjunctions of literals, we limit ourselves to the
computation of what is called the well-founded partition in [7]: basically the atoms
which are true and false. For that reason, and in correspondence to logic programming,
we will name this partition the well-founded model. At first, we recall some notions
from [7] which will be useful in the definition of the operators for obtaining that well-
founded model.

! The implementation is freely available from the XSB CVS repository.

4 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

Definition 2. Consider a hybrid MKNF knowledge base K = (O, P). The set of K-
atoms of K, written KA(KC), is the smallest set that contains (i) all modal K-atoms
occurring in ‘P, and (ii) a modal atom K¢ for each modal atom noté occurring in K.

Furthermore, for a set of modal atoms S, Spy, is the subset of DL-atoms of S, and
S={¢|K¢e S}

Basically all modal atoms appearing in the rules are collected in KA(K). The other
notions are useful below when defining an operator on hybrid MKNF KB'’s.

To guarantee that all atoms that are false in the ontology are also false by default
in the rules, we introduce new positive DL atoms which represent first-order false DL
atoms, and a program transformation making these new modal atoms available for rea-
soning in the respective rules.

Definition 3. Let K be a DL-safe hybrid MKNF knowledge base. We obtain K+ from
IC by adding an axiom =P T NP for every DL atom P which occurs as head in at least
one rule in K where NP is a new predicate not already occurring in IC. Moreover, we
obtain K* from K by adding not N P(t1,...,t,) to the body of each rule with a DL
atom P(ty, ... ty,) in the head.

By K+, NP represents —P (with its corresponding arguments) and X* introduces a
restriction on each rule with such a DL atom in the head saying intuitively that the rule
can only be used to conclude the head if the negation of its head cannot be prove(ﬂ

We continue now by recalling the definition in [7]] of an operator T which allows
conclusions to be drawn from positive hybrid MKNF knowledge bases.

Definition 4. For IC a positive DL-safe hybrid MKNF knowledge base, Ry, Dy, and
T are defined on the subsets of KA(K*) as follows:

Ri(S) = SU{KH | K contains a rule of the form (1) such that KA; € S
foreach 1 <i<n}
D;C(S) = {K§ ‘ K¢ € KA(’C*) and O U Spy, ': f} U {KQ(bl,,bn) |
KQ(a,...,a,) € S\ Spr, KQ(b1,...,b,) € KA(K*), and
OU§DL Ea; =b; forl <i<n}
Tic(S) = Ric(S) U Dic(S)

Ry derives consequences from the rules while Dy obtains knowledge from the ontol-
ogy O, both from non-DL-atoms and the equalities occurring in O. The = operator
defines a congruence relation between individuals.

The operator T is shown to be monotonic in [7] so, by the Knaster-Tarski theorem,
it has a unique least fixpoint, denoted Ifp(7T), which is reached after a finite number of
iteration steps.

The computation follows the alternating fixpoint construction [13] of the well-
founded semantics for logic programs which necessitates turning a hybrid MKNF knowl-
edge base into a positive one to make Tj applicable.

% Note that ™ and KC* are still hybrid MKNF knowledge bases, so we only refer to Kt and K*
explicitly when it is necessary.

Implementing Query Answering for Hybrid MKNF Knowledge Bases 5

Definition 5. Let Ko = (O, Pg) be a ground DL-safe hybrid MKNF knowledge base
and let S C KA(Kg). The MKNF transform Kg/S = (O,Pg/S) is obtained by
Pa/S containing all rules H «— Ay, ..., A, for which there exists a rule KH «—
KA4,...,KA,,notBy,...,notB,, in Pg with KB; & S forall1 < j <m.

This resembles the transformation known from answer-sets [3]] of logic programs and
the following two operators are defined.

Definition 6. Let K = (O, P) be a nondisjunctive DL-safe hybrid MKNF knowledge
base and S C KA(K*). We define: I'c(S) = pr(Ticg/s)» and I'y:(S) = Ifp(Txz, /s)-

Both operators are shown to be antitonic [7], hence their composition is monotonic
and form the basis for defining the well-founded MKNF model. Here we present its
alternating computation.

TO = @ TUO = KA(IC*)
Ty1= F)C(TUn) TU, 41 = FI/C (Tn)
T,=UT, TU,=TU,

Note that by finiteness of the ground knowledge base the iteration stops before reaching
w. It was shown in [7] that the sequences are monotonically increasing, decreasing
respectively, and that T, and TU,, form the well-founded model:

Definition 7. Let K = (O,P) be a DL-safe hybrid MKNF knowledge base and let
T, TUx C KA(K) with Tx being T, and TUx being TU,, both restricted to the
modal atoms only occurring in KA(K). Then My = {KA | A € T} U{Kn(O)}U
{notA | A € KA(K) \ TUx} is the well-founded MKNF model of K, where 7(O)
denotes the first order logic formula equivalent to the ontology O (for detail on the
translation of O into first order logic see [I10]) .

All modal K-atoms in My g are true, all modal not-atoms are false and all other modal
atoms from KA(KC) are undefined.

As shown in [[7]], the well founded model is sound with respect to the original se-
mantics of [10], i.e. all atoms true (resp. false) in the well founded model are also true
(resp. false) according to [10]. In fact, the relation between the semantics of [7] and
[10], is tantamount to that of the well founded semantics and the answer-sets semantics
of logic programs.

3 XSB Prolog and the Coherent Description Framework

Our implementation makes use of XSB Prolog (xsb.sourceforge.net) to imple-
ment MKNFyy g for two reasons. First, XSB’s tabling engine evaluates rules according
to WFS, and ensures rule termination for programs with the bounded term-size property.
Second, the implementation directly uses the prover from XSB’s ontology management,
the Coherent Description Framework (CDF) [[12].

CDF has been used in numerous commercial projects, and was originally developed
as a proprietary tool by the company XSB, Inc although significant portions of it have
been made open source, and are available in the standard XSB package release. Over
the last 6 years CDF has been used to support extraction of information about aircraft

6 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

parts from free-text data fields, about medical supplies and electronic parts from web-
sites and electronic catalogs, and about the specifics of mechanical parts from scanned
technical drawings. Also, CDF is used to maintain models of graphical user interfaces
that are driven by XSB and its graphics package, XJ. Next, we discuss a few features of
CDF that are relevant to the implementation described in Section 4]

Commercial use has driven CDF to support efficient query answering from Prolog.
As a result, ontologies in CDF can have a restricted, tractable form. Type-0 ontolo-
gies do not allow representation of negation or disjunction within the ontology itself,
and implicitly use the closed-world assumption. As such, Type-0 ontologies resemble a
frame-based representation more than a description logic, and do not add any complex-
ity to query evaluation beyond that of WFS. Type-1I ontologies use open-world negation
and support ALC Q description logics. The vast majority of knowledge used by XSB,
Inc. is maintained in Type-0 ontologies; Type 1 ontologies are used for small projects
in XSB, Inc. and for research.

Regardless of the type of the ontology, primitive classes in CDF are represented
by terms cid(Identifier, Namespace), instances by terms oid(Ildentifier, Namespace), and
relations by terms rid(Identifier, Namespace). The atom isa/2 is used to state inclusion:
whether the inclusion is a subclass, element of, or subrelation depends on the type of
the term, and not all combinations of types of terms are allowed in a CDF program.
Relational atoms in CDF have the form hasAttr(Termy, Rely, Termsy) which has
the meaning T'ermy C JRely.Termo; all Attr(Termy, Rely, Terms) which has the
meaning T'erm; T VRel;.Termsy, along with other forms that designate cardinality
constraints on relations. Query answering to Type-0 ontologies is supported by tabling
to implement inheritance and by tabled negation so that only the most specific answers
to a query are returned to a user.

Unlike Type-0, Type-1 ontologies also allow atoms necessCond(Termy, CE) where
CFE can be any ALCQ class expression over CDF terms. Because they use open-
world negation, atoms for Type-1 ontologies cannot be directly queried; rather they
are queried through goals such as allM odelsEntails(Term, ClassExpr), succeed-
ing if Term T ClassExpr is provable in the current state of the ontology. Type-1
ontologies deduce entailment using a tableau prover written in Prolog.

Regardless of the type of the ontology, atoms such as isa/2, hasAttr/2, etc. can
be defined extensionaly via Prolog facts, or intensionaly via Prolog rules. Intensional
definitions are used in Type-0 database so that atoms can be lazily defined by querying
a database or analyzing a graphical model: their semantics is outside that of CDF. At the
same time, intensional definitions in a Type-1 ontology provides a basis for the tableau
prover to call rules, as is required to support the interdependencies of MKNFyy rs.

4 Goal-Driven MKNF Implementation

In this section we describe the algorithms and the design of a goal driven imple-
mentation for Hybrid MKNF Knowledge Bases under the Well Founded Semantics.
Our solution makes use of XSB’s SLG Resolution [2]] for the evaluation of a query,
together with tableaux mechanisms supported by CDF theorem prover to check entail-
ment on the ontology. In this section we assume a general knowledge of tabled logic
programs.

Implementing Query Answering for Hybrid MKNF Knowledge Bases 7

4.1 A Query-Driven Iterative Fixed Point

At an intuitive level, a query to CDF-Rules is evaluated in a relevant (top-down like)
manner with tabling, through SLG resolution [2], until the selected goal is a literal [
formed over a DL-atom. At that point, in addition to further resolution, the ontology
also uses tableau mechanisms to derive [. However, as a tableau proof of [may re-
quire propositions (literals) inferred by other rules, considerable care must be taken to
integrate the tableau proving with rule-based query evaluation.

In its essence, a tableau algorithm decides the entailment of a formula f w.r.t. an
ontology O by trying to construct a common model for - f and O, sometimes called a
completion graph. If such a model can not be constructed, O = f; otherwise O does not
entail f. Similar to other description logic provers, the CDF theorem prover attempts
to traverse as little of an ontology as possible when proving f. As a result, when the
prover is invoked on an atom A, the prover attempts to build a model for the underlying
individual(s) to which A refers, and explores other individuals only as necessary.

Now, given the particular interdependence between the rules and the ontology in
MKNFyy rg, the prover must consider the knowledge inferred by the rules in the pro-
gram for the entailment proof, as a DL-atom can be derived by rules, which in turn may
rely on other DL-atoms proven by the ontology. Thus, for a query to a DL-atom p(0),
the idea is to iteratively compute a model for o, deriving at each iteration new infor-
mation about the roles and classes of o, along with information about other individuals
related to o either in the ontology (via CDF’s tableau algorithm) or in the rules (via SLG
procedures) until a fixed point is reached.

We start by illustrating the special case of positive knowledge bases without default
negation in the rules.

Example 2. Consider the following KB (with the program on the left and the ontology
on the righﬂ) and the query third(X):

K third(X) «— p(X),K second(X).
K first(callback). First C Second
p(callback).

The query resolves against the rule for third(X), leading to the goals p(X) and
second(X). The predicate p, although not a DL-atom, assures DL-safety, restricting
the application of the rules to known individuals. The call p(X) returns true for X =
callback. However, now the call third(callback) (since X was bound to callback by
p) depends on the DL-atom second(callback), corresponding in the ontology to the
proposition Second. So the computation calls the CDF theorem prover which starts
to derive a model for all the properties of the individual callback. Yet, in this com-
putation, the proposition Second itself depends on a predicate defined in the rules —

3 To simplify reading we use the usual notation for the ontology, where the argument variable
of a unary predicate is not displayed, and the first letter of the predicate’s name is capitalized.
For rules we use the usual logic programming notation, and omit the K before non-DL atoms.
In fact, in the implementation the ontology must be written according to CDF syntax, and in
the rules the modal operators K and not are replaced by (meta-)predicates known/1 and
dinot/1, respectively (see Section.

8 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

First. It is intuitive that the evaluation of the query third(callback) must be done
iteratively — the (instantiated) goal third(callback) should suspend (using tabling) un-
til second(callback) is resolved. Furthermore, second(callback) needs first to prove
first(callback) from the rules. In general, goals to DL-atoms may need to suspend in
order to compute an iterative fixed point, after which they may either succeed or fail.

We formalize the actions in Example [2] on the special case of definite programs as
follows.

Definition 8. Ler K = (O, P) be a DL-safe hybrid MKNF knowledge base, where
P does not contain default negation. Let T be a fixed set of individuals. The function
Tableaux(O) computes for a theory O the entailments of O for I, disregarding the rules
component. The function SLG(P) computes via tabling the set of DL-atoms true in the
minimal model of P for a set of individuals, Z, disregarding the ontology component.
The model is obtained as the least fixed point of the alternative sequence:

Dy = Tableauz(O) Ry = SLG(P)
Dy = Tableauz(O U Ry) Ry = SLG(P U Dy)
D,, = Tableaux(O U R,,_1) R, =SLG(PUD,_)

where n is odd and > 2. The iteration stops when a fixed point in R,, is reached.

Definition [8] resembles Definition [of the operator Tx in Section 2] As in Defi-
nition [since it considers only positive rules, the operators SLG and Tableaux are
monotonic and thus a least fixed point is guaranteed to exist. Furthermore, the program
respects DL-safety, which means that MKNF rules are lazily grounded with respect to
the set of individuals (constants). Thus the program is finite and the fixed point can be
obtained in a finite number of steps.

Definition [8| captures certain aspects of how the rules and ontology use each other
as a way to derive new knowledge in CDF-Rules, via an alternating computation. How-
ever it does not capture cases in which the relevant set of individuals changes, or the
presence of default negation in rule bodies. With regard to relevant individuals, since it
is possible to define n-ary predicates in rules along with roles in the ontology, the query
may depend on a set of several individuals. Therefore, the fixed point computation must
take into account the entire set of individuals that the query depends on. This is done by
tabling information about each individual in the set of individuals relevant to the query.
This set may increase throughout the fixed point iteration as new dependency relations
between individuals (including equality) are discovered. The iteration stops when it is
not possible to derive anything more about these individuals, i.e., when all individuals
in the set have reached a fixed point.

Example 3. Regarding default negation, consider the following knowledge base:

K third(X) « p(X),K second(X). K first(callback). First C Second
K fourth(X) < p(X),not third(X). p(callback). Fourth C Fifth

Implementing Query Answering for Hybrid MKNF Knowledge Bases 9

In this example a predicate fourth(X) is defined at the expense of the nega-
tion of third(X). Since fourth(X) is defined in the rules, the negation is closed
world, that is, fourth(X) should only succeed if it is not possible to prove third(X).
Consequently, if we employed SLG resolution blindly, an iteration where the truth of
second(callback) had not been made available to the rules from the ontology might
mistakenly fail the derivation of third(callback) and so succeed fourth(callback).
Likewise, the rules may pass to the ontology knowledge, that after some iterations, no
longer applies — in this case if the ontology were told that fourth(callback) was true,
it would mistakenly derive F'i fth.

Example[3|shows a need to treat default negation carefully, as it requires re-evaluation
when new knowledge is inferred. Recall how in Deﬁnition@ operators I and I'y- are
defined in order to address the problem of closed-world negation. Roughly, one step in
I (or I'y) is defined as the application of T) until reaching a fixed point. Applying
I'y. followed by I'x is a monotonic operation and thus is guaranteed to have a least
fixed point. In each dual application of I'x and I two different models follow — a
monotonically increasing model of trues (i.e. true predicates and propositions), and a
monotonically decreasing model of trues and undefineds.

In a similar way, the implementation of CDF-Rules makes use of two fixed points:
an inner fixed point where we apply Definition [§] corresponding to T; and an outer
fixed point for the evaluation of nots, corresponding to I'x (and I'y.). In the outer op-
eration, the evaluation of closed-world negation is made by a reference to the previous
model obtained by k.. Thus in CDF-Rules, not(A) succeeds if, in the previous outer
iteration, A was not proven.

Example 4. As an illustration of the need for the application of the two fixed points,
consider the knowledge base below and the query ¢(X):

Kco(X) —p(X),Ka(X),not b(X) p(object). Ka(object). ALCB

When evaluating the query ¢(X), X is first bound to object by p, and then the
iteration process of Definition [§] begins. Note that Definition [§] refers only to definite
programs. To treat a rule like that for ¢(X) as positive, each negative body literal is
evaluated according to its value in the previous outer fixed point, or is simply evaluated
as true in the first outer iteration. As will be seen, this is done lazily by CDF-Rules.
Accordingly, the rules infer a(object), p(object) and c(object) for Ry. However in the
first inner iteration the set of ontological entailments, Dy, is empty since O [~ A. In the
second inner step the rules achieve the same fixed point as in the first, so R; = Ry, but
the ontology derives B for object in D;. After sharing this knowledge, there is nothing
more to infer by either components, and we achieve the first inner fixed point with:

T, = {a(object),b(object), c(object), p(object) }

So now, the second outer iteration will start the computation of the inner iteration again
and, in this iteration, nots are evaluated with respect to 7;. As a consequence, c(object)
fails, since b(object) € Tj. The fixed point of the second inner iteration contains
p(object), a(object) and b(object), which is in fact the correct model for the object
object. Afterwards, the outer iteration needs one more computational step to determine

10 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

that a fixed point has been reached, and returns the model described. Since c(object) is
in the model, the query ¢(X) succeeds for X = object.

The procedure for a lazily invoked iterative fixed point described above is sum-
marized in Figure [T| using predicates that are described in detail in Section [4.2] The
tabled predicate known/3 is used in each inner iteration to derive knowledge from the
rules component, while all M odelsEntails/3 infers knowledge from the ontology via
a tableau proof. Within rules evaluated by known/3, the default negation of a DL-
atom A is obtained by the predicate dinot(A), which succeeds if A was not proven
in the last outer iteration. Whenever a role is encountered for an individual, a check is
made to determine whether the related individual is already in the list of individuals
in the fixed point, and the individual is added if not. The predicates de finedClass/2
and de finedRole /3 are used to obtain the relevant classes and roles defined for a given
individual over a DL-safe MKNF Hybrid Knowledge Base. We assume that these predi-
cates are defined explicitly by the compiler or programmer, but they can also be inferred
via the DL-safe restriction. In fact, by bounding our program to DL-Safe rules, every
rule in the hybrid knowledge base must contain a positive predicate that is only defined
in the rules. This predicate limits the evaluation of the rules to known individuals, so
that CDF-Rules can infer the set of individuals that are applicable to a given rule, that
18, its domain.

The algorithm shown in Figure [T] creates two different sets corresponding to the
application of the operator I" of the MKNFy rs [7]. A credulous set, containing the
atoms that are true or undefined; and a skeptical set of the atoms that are true (cf.
Definition [7). As in the application of I', the T" set is monotonically increasing, while
TU set is monotonically decreasing. Finally, after computing the sets and achieving
the fixed point, our algorithm returns the evaluation of known(Query, Iteration — 1),
where Iteration represents the iteration where the outer fixed point was accomplished.
Since the first outer set obtained corresponds to the first iteration in the T'U set, this
outer fixed point will be obtained in a T'U iteration. Thus to check if Query is true, we
need to check if it is contained in the set inferred in Iteration — 1. If this is not the
case, Query is evaluated as undefined if it derived in Iteration, and as false otherwise.

4.2 Implementing MKNF v rs Components

We now provide a description of the various predicates in the algorithm of Figure [I]
discuss the manner in which the rule and ontology components exchange knowledge,
and how the fixed point is checked.

Rules Component As mentioned, inferences from rules are obtained using the pred-
icate known/1 corresponding to K and dinot/1 corresponding to not. Cf. Figure
the call known(A) with A = p(O) first calls compute FizedPoint(p(O)) which be-
gins the fixed point computation for O. compute FixedPoint/1 was summarized in
Figure [1| and calls the lower-level known/3 and dinot/3. Once the fixed point has
been reached, the final iteration indices for O are obtained from a global store us-
ing get_object_iter(p(0),Outer,Inner), and known/3 will be called again to determine
whether p(O) is true. This post-fixed point call to known/3 will simply check the ta-
ble, and so will not be computationally expensive. known/3 is always called with the

Implementing Query Answering for Hybrid MKNF Knowledge Bases

11

1
2
3

o e NN e

Input: A query Query to a DL-Atom

QOutput: Value of the input query in MKNFw s
addIndividuals(Query,IndividualList);

foreach Individual in IndividualList do

Outlter, Inlter = 0;
S=5={}
P =P ={};
repeat
P =P
repeat
S = Sl;
foreach Class in definedClass(Individual,Class) do
Term = Class(Individual);
S1 = S1U known(Term, Outlter, Inlter);
S1 = S1U allModelsEntails(Term, Outlter, Inlter);
S1 = S1U allModelsEntails(not Term, Outlter, Inlter);
end
foreach Role in definedRole(Individual,Individuall,Role) do
Term = Role(Individual,Individuall);
add Individuall to IndividualList if necessary
S1 = S1U known(Term, Outlter, Inlter);
S1 = S1U allModelsEntails(Term, Outlter, Inlter);
S = S1U allModelsEntails(not Term, Outlter, Inlter);
end
Inlter++;
until S = 55 ;
pP=S5,
Outlter++;
until P = P ;
end
if known (Query,Final-1,Final) then

| return true
else
if known(Query, Final,Final) then
| return undefined
else
‘ return false
end
end

Fig. 1. The Top-Level Algorithm:ComputeFixedPoint(Query)

12 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

iteration indices in its head bound, and if p(O) is true in the current iteration, the table
entry will contain the iteration indices. p(O) is known if it can be derived from the
rules, calling it directly. Alternately, p(O) is true if O € P was entailed by the the on-
tology in the last inner iteration step, as determined by the call allM odelsEntails/3,
which checks for the entailment of O € P in the previous inner iteration. In both cases,
care must be taken so that it is guaranteed that if = A holds, then not A holds as well.
In Definition [3| this is guaranteed by considering the addition of not/N P in bodies of
rules with head P in one of the alternating operators. Identically, when we try to derive
known(A, Outlter, InIter) and the iteration QutIter is even (i.e. corresponding to a
step where 'y, rather than Ik, is being applied) , we further check if the ontology de-
rived —A in the last set. If so, then known(A, Outlter, InIter) fails. This restriction
is imposed by the predicate no_prev_neg/3:

known (A) :—
computeFixedPoint (A), get_object_iter (A,Outlter,InlIter),
known (A, OQutIter, InlIter).

:— table known/3.
known (A, OQutIter, Inlter) :—
(call (),

InIter > 0, LastIter is InIter - 1,
allModelsEntails (A,OutIter,LastIter)),
(OutIter mod 2 =:= 1 -> true;
no_prev_neg (A,OutIter, LastIter)).

no_prev_neg(_A,_OutIter, LastIter) :—- LastIter < 0,!.
no_prev_neg(A,OutIter, LastIter) :-
tnot (allModelsEntails (not (A) ,OutIter, LastIter)).

Fig. 2. Prolog Implementation of K for Class Properties

On the other hand, the predicate dinot(A) which uses closed world assumption,
succeeds if A fails. As discussed in Example |4] the evaluation of dinot/2 must take
into account the result of the previous outer iteration. Accordingly, in Figure [3] the
call dlnot(A) with A = p(O) gets the current iteration for O, and immediately calls
dinot /2. The second clause of dlnot/2 simply finds the index of the fixed point of the
previous outer iteration, and determines whether A was true in that fixed point. Since
the call to known/3 in tnot/1 is tabled, none of the predicates for not need to be
tabled themselves. As described before, each outer iteration represents an iteration in
T and TU sets of Definition [/| for MKNFw rg. As a result, T' sets are monotonically
increasing whilst T'U sets are monotonically decreasing. To assure that the first TU set
is the largest set, we compel all calls to dinot/1s to succeed in the first outer iteration,
as represented by the first clause of dinot/2.

Ontology Component The tabled predicate allModelsEntails/3 provides the interface
to CDF’s tableau theorem prover (Figure [4)). It is called with an atom or its negation

Implementing Query Answering for Hybrid MKNF Knowledge Bases 13
dlnot (A) :—
computeFixedPoint (&),
get_object_iter (A,OutIter,_InlIter), dlnot (A,OutlIter).

dlnot (_A,0) := !.
dlnot (A,OQutIter) :—
LastIter is OutlIter - 1, get_final_iter(A,LastIter,
FinIter),
tnot (known (A, LastIter,FinlIter)) .

Fig. 3. Implementation of not for Class Properties

and with the indices of its outer and inner iterations both bound. The predicate converts
the atomic form of a proposition to one used by CDF. It translates a 1-ary DL-atom
representing an individual’s class membership to the CDF predicate isa/2, a 2-ary DL~
atom representing an individual’s role to the CDF predicate hasAttr/3 (see Section .
In addition, if Atom is a 2-ary role, the target individual may be added to the fixed point
set of individuals.

:— table allModelsEntails/3.
allModelsEntails (not (Atom),_ OutIter,_InIter):- !,
/+* transform Atom to CDF to an object identifier and
class expressionx*/
/#+ add individuals to current fixed point 1list #*/
(rec_allModelsEntails (Id,CE) -> fail ; true).
allModelsEntails (Atom, OutIter,_InIter) :-
/+ transform Atom to CDF to an object identifier and
class expressionx*/
/+ add individuals to current fixed point list #*/
(rec_allModelsEntails (Id,not (CE)) -> fail ; true).

Fig. 4. Prolog Clauses for allmodelsEntails/3

The tableau prover, called by rec_allM odels Entails/2, ensures that it obtains all
information inferred by the rules during the previous inner iteration, in accordance with
Deﬁnition@ This is addressed via the CDF intensional rules. In general, the architec-
ture of a CDF instance can be divided into two parts — extensional facts and intensional
predicates. Extensional facts define CDF classes and roles as simple Prolog facts; in-
tensional rules allow classes and roles to be defined by Prolog rules which are outside
of the MKNF s semantics. In our case, the intensional rules support a programming
trick to check rule results from a previous iteration. As shown in Figure 5] they directly
check the known/3 table for a previous iteration using the predicate lastKnown/I (not
shown). If roles or classes are uninstantiated in the call from the tableau prover, all de-
fined roles and classes for the individual are instantiated, and called using lastKnown/I
against the last iteration of the rules.

Discussion As described, CDF-Rules implements query answering to hybrid MKNF
knowledge bases, and tries to reduce the amount of relevance required in the fixed
point operation. Relevance is a critical concept for query answering in practical sys-
tems, however a poorly designed ontology or rules component can work against one

14 Ana Sofia Gomes, José Juilio Alferes and Terrance Swift

isa_int (0oid (Obj,NS),cid(Class,NS1l)) :—
ground (Obj),ground(Class), !,
Call =.. [Class,Obj], lastKnown (Call).
isa_int (0oid(Obj,NS),cid(Class,NS)) :—
ground (Obj) ,var (Class), !,
definedClass (Call,Class,Obj), lastKnown(Call).

hasAttr_int (0id (0Objl,NS),rid(Role,NS1),0id(0Obj2,NS2)) :—
ground (Objl), ground(Obj2), ground(Role),!,
Call =.. [Role,0bjl,0bj2],
last_known (Call) .

hasAttr_int (0id(Objl,NS), rid (Role,NS1),0id(0bj2,NS2)) :—
ground (Objl), ground(0Obj2), wvar(Role),!,
definedRole (Call,Role,0bjl,0bj2),
last_known (Call) .

Fig. 5. Callbacks from the ontology component to the rules component

another if numerous individuals depend on one another through DL roles. In such a
case the relevance properties of our approach will be less powerful; however in such
a case, a simple query to an ontology about an individual will be inefficient in itself.
The approach of CDF-Rules cannot solve such problems; but it can make query an-
swering as relevant as the underlying ontology allows. Optimizations of the described
approach are possible. First is to designate a set of atoms whose value is defined only in
the ontology: such atoms would require tableau proving, but could avoid the fixed point
check of computeFizedPoint/1. Within compute Fized Point/1 another optimiza-
tion would be to maintain dependencies among individuals. Intuitively, if individual I3
depended on individual I but not the reverse, a fixed point for /5 could be determined
before that of I;. However, these optimizations are fairly straightforward elaborations
of CDF-Rules as presented.

5 Conclusions

In this paper we described the implementation of a query-driven system, CDF-Rules,
for hybrid knowledge bases combining both (non-monotonic) rules and a (monotonic)
ontology. The system answers queries according to MKNFyy rs [7] and, as such, is
also sound w.r.t. the semantics defined in [[10] for Hybrid MKNF knowledge bases. The
definition of MKNFyy pg is parametric on a decidable description logic (in which the
ontology is written), and it is worth noting that, as shown in [[7], the complexity of rea-
soning in MKNFw rg is in the same class as that in the decidable description logic;
a complexity result that is extended to a query-driven approach in [1l]. In particular, if
the description logic is tractable then reasoning in MKNFyy, g is also tractable. Our
implementation fixes the description logic part to CDF ontologies that, in its Type-1
version, supports ALCQ description logic. CDF Type-0 ontologies are simpler, and
tractable and, when using Type-0 ontologies only our implementation exhibits a poly-
nomial complexity behavior. This fact derives from the usage of tabling mechanisms,
as defined in SLG resolution and implemented in XSB Prolog, though the proof of such

Implementing Query Answering for Hybrid MKNF Knowledge Bases 15

is beyond the scope of this paper. For space reasons it was impossible to include here
a proof of correctness of the implementation by relating it to the MKNFyy g tabling
framework of [[1]], SLG(O): however this can be done by formally relating the iterative
fixed point in Section 4] to the ORACLE RESOLUTION operation of SLG(O). We also
omit here comparisons between MKNF and other proposals for combining rules and on-
tologies, as we focus on the implementation rather than on the definition of a semantics.
For a survey on these proposals, see [[6], and [10l7]] for comparisons to MKNEF.
CDF-Rules serves as a proof-of-concept for querying MKNFyy rs knowledge bases.
As discussed, XSB and tractable CDF ontologies have been used extensively in com-
mercial semantic web applications; the creation of CDF-Rules is a step toward under-
standing whether and how MKNFy rg can be used in such applications. As XSB is
multi-threaded, CDF-Rules can be extended to a MKNFyy s server in a fairly straight-
forward manner. Since XSB supports CLP, further experiments involve representing
temporal or spatial information in a hybrid of ontology, rules, and rule-based con-
straints. In addition, since the implementation of Flora-2 [[15] and Silk are both based on
XSB, CDF-Rules forms a basis for experimenting with MKNFy, g on these systems.

References

1. J. J. Alferes, M. Knorr, and T. Swift. Queries to hybrid mknf knowledge bases through
oracular tabling. In The Semantic Web - ISWC 2009, volume 5823 of LNCS. Springer, 2009.
2. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM, 43(1):20-74, January 1996.
3. W. Drabent and J. Matuszynski. Well-founded semantics for hybrid rules. In RR2007, pages
1-15. Springer, 2007.
4. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for de-
scription logic programs in the semantic web. In RuleML’04, pages 81-97, 2004.
5. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren and Szeredi,
editors, International Conference on Logic Programming. MIT Press, 1990.
6. P. Hitzler and B. Parsia. Ontologies and rules. In S. Staab and R. Studer, editors, Handbook
on Ontologies. Springer, 2 edition, 2009.
7. M. Knorr, J. J. Alferes, and P. Hitzler. A coherent well-founded model for hybrid mknf
knowledge bases. In Europ. Conf. on Artificial Intelligence, pages 99-103. I0S Press, 2008.
8. V. Lifschitz. Nonmonotonic databases and epistemic queries. In International Joint Confer-
ence on Artificial Intelligence, pages 381-386, 1991.
9. B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, University of Karlsruhe, 2006.
10. B. Motik and R. Rosati. A faithful integration of description logics with logic programming.
In International Joint Conference on Artificial Intelligence, pages 477-482, 2007.
11. T. Swift. Deduction in ontologies via answer set programming. In International Conference
on Logic Programming and Non-Monotonic Reasoning, pages 275-289, 2004.
12. T. Swift and D. S. Warren. Cold Dead Fish: A System for Managing Ontologies, 2003.
Available via http://xsb.sourceforge.net.
13. A. van Gelder. The alternating fixpoint of logic programs with negation. In Principles of
Database Systems, pages 1-10. ACM Press, 1989.
14. A. van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620-650, 1991.
15. G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge representation and infer-
ence infrastructure for the semantic web. In CooplS/DOA/ODBASE, pages 671-688, 2003.

	Implementing Query Answering for Hybrid MKNF Knowledge Bases
	Ana Sofia Gomes, José Júlio Alferes and Terrance Swift
	Introduction
	MKNF Well-Founded Semantics
	XSB Prolog and the Coherent Description Framework
	Goal-Driven MKNF Implementation
	A Query-Driven Iterative Fixed Point
	Implementing MKNFWFS Components
	Rules Component
	Ontology Component
	Discussion

	Conclusions

